E 7' x0_C xbC a vV @
©e Ot%
Department of Computer Science
College of Electrical Engineering and Computer Science
National Tsing Hua University
Master Thesis

Y(E 1T C E c200gS 0iJ2sd
Building a Next-Generation Cloud Gaming Platform with Plana
Map Streaming and Distributed Rendering

<« A6
Pin-Chun Wang

Y™ ec” Zé
Advisor: Cheng-Hsin Hsu, Ph.D.

. 106t 05
May, 2017

O

o

S @

© :0:0 +

~-

AN »nxO

— O

«

onNOc o]

0™

(,A O o

106
05

S
Building a Next-Generation Cloud Gaming Platform
with Planar Map Streaming and Distributed

Rendering
, Ot A< A6 (105062510(- E i ' x C & v
@E Koéx MOt Y —106t.05 304 - f O

aéa N EafE< [ydi

af Oa

Acknowledgments

| would like to express my gratitude toward all the people \mkeiped me
in the past one and a half years. | would like to thank my advide Cheng
Hsin Hsu rst, he is the one always giving me guidance and sstigns.
Moreover, he gave me chances to strengthen my researchaskiNell as soft
skills and always stand behind me. Secondly, | would likenemk my col-
leagues in Networking and Multimedia Systems Lab, espgdiiing Ling
Fan and Hua Jun Hong. Without Ching Ling's careful tutoringiduld have
spent more time wandering around and won't be able to gradoatdvance.
Even though Hua and | are not working at the same project, léisime in
many aspects, including programming- skills, computer iggcture knowl-
edge, and communication skills:-Lastly,.| would like to tkaur colleagues
in UIUC, namely Apollo, who.even spent:a. month working in Taiwv do
enjoy the time accomplishing this work and working with yawysg.

B“ge' D@O. ¢

''I'_'Xo

,Otcazp 0iJ2sd,P6 D G§%E 1 C

planrmap &E ¢ , 0qYE\°a y & |
, ! DU%: h&aEec¢e6i ,TEZr & &a90a8/ 607
J2 ,0ft62 e0»* @ ,38; 1 °d ° E-
i C - 0./A0.h 1%E 1 C ° &350, C™
% E®J240 £ U r- /| N awx U\ °- zV
d - sd,' ' yUOo:v[> Ex26%. hgO , O
q (g ;1 T006@,ql ke E K— U, e
_>n(: hi 141% & ~NT 0 2B (Ok &,
E(hpo *p ,0Qgis« 7,)(E& I1¢C ,

Abstract

We propose a new cloud gaming platform to address the lilmitsiof the
existing ones. We study the rendering pipeline of 2D planapsnand con-
vert it into the server and client pipelines. While doing stunally gives us a
distributed rendering platform, compressing 2D planarsifaptransmission
has never been studied in the literature. In this thesis, nwpgse a com-
pression component for 2D planar maps with several paraaadtmodules,
where the optimal parameters are identi ed through reakexpents. The
resulting cloud gaming platform is evaluated through esitenexperiments
with diverse game scenes. The evaluation results are pramisompared
to the state-of-the-art x265 codec, our platform: (i) acbsebetter percep-
tual video quality, by up to' 0.14 in-SSIM, (ii) runs fast, whethe client
pipeline takes 0:83ms to render.each frame, and (iii) scales well for ultra-
high-resolution displays, aswe observenobitrate ineradsen moving from
720p to 1080p, 2K, and 4K displays. The-study can be extenusavieral
directions, e.g., we plan to leverage the temporal redurydaithe 2D planar
maps, for even better performance. -

Contents

558 f @A 6% aw i
Acknowledgments i
- D% i
Abstract (Y
1 Introduction 1
1.1 Contributions o 3
1.2 Thesis Organization & e T 4
2 Background oy : 5
2.1 Cloud Gaming ki, i gt N 5
22 PlanarMap .. .5 \ERLaSmRFall 2. ... oL L 7
3 Using Planar Map in Cloud Gaming ' 10
3.1 Coordinate Systems . . . e e 10
3.2 DataFormat 11
3.3 Efciency of the Two Coordinate Systems 12
3.4 System Architecture. 21
4 Compressing Planar Maps 14
4.1 CompressionModules L o 14
4.2 Module Parameter Selection 15
5 Evaluations 18
5.1 Implementation 20
52 Setup e e 22
53 Results. 23
6 Related Work 29
6.1 Cloud GamingPlatform. 29
6.2 MeshCompression 30
7 Discussion 32
7.1 Interframe compression 2 3
7.2 Integration with Game Engine 32
7.3 HolesFilinglssueandUserStudy 33

\

8 Conclusion

Bibliography

Vi

)

L :'-|.-"|_.-.*rll|"hl|' Jr-

35

36

List of Figures

1.1 Traditional 3D mesh rendering vs. planar map rendering.. 2
2.1 General system overview of cloud gaming platforms. 6
2.2 Silhouette illustration. e 8

2.3 Project triangle and silhouette on the viewing plane padorm clip-
piNg [14]. e 9

3.1 Planar map representation in-barycentric and Cartes@dination system. 11
3.2 Sample video frames using different coerdinates. 12

3.3 Therevised planar map rendering pipé'line for our claudigg platform.
The shaded boxes are from the ordinary planar map rendepege. . 13

4.1 Average video quality with different.compression agmtues of: (a) delta
prediction, (b) entropy coding, and (c) quantization. 15

5.1 Distributed rendering baselines. 18
5.2 Bitrate of our proposed solution at differnt camera,sda)e R-D curve

of 1 basic bunny scene, and (b) all scene under bit-depth 8. 21
5.3 R-D curves of our proposed solution in PSNR compared w2bxin

different scene: (a) one basic bunny, (b) one ne-graineahiyu(c) four

basic bunny, (d) four ne-grained bunny, (e) eight basic myrand (f)

eight ne-grainedbunny. 25
5.4 Bitrate of our proposed solution at a different bit-degitB-bits,: (a)basic

bunny scenes, and (b) ne-grained bunny scenes. 26
5.5 Performance improvement of our proposed solution inRBMh (i) ba-

sic bunnies and (b) ne-grained bunnies. 26
5.6 Performance improvement of our proposed solution invVB&ith (i) ba-

sic bunnies and (b) ne-grained bunnies. 26
5.7 R-D curves of our proposed solution in PSNR compared wabbxin

basic four bunnies scene in: (a) 1080p, (b) 2k, and (c) 4Ku&ea. . . . 27

Vii

5.8 Bitrate required of our proposed solution and x265 witfedént resolu-

tionin: () 25PSNRand (b) 30PSNR. 27
5.9 Delay categories and its de nitionT, represents the time client sends

the command to sever, wheftg is the time server receives. Meanwhile,

sever transmit encoded planar mapratand client obtained the data at

Ts. Finally, the reconstructed sceneis playedat 28
7.1 Performance improvement of our proposed solution in ®Nth (i) ba-

sic bunnies and (b) ne-grained bunnies. 33
7.2 One bunny rendered scene in PEVQscores.34
7.3 Onebunnyrenderedscene., 4. 3

viii

List of Tables

4.1

5.1
5.2
5.3
5.4

Compression results using other performance metrics.

Scenes of test sequences

Running Time (ms), Average/Maximum, 8 Bunnies

Video Quality from Fine-grained Bunnies
Video Quality from Basic Bunnies

. 9.

24

Chapter 1
Introduction

Cloud gaming refers to: (i) running complex computer gamegawerful servers in data
centers, (ii) capturing, compressing, and streaming gaseres over the Internet, and
(i) interacting with gamers using thin clients on inexge® computing devices [39].
In the past few years, we have witnessed strong interestsuil gaming from both the
industrial [36] and academic [19] sides. Existing commarcioud gaming platforms are
video streamindgased, where the cloud servers perform all the renderirig tasid the
thin clients are merely video decoders. , Such a.design dectsats computer games
asblack boxesand allows cloud gaming'service providers to tradening experience
for time-to-market Video streaming based'clo_ud gaming, however, comes witbrak
limitations, includinghigh bandwidth-consumption; limited scalability, and éittbom for
optimization and thus calls fonext-generatiorcloud gaming platforms [5].

We make some observations on these three limitations:

High bandwidth consumption. Although video streaming based cloud gaming
imposes low computation requirements on thin clients, aumns high networking
bandwidth requirements. For example, PS Now recommends s Mietwork
bandwidth for good gaming experience [37], which could beréased when the
display resolution is even higher. Such a high bandwidtlsaomption This is par-
tially caused byunder-utilizingthe computing power of thin clients. Nowadays,
even inexpensive computing devices, such as low-cost phares, come with
GPUs (Graphics Processing Units), which are certainly ncapgable than video
decodersMoving some rendering tasks from cloud servers to thin tdiemay re-
duce the network bandwidth consumption.

Limited scalability. Since all the rendering tasks are done on cloud servers, sup-
porting more gamers not only leads to higher bandwidth dmstalso results in
higher computational cost on cloud gaming service progid@iis in turn makes
the cloud gaming less pro table and not scalable to many gamBistributing

1

rendering tasks among thin clients may improve the scatgbil

Little room for optimization. Treating computer games as black boxes prevents
cloud gaming platforms from leveraging in-game contextspgierformance opti-
mization. Extracting simpli ed forms of 3D scenes from computer gamayg open

up a large room for optimization in several aspects, inahgdvisual quality, la-
tency, bandwidth consumption, and computational complexit

We believe the crucial step of building next-generatiorudigaming platforms is to
study therendering pipelinef games for deeper integration between games and plat-
forms, and distribute the rendering tasks among cloud seare thin clients.

Mesh Rendering Planar Map Rendering

Figure 1.1: Traditional 3D mesh rendering vs. planar mageeng.

We study the rendering pipeline pfanar'mapd2, 3, 14], to understand its potential
for addressing the three limitations. The planar map is sovémage consisting of points
and edges in the plane, in our case, representing the vigdugles of a 3D scene. Planar
maps were rst proposed by Baudelaire and Gangnet [3] forlycaglesign. They de ne
planar maps as 2D graphical objects of arbitrary compléeitgls. Planar map tools were
then implemented and optimized by Asente et al. [2] for etéve illustration systems.
There was however no real-time solution to visibility cortgiion for generation of planar
maps until Ellis et al. [14] designed and implemented a planap pipeline, which is
around ve times faster than previous work.

Fig. 1.1 illustrates that (i) the 3D mesh rendering pipel(ioie the left) renders every-
thing, removing hidden surfaces on the y via z-bufferingnda(ii) the 2D planar map
rendering pipeline (on the right) only renders visible igées, where the depth com-
plexity is reduced to one. Therefore, planar maps are ceransl suitable for ef cient
rendering and streaming. Moreover, because planar maps&eai@ images, they scale
for especially ultra-high-de nition displays.

In summary, planar map is an enabler for next-generatiamndamming platforms be-
cause it may: (i) reduce the bandwidth consumption, (iijjease the scalability, and (iii)
help to optimize gaming experience. In this thesis, we aplagar maps in cloud gaming

2

platforms. This is achieved in two major steps. As the rgfstwe propose a distributed
pipeline forplanar map rendering The crux of the new pipeline is th@dmpressaras
the compression of planar maps has never been investigathd literature. In the sec-
ond step, we design a compressor for planar maps, consdtisgveral parameterized
modules. Using real game scenes, we systematically déwveptimal parameters for a
compressor that is speci cally designed fadanar map streamingThe lessons learned in
these two steps lead to an ef cient end-to-end design of &gemeration cloud gaming
platform that leverages planar map streaming and disatbtgndering. Our experiment
results are quite promising. Compared to video streamingdatatforms, our planar
map based platform: (i) achieves higher perceptual videditylat the same bitrate, (ii)
supports complex scenes when considering perceptual guigdy, (iii) runs fast, espe-
cially at the client side, and (iv) scales well to ultra-higdsolution displays.

1.1 Contributions

In this thesis, we make the following contributions:

We study the existing cloud gaming platforms, discoveriitgtations, and then
Improve it by proposing a newdistributed rendering client-sever framework. In
particular, we study the proposed real-time planar mapeend pipeline, which
generates a low complexity data format and can be re-reddamethin client.
Moreover, we careful de ne the transmission format, diville proposed rendering
pipeline into client-server framework, and further optimnits performance.

We study the different representations of a newly inventgdtgipe: planar map in
different coordination systems. We evaluate its perforceaand design its system
architecture accordingly. Moreover, we optimize its parfance by develop a spe-
ci c compression pipeline for planar map. The proposed lmgds testi ed by real
experiments.

We conduct extensive experiments by recording differeueaces varying in
model complexity, model numbers, and camera moving speezlthdh quantify
our proposed system in video quality metrics compared \kighstate-of-art video
transmission solutions in cloud gaming. We also time ourpoments respectively,
where the results indicates that we not only achieves neaitiomputations but also
guarantee those computation demanding procedures aredglathe server side,
making it possible to support even thin clients.

3

1.2 Thesis Organization

The rest of this thesis is organized as follows. Chap. 2 pesvishckground on (i) the

state-of-art cloud gaming platforms, and (ii) detailedoimfiations towards planar map
rendering. This is followed by our proposed system architean Chap. 3. We argue our
design decision on the system level with real experiment iapCB. Chap. 4 presents our
compressor design on a planar map. Chap. 5 evaluates ourspbptatform. Chap. 6

surveys the related work, and we discuss the limitationssiraints, and its potential in

Chap. 7. Chap. 8 concludes the thesis.

Chapter 2
Background

In this chapter, we survey the existing cloud gaming platfas well as the distributed
rendering solutions. Moreover, we study a real-time planap pipeline while other
planar map related literature are listed in Chap. 6.

2.1 Cloud Gaming

Cloud gaming, also known as gaming-on-demand, is a new agiptogrovide high qual-
ity gaming experience to gamers by reducing extra burdemsefiting up environments.
In cloud gaming, the computation demanding game logicslar@rpowerful data center
(sever side) while the gamers use light-weighted thin tliemteract with the games. In
this server-client framework, because the gaming sceten ehcoded into video, is gen-
erated in server side, cloud gaming system naturally sugpierogeneous clients and
erase the burdens of building powerful clients. In 2000 |@ter's demonstrate the cloud
gaming technology in E3, which offers cloud gaming servieerdViFi to hand-held de-
vices. At the early stage, most of the cloud gaming serviessthon le streaming. More
speci cally, the gaming service transmits a small part obang, usually less than 5%, to
clients off-lined beforehand so that gamers can start ptaguickly. And the remaining
game content is downloaded to the thin clients while playrggressively. Even though
gamers can start playing without waiting for a long time dimading or buying new disks
to update games, the gaming services still requires poesfaputation ability at that
time.

Itis not until 2009, Ross [39] proposed a novel gaming deyiyeradigm, cloud gam-
ing is rstintroduce to academics in literature. Ross' apgmrio renders gaming scene and
compress them into video, then transmit them to gamers thithe best-effort Internet
access. By using Ross' solution, the computation demandiaghge rendering task is
of oaded to the cloud, which eliminates the workload on gameevices. Yet, a re-

5

Cloud Server Client

Command
Sender

Command
Receiver

A

Game Engine

Scene
Decoder

Scene | Scene
Generator "I Encoder

1

Scene Models
v

Figure 2.1: General system overview of cloud gaming plat&r

cent literature [28] further generalize the de nition obad gaming by indicating cloud
gaming as a system architecture leverages cloud resourges\uide better gaming ex-
perience. The cloud gaming system is not restricted to af cendering task to cloud
only, but includes other computation demanding tasks. Zigsummarize system archi-
tecture cloud gaming generalized from Wei et al. [5]. Thest&vo main components in
the cloud gaming server, where game engine handles the gadogit as well as interact
with the user's command and scene generator creates game aceordingly. On the
other hand, the command sender in client side captures cadsrfeom gamer's input
and receive, decode and display the game scene to games.tidotgame scene here
could be interpreted in many different data type under dbffié design decisions.

Depending on different transmission data type, cloud ggipiatforms can be roughly
divided into (i) model based and (ii) image based. For modskl method, the server
sent vertex, texture, shader information to the clienthadthe clients can render a new
frame locally. In contrast, image based method processetigering tasks on the server
side, whereas only the result image frame is encoded inwogidnd transmitted to the
client. That is, the image based method requires more baitialwihile the model based
method require more computation on the client side. Sineeetls a trade off between
this two method, some literatures propose hybrid method.nGlaad Ooi [7] proposed
a receiver driven progressive mesh transmission protobelr&the server transmit the
base mesh rst and the client ask for other content when rieBésides the transmitting
content, the mesh compression algorithm is also proposedh®ys. Mekuria et al [26]
proposed a compression algorithm exploit the propertias ttie vertex information is
location correlated and cut down the required transmissardwidth. In this thesis, we
transmit only the vertex information of visible 2D surfacasbd on gamer's viewpoint,
which is called planar map, and reconstruct secne on thetclide.

6

Cloud gaming then brings several bene ts to gamers, gamimngldpers, and service
providers. For gamers, cloud gaming supports them to: @es€to games regardless
of places and time, (ii) purchase up-to-date gaming coni@ntavoid updating their
hardware periodically, and (iv) enjoys games across plagosuch as PC, smart phones
and mobile devices. For gaming developers, cloud gaminglesahem to: (i) reduces
the burden of developing games on different platforms amd¢eontrate on game contents,
(i) bypass retailers and open new business model, anéyiald piracy since the gaming
content is always on the server side. For service providersgd gaming creates demands
on cloud resources due to the complexity property of gamebaings cloud computing
to humans daily life. Because of those tremendous advantdge®, companies such as
Onlive, Sony's PlayStation (PS NOW) and Nvidia's Grid Gameyvice provides cloud
gaming service to customers and increase gamers in the glouthg markets.

2.2 Planar Map

Planar map rendering pipelines, such as the one proposellisre€al. [14], have not
been customized for distributed rendering in the literatum this section, we give a high-
level overview of the ordinary planar map rendering pipelinin the next section, we
present our re ned design of this pipeline for the clientvee model. The input of the
whole rendering pipeline is the gaming 3D scene and gam@ging information. We
do require non-penetrating geometry, but do not requirgquéar triangle organization.
The planar maps are generated in the following componentsil{ouette detection,(ii)
silhouette clipping, (iii) triangle-triangle occlusioand (iv) vector rendering.

Silhouette detection. The term silhouette is used loosely here to refer to the Visua
edge or convex contour edge shared by both a frontfacing ariddcing triangle. Fig. 2.2
demonstrates what is called silhouette, where the faceamio blue is the backfacing
and the yellow one is the frontfacing, ad® is so called silhouette. We leverage the
vertex geometry properties instead of mesh topologies ¢eeefly detect silhouette. In
particular, we use a hash table to record all the edges inEhecgne as entries. The
hash index of each edge is computed as a function of the 3Ddic@des of the edge's
two vertices. Note that, the hash index is computed by a fomcif the edge's geometric
information so that neighboring triangles are hashed tsdinee entry when close enough.
Once the hash table is constructed, we detect the silhoeéttes by checking whether
the corresponding face normals have opposite signs in toenponent. Lastly, we mark
an edge shared by more than two triangles as a silhouette.

Silhouette clipping. We clip each triangle according to those detected silhesett
First, we remove the non-overlapping triangle-silhoupties using their geometric in-

7

Figure 2.2: Silhouette illustration.

formation. In particular, we project the triangle and silktie onto the view plane and
check whether the silhouette passes through the triangleto6econdly, we clip each tri-
angle against its list of overlapping edges. We apply a warsf Bernstein and Fussells'
clipping algorithm [4] to handle clipping with reduced etr&ig. 2.3 indicates how pro-
jecting and clipping is performed. In speci c, the algonilwalks around the polygon's
vertices using a look up table to determine whether to: (tpoua polygon edge, (ii)

generate a new vertex, (ii) output the clipping edge, orgefform some combination of
these three actions. In a special case where a huge polydemiisd a complicated 3D
object, the polygon is repeatedly clipped. We expect psedkation of such large poly-
gons will alleviate this issue. Lastly, we tessellate alipoi polygons from this phase
back into triangles.

Triangle-triangle occlusion.

After clipping, we obtain all triangles without interseatis in z. However, there may
be some overlapped triangles that need to be removed. Thatamp property we use
to remove occluded triangles is that no triangle is paytiaticluded. That is, we adopt a
lightweight centroid test to determine visibility. We désd the triangles whose centroid

8

Figure 2.3: Project triangle and silhouette on the viewilage and perform clipping [14].

is overlapped by any other triangle. With triangle-triamgkclusion, we obtain a set of
triangles with the depth complexity of one. This largely glnes the complexity of the
next step: vector rendering.

Vector rendering. The vector renderer works as follows. First, the vector ezed
generates the vertex attribute information including 2Bipon coordinates, texture co-
ordinates, and normal vectors by barycentric interpatatio fact the barycentric coordi-
nates are key to our implementation. Barycentric coordsgate the input and output of
the compressor/decompressor discussed later, and théyeaneain primitives of trans-
mission between SVGPU and the vector renderer. We thugpoltae vertex attributes
from their original positions in the quasi-static databeséhe clipped positions output
by the SVGPU pipeline. In some cases this barycentric intatfpn is not necessary, in
particular, it suf ces to simply assemble the vertex atités and render them when a tri-
angle has not encountered any clipping in the SVGPU pipelivie pass the vertex data,
as well as the scene information, such as viewing matribjeddPU to render the scenes
for gamers. Note that the interpolation step is fairly ligaight, and can be implemented
in a compute shading language with negligible overhead.

Chapter 3
Using Planar Map in Cloud Gaming

In this chapter, we aim to revised the planar map pipelinego. .2 into server-client
framework. Eillis et al. [14] proposed planar map to reduwe rendering computation
overhead. Yet, this property bene ts cloud gaming platfermith the following two
reason: (i) cloud gaming platforms have to support thimtjiand (ii) reduce transmission
bandwidth. In summary, we rst look into the planar map fotmeompared trade-off
between different representation, and design a cloud gasyistem architecture.

3.1 Coordinate Systems

While the planar maps in the ordinary rendering pipeline @4 in barycentric coordi-
nate system, the streamed planar maps can be represemgasiesianor barycentric
coordinate systems. Cartesian coordinates are relativestagée origin, and thus pre-
serve the spatial property across vertices and among videwet. However, Cartesian
coordinates do not leverage the (triangles of the) 3D mdddlse quasi-static database,
which may result in unexploited redundancy. In contrasty@entric coordinates describe
each vertex information, including position, normal, aextttire, within a triangle (in the
guasi-static database) using three oating numbef§;ifh], sayu, v,andl u v.

The three coordinates can be seen as the weights of the #ntgmesg of the triangle,
e.g., whenu = v = 1=3, the vertex is the gravity center of the triangle. The merits
of barycentric coordinates include: (i) shorter indexesstf@ngles, and (i) common
triangle patterns on unclipped triangles. However, baryrge coordinates are related to
individual triangles, making the correlation among vestiharder to be leveraged. Since
the Cartesian and barycentric coordinates both have prox@msl we consider both
coordinate systems.

Through quantitative comparisons in Sec. 3.3, we striventdeustand which coordi-
nate system leads to lower bandwidth consumption at the &anget gaming quality.

10

0 1 2 3

01234567890123456789012345678901
ottt -t F-t-F-F-F-t-F-F-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+
| model view matrix |

4|'d*r'aw call | draw calll draw caII | draw caII | draw caII |draw caII | draw caII |draw caII |

number S|ze number S|ze number S|ze number S|ze
LR FE Y ok Rk L LR R R Ry LR L X L R R T LR R e L T R +-+

(a) Format headers

0 1 2 3
01234567890123456789012345678901

R R e R EL L T R T T R T T P T EE TR T T T

| face identifier | U, | V, | U, | V, | U | V2 |

-ttt -F-t-t-t-t-F-t-t-b-b-t-t-t-b-F -ttt -F-t-t-t-t-F-F+-+-+
(b) Triangle in barycentric coordinates

0 1 2 3
01234567890123456789012345678901

k. Rk bk T A A R k tah Bk ek ok ek kT T R R R

| Px; | Py | P | Pyo | Pxs | Pys | Nxg | Ny |
L R R Bk kB B Rk Bk ik ik kB Rk Rk Rk R T A A R A A A
| Nz Nxo Nyo Nz NX3 | Ny3 NZ3 | Wexq |
ek b ek ok ik Bk ek bk Bk e T o R P A A

+ + + + +
| | | | |
+ + + + +
| Wey; | Wcez4 | Wexo | Weys | Wczo |ch3 | Weys |Wczs |
+ + + + +
| | | | |
+ + + + +

ettt F-F-F-F-F-F-Ft-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+
| Txq Ty, Txo Tyo Txs | Tys | |
e e e T LR R L L E R T T T R R EE EE R T T T

(c) Triangle in Cartesian coordinates

Figure 3.1: Planar map representation in barycentric ante§lan coordination system.

3.2 Data Format

We then explain the format of the planar map data sent frorséheer to the client. This
is summarizes in Fig. 3.1. For each video frame, there aemtheaders: (i) model view
matrix, (ii) draw call number, and (iii) draw call size. Ingtaular, the model view matrix
transformsthe world space vertices into model space vertices; the dedwumber and
size facilitate multi-texture mapping. Moreover, eachnfeacontains a set dfiangles
With the Cartesian coordinates, each triangle is repredersiag vertex positions, vertex
normals, world space coordinates, and texture coordindtes vertex positions refer to
the 2D positions in the screen space; the vertex numbers arld 8pace coordinates are
used for shading; and the texture coordinates are requyediting textures. With the
barycentric coordinates, each triangle is representedthgragle ID (in the quasi-static
database), followed by 3 pairsofv of individual vertices. In the next section, we present
the rendered results and bandwidth consumption compatison

11

3.3 Efciency of the Two Coordinate Systems

Cartesian coordinates Barycentric coordinates

Figure 3.2: Sample video frames using different coordmate

In Fig. 3.2, we shows the rendered results of using 16-bihtiz@tion on both Carte-
sian and barycentric coordinates. We can see that the ehdeene from Cartesian coor-
dinates is rather bulky. The reason is that (i) Cartesiandinates do not have range limits
which makes quantization more lossy, (ii) Cartesian co@tdis representation required
more attributes to represent a triangle, making the quatndiz entries a lot more. We
also observed that there is missing triangle in Fig. 3.3, ihbecause while reconstruct-
ing frames, distortion in normals will leads to failures. eFéfore, barycentric rendering
uses triangles from models as reference so that the d@tagtiiess than using Cartesian
coordinates.

In next section, we design our system architecture usingcleatric coordinates.

3.4 System Architecture

To leverage planar maps in cloud games, we divide the orglipi@anar map rendering
pipeline into the server and client sides. The rst three poments are put at the server
side, and the vector renderer is put on the client side. Tlsgdeationale is to have
the light weight vector renderer on the client, so that the ttient can render frames
merelywith per-pixel texturing and shading. To connect the searet client pipelines,
we add three additional components to our platformc@mpressing(ii) decompressing
and (iii) streaming sending/receivingVe also include two quasi-static databases of 3D
models (including vertices, texture, and shaders) at thesand the client. The database
at the server contains 3D models for all game scenes, widlertle at the client stores a
subset of 3D models in the current and nearby scenes.

12

Server

Vertex || | Silhouette Planar Map Compressing L Stream
uast-static Processing Detection P 9 Sending
Data -

=—=N

Clipping

7

Occlusion
Removal

Control Key

Client

Vertex .
Display _ Attributes Coordinates [- Stream
Rendering Quasi-static. ressin “ Receivin
Data pressing 9

Figure 3.3: The revised planar map rendering pipeline foraboud gaming platform.

The shaded boxes are from the ordinary planar map rendeipetne.

Fig. 3.3 shows the distributed planar map rendering pipelivhich works as follows.
Starting from the server side, game scenes can be viewedea®b3D models from the
guasi-static database in the model space. With the typigakfdering transformations,
we can take 3D models from model space, to world space, tospaee, and nally into
screen space using vertex processing. Then through tloeisitie detection, clipping, and
occlusion processes (see Sec. 2.2), we obtain 2D planar. ii&es2D planar maps are
then compressed to further reduce the required networkadtidand streamed to client
side through the networks. At the client side, we decode ¢lceived data stream into
coordinates in the decompression component. The qudgi-dédabase at the client side
Is pre-populated of ine, like most computer games. Noté #ikthe quasi-static data are
independent of the viewpoints and control inputs from gamkrstead, they only depend
on the game scenes determined by game states. With baligaadrdinate interpolation
and the corresponding quasi-static data, we can rendeathe fames and display them
to the gamer by GPU rendering.

The presented rendering pipelines have the heavier compo@a¢ the resourceful
cloud servers, and the lighter component at the thin cliestts weak GPUs. Our key
optimization problem is theompression of planar mager mitigating high bandwidth
consumption, which, to our best knowledge, has not beemaigdy studied in the litera-
ture. We carefully design and optimize our compressor im# chapter.

13

Chapter 4
Compressing Planar Maps

In this chapter, we build compressor/decompressor forgplaraps.

4.1 Compression Modules

Quantization.

Quantizing coordinates with enough bits create little algurecognizable differ-
ence. Hence, coordinate quantization is considered ksslempression in the mesh
streaming literature [30]. Quantization could be clasgiiato uniform and non-uniform
guantization, where all quantization regions in unifornaquzation are in equal size.
Non-uniform quantization, includingcalar and vector quantization, is the foundation
of oating-point number compression. For scalar quant@gtwe apply Lloyd's algo-
rithm [24] on individual dimensions sequentially.

ConsidemN 2-dimensional inputéx,;y,), wheren = 1;2;:::;N. The Lloyd's algo-

rithm rst producesM optimal regionsgy; o5; :::; oy for Xa; X2; 11 1; Xn, With represen-
tative values); G, 11 ; @, . Eachx, falls in one of the regiongy,, and is then quantized
tocy,. The algorithm is then repeated v11y,; : : :; yn . We write the scalar-quantized co-

ordinates of X,; yn) as(as(Xn); &(Yn)), foralln =1;2;:::;N. For vector quantization,
all dimensionsare jointly quantized using K-means algorithm [1], in whadhinputs are
clustered inM several groups, and the centroid of each group is determined

Delta prediction. To leverage the properties that close-by vertices sharégasim
information, a prediction algorithm may use previous cawatkes to predict current co-
ordinates [34]. The prediction step is crucial for high coegsion ratio [34]. We adopt
the delta prediction [12] approach. Considér2-dimensional input$Xn;y,). Only
the rst input (X1;y1) is encoded into a symbol, say as a 32 bit oating number. Oth-
ers are represented in the deltas compared to the previpug that is(X,; VYn) =
(Xn Xn 1;¥n Yn 1)-(Xn; VYn)isthenencoded with variable length of code accord-

14

40 40 40
[o
=30 T30
24
g g
220 I 920
£ £
210 | : 210
] [l \Without Delta T
o [with Delta &
I | o!

1 Bunny 4 Bunnies8 Bunnies 1 Bunny 4 Bunnies8 Bunnies 1 Bunny 4 Bunnies8 Bunnies
Scene Scene Scene

(@) (b) ()

Figure 4.1: Average video quality with different compressapproaches of: (a) delta
prediction, (b) entropy coding, and (c) quantization.

ing to the histogram (details giving below).

Entropy coding. Entropy coding further exploits the different symbol fregay to
reduce transmission bandwidth. We choose two widely usadmncodecs:Huffman
andarithmeticcoding [11]. Consideringl pairs of distinct symbols along with its prob-
ability (Xn; pn), wheren = 1;2;:::;N. The Huffman coding builds a Huffman tree with
the more frequent elements at lower levels of the tree. Wedksign shorter codes to the
symbols closer to the root. We denote Huffman coded sequenase,(Xx,). For arith-
metic coding, it converts the whole symbol sequence intoatirg point between 1 and
0. The procedure loops through the symbols and shrinks teeval based on the symbol
probability. More precisely, the symbols with higher fregay shrinks less. We write the
arithmetic encoded sequencesxgfase,(X,). In addition, we also consider the Lempel
Ziv Markov Chain Algorithm (LZMA) and use 7-zip as the implentation. LZMA is
a lossless dictionary compressor, which encodes a strethmawiadaptive binary range
coder. We notice that the coordinates may not be byte-alignbich may be dif cult for
the entropy coders to handle. We therefore expand the sgnbohe next byte bound-
ary before entropy coding, e.g., 7-bit symbols are padddd evie extra highest zero bit.
Some sanity checks show that the padding strategy redueditthte with no penalty on
video quality.

4.2 Module Parameter Selection

We record three game scenes in 720p resolution, in which wetha number of the
popular Bunny model, among 1, 2, and 8. Details in Tab. 5.1 rbwa and 5. In every
scene, bunnies with different textures and standing postare placed on a plane, and
the viewing position and orientation changes accordingeéogamer's speed. Each scene
lasts for 10 secs at 30 Hz frame rate. We consider the follpywerformance metrics to
guantitatively compare module parameters.

15

Video quality. The rendered quality in PSNR, SSIM, and Perceptual Evaluatio
Video Quality (PEVQ). PEVQ is a video quality metric desedbin ITU-T J.247
Annex B [20], and implemented in Skarseth et al. [40]. PEVQrss are between
0-5, where 0 is the highest score.

Compression ratio. The compressed stream size over the uncompressed stream
size.

We have sent the game scenes through a compressor withediffguantization, delta
prediction, and entropy coding [34] algorithms. We repourfmost important ndings
below. Note that for comparison, we use vary the compresieqmth in quantization and
use linear interpolation to round the PSNR score underréiffiemodules.

Delta prediction negatively impacts compression ratio as el as video quality.
We measure the PSNR and compressed stream size with anduinvitbita prediction.
Fig. 4.1(a) plots the achieved average video quality okdéfht scenes with and without
the delta prediction at a bitrate of 2.3 Mbps. We nd that tledta prediction makes more
variance on the resulting symbols, which then leads to lawenpression ratio. More-
over, because barycentric coordinates are all positivebeusn applying delta prediction
requires one extra sign bit, which worsens the performance.

LZMA outperforms other entropy coding algorithms. We compress each scene
multiple times with different entropy coders and plot therage PSNR at the same com-
pression ratio using these entropy coders in Fig. 4.1(lg.clear that LZMA outperforms
the other two entropy coders.

Uniform quantization outperforms other quantization appr oaches. On the 2D
plane, the vector quantization divides the space into dladeials, and the scale quanti-
zation divides the space into variable-size rectanglexohtrast, uniform quantization
crops the space into equal size blocks. We plot the avera&RmP®m the three quanti-
zation approaches at the same compression ratio in Fig)4Ti{is gure reveals that the
uniform quantization outperforms others by far. We beligwe is because the barycentric
coordinates are between 0 and 1, and have weak clusteripgnyo

Based on the above ndings, we addgatrycentric coordinates, uniform quantization,
and LZMA codeito compress the 2D planar maps. We note that while we report sa
ple results in PSNR, results in SSIM as summarized in Tab.alsb, support the same
ndings.

16

Table 4.1: Compression results using other performancaasetr
Delta Prediction: with/without Delta Prediction

1 Bunny 4 Bunnies 8 Bunnies
SSIM 0.87/0.94 0.88/0.94 0.85/0.94
Quantization: Scale/Uniform/Vector

1 Bunny 4 Bunnies 8 Bunnies

SSIM 0.93/0.98/0.88 0.86/0.97/0.87 0.86/0.97/0/86
Entropy Coding: Huffman/LZMA/Arithmetic

1 Bunny 4 Bunnies 8 Bunnies

SSIM 0.94/0.98/0.94 0.93/0.98/0.92 0.94/0.98/0/96

17

Chapter 5

Evaluations

Video-based
Rendering
Server
Vertex | | | Silhouette Planar Map —
3D Models Processor Detection Quasi-static
Renderer
v Data
Clipping
Control Key ¥ Video
Occlusion Encoder
Removal
Client
Display Video
Decoder
(a) video-based rendering platform
Graphic-based
Rendering
Server
Vertex
Q Attributes .| Streaming
@)@ Sender
phase one
Client phase two
Vertex
Display GPU Attributes Vertex > Streaming
Renderer Processor 3D Models Receiver

Control Key

(b) graphic-based rendering platform

Figure 5.1: Distributed rendering baselines.

18

Table 5.1: Scenes of test sequences

Scene afl Scene af + 100 Description

One bunny

Fast viewpoint moving
speed

Basic model

One bunny

Slow viewpoint mov-
ing speed

Basic model

Four bunnies

Fast viewpoint moving
speed

Basic model

Four bunnies

Slow viewpoint mov-
ing speed

Basic model

Eight bunnies

Fast viewpoint moving
speed

Basic model

Eight bunnies

Slow viewpoint mov-
ing speed

Fine-grained model

19

One bunny

Fast viewpoint moving
speed

Fine-grained model

One bunny

Slow viewpoint mov-
ing speed

Fine-grained model

Four bunnies

Fast viewpoint moving
speed

Fine-grained model

Four bunnies

Slow viewpoint mov-
ing speed

Fine-grained model

Eight bunnies

Fast viewpoint moving
speed

Fine-grained model

Eight bunnies

Slow viewpoint mov-
ing speed

Fine-grained model

5.1 Implementation

In this section, we describe how we implement each compaespectively.

20

15

35
Il slow
e = [fast
%30 ,é]" 101 i
A =
R=i >
o 2
) <
=25 = 5]
= M
c o —&-Fast
-& Slow
20 0
600 800 1000 1200 1400 1, 4, 8 1. 4 8
Bitrate (kbps) Scenario

(@) (b)

Figure 5.2: Bitrate of our proposed solution at differnt ceaye(a)same R-D curve of 1
basic bunny scene, and (b) all scene under bit-depth 8.

SVGPU. We modi ed planar map rendering pipeline [14], where veraéixibutes in-
terpolation has been implemented in CUDA, C++, and OpenGLatalle more complex
scenes and enable it for rendering continuous sequencgseVious pipeline, there is
less model overlap issues so that guard band clipping isithplemented to overcome
complex model overlapping scene. Also, we adjust barymeontordinates to account
for perspective correction. Moreover, we tune the plangy readering pipeline for using
gamer's view point and viewing directions as input. We theitendifferent bash scripts to
simulation gamer's movement and record the generated ptaap as well as the output
frames as our test scenes, detailed in Tab. 5.1. Even thoegldseveral adjustments to
support gaming scene, till there is some issues that we liadgress in this thesis. For
example, we now handles environmental luminance only and hat take complicated
lighting in to consideration.

Compressor and decompressorWe implement different compression and decom-
pression modules described in Chap. 4 in Matlab. We rst péngeplanar map into
memory and leverage the pattern of barycentric coordinaf®sat is we use a code
book to memorize those unclipped triangles, whose baryicetwordinates are always
(1;0;0;1;0;0). Moreover, to optimize the compression ratio, we comprbesface id
and coordinates into different le because face id only geah integer where coordi-
nates includes various data type according to compressiolul®s.

Planar map streaming. Since packet loss in planar map streaming may cause a bunch
of triangles damaged, we choose Transmission Control Ryb{®d€P) instead of User
Datagram Protocol (UDP) as transmission protocol. We thelude (i) frame number,
(i) model view matrix, and (iii) draw call information intbeader and implement TCP
socket using C++.

Control API. We implemented control API with TCP. We then de ne the trarsmi
sion header with (i) user identi cation, (ii) time stamp,caii) command control, where

21

controls includes position movement and viewing directbange. The APl implements
with WIN socket and written in C++.

5.2 Setup

We compare our solution against the current cloud gamintjgoias, in which all the
rendering tasks are done at cloud servers. The renderedsvate compressed by the
state-of-the-art video codec, such as x265 [43], and stdamthe clients. We do not
compare against pure graphic streaming platforms, whetiesatendering tasks are done
at the clients. This is because for the (not-so-thin) ctightit have enough horsepower
to render game scenes, the bene ts of cloud gaming are limier evaluating our dis-
tributed rendering platform, We compare our solution agfaihe current cloud gaming
platforms, in which all the rendering tasks are done at cleaders. Fig. 5.1(a) indi-
cates how the video-based solution works, where servesrirdiencoded video frame to
clients. Thatis, all the rendering procedures take platiedrserver side, and a thin-client
with a video decoders is suf cient. On the other hand, Fi@(l5) indicates how graphic-
based rendering platform works. In phase one, we rst tran8B models, representing
the scene, from server to client. And while playing (in ph&se), vertex processor
compute the vertex information according to viewing matwhich is changing along
with user commands. Finally, GPU renderer displays new dréarusers using openGL
pipeline. We do not compare against pure graphic streanattppms, where all the ren-
dering tasks are done at the clients. This is because fontitesf-thin) clients that have
enough horsepower to render game scenes, the bene ts af glmming are limited. We
consider the following performance metrics in our expenie

Gaming quality: the rendered scene quality in PSNR and SSIM computed by com-
paring the original scene in games against the renderechati#férent platform.
Bitrate: the required transmission bandwidth for delivering datalients across
platforms.

Latency: we measure latency in three different categories, netwetayd(ND),
processing delay (PD), and playout delay (OD). Fig. 5.9 sanas the difference.

We consider diverse : (i) model complexity, basic or nediged bunnies, (i) numbers
of bunny, and (iii) moving speed, slow or fast (detailed itb.Ta.1) scene to evaluate our
proposed solution. In particular, we adopt 12 game scenesiirexperiments, where
our game scenes contain either basic bunnies, each wit@ Bygtices on average, or
ne-grained bunnies, each with 200,700 vertices. We cardiokee performance metrics:
video quality in PSNR and SSIM, bitrate in kbps, and compoémdse running time in

22

ms. We run the experiments on ani7 3.4 GHz workstation witN¥idia Quadro M4000
card.

5.3 Results

Implications of diverse speed. We observe virtually no difference in terms of bitrate
of slow and fast game scenes. Fig. 5.2 shows the bitrate ngigns under differnet
bit-depth in different scenes. In particular, at a bit-dhept 8, the rate increase due to
the speed is merely 0.04% on average. This can be attribotibe fact that we haven't
leveraged the temporal redundancy, which is among ourdugasks. In the following
results, we show only results of slow scenes for making airarbservations.

Potential of our proposed solution.We rst present the results from the bunnies at
the low speed. We con gure x265 [43] with ultra-fast presetl @ompress each scene
with 6 different Quantization Parameter (QPs) to get its Rastortion (R-D) curve. For
our proposed solution, we exercise the tradeoff betweeatbiand quality using the bit-
depth of the uniform quantization. By varying the bit-dep#tyieen 5- and 9-bit, the
resulting stream has different bitrates and video quahtyich lead to the R-D curves.
We rst plot sample R-D curves from the scene in low spanningespin Fig. 5.3. This
gure shows that when bitrate is higher, the proposed sotutiutperforms x265 in terms
of video quality in PSNR. We then apply another image qualigtrioas SSIM and get
similar trend. Tab. 5.4 and Tab. 5.3 summarize SSIM scordgfgrent scenes under the
same bitrates.

Video quality improvement of our proposed solution. We next compare the video
guality in PSNR of our solution against that of x265. Fig. présents the bitrate of our
solution under different bit-depths. Upon we derive thedbé of each game scene, we
derive the expected video quality of x265 by performing dinaterpolation on its R-D
curve. Fig. 5.5 plots the quality improvement of our progbselution over x265. This
gure shows that up to 5 dB improvement is possible, and ag kmthe bit-depth is 7
bits, our proposed solution results in higher PSNR.

Perceptual video quality metrics. Figs. 5.6 plot the video quality improvement of
our proposed solution in SSIM with basic bunnies scenes aregrained bunnies scenes.
The gap is as high as 0.14 in SSIM. For completeness, the @d@o\quality values are
reported in Table 5.4, which supports the same nding. Thes/rhbe attributed to two
reasons. First, different from PSNR that only quanti es tleviationof signals, SSIM
analysis the pictures structure and is parceptualvideo quality. That is, our proposed
solution results in higher perceptual video quality. Se;a@odecs, including H.265, are
designed to maximize the PSNR value, rather than perceptied quality.

23

Implications of complex game sceneOur proposed solution may be more vulnera-
ble to complex game scenes, compared to the existing clandhgalatforms that stream
videos at a xed resolution. Our game scenes contain eithsichbunnies, each with
37,677 vertices on average, or ne-grained bunnies, eatth2@0,700 vertices. Table 5.3
gives the raw video quality values from the scenes with mahkged bunnies. Although
our solution leads to poorer video quality than x265 in car@cenes, we argue that
designers use simple scene with pre-rendered textureaatige gaming developing.

Per-component latency.We report the average delay per video frame in Table 5.2.
We only consider the computationally intensive componeatsl with more complex
game scenes (8 bunnies). This table shows that the latertlog ofient side component is
much smaller compared to those of the server side compon&etemit the network la-
tency since the Internet conditions vary depending on seient location. Although the
rendering time is measured on a workstation in our experispéime negligible values of
rendering component (0:83ms on average) reveal that porting it to resource-con&dain
clients is possible.

Table 5.2: Running Time (ms), Average/Maximum, 8 Bunnies
Server Client

Detection | Clipping Occlusion Rendering
Basic | 0.27/0.28 | 25.56/33.41| 1.94/2.68 0.22/0.48
F.G. 3.66/4.73 | 60.55/88.14| 17.43/24.02| 0.83/3.13

Implications of diverse speed and resolution.Distributed rendering supports ho-
mogeneous end devices naturally. We then compare theebdfatur proposed solution
and x265 at higher resolutions of 1080p, 2K, and 4K. Fig. oWs the R-D curve with
four basic bunnies scene under different resolutions. \seotserve that our proposed
solution scale well to high resolution applications, sust3@0 videos and VR. More pre-
cisely, g. 5.8 reveals required bandwidth under a given R3¢ores. In g. 5.8(a), our
proposed solutions require less bandwidth in 4K. Moreower,proposed method con-
sumes less bandwidth scoring 30 PSNR, where PSNR 30 is cauctrive good image
quality (see g. 5.8(b)). This shows that our proposed goluhas more potential in the
future, where ultra-high-resolution displays become papu

Table 5.3: Video Quality from Fine-grained Bunnies
Metric PSNR SSIM

Scene Pro. X265 Pro. X265
1 Bunny | 32.4431| 31.8702| 0.9774| 0.9081
4 Bunnies| 32.3581| 33.3911| 0.9781| 0.9666
8 Bunnies | 32.8074| 44.2013| 0.9809| 0.9999

24

Table 5.4: Video Quality from Basic Bunnies

Metric PSNR SSIM
Scene | Pro. | x265 | Pro. | X265
1Bunny | 32.37| 29.41| 0.98| 0.84
4 Bunnies | 31.66| 28.49| 0.85| 0.04
8 Bunnies| 31.21| 27.94| 0.97 | 0.87
40 40
%35— .- %135— __-©
&~ _.e-"" g2
Ean | Plchs =301 .
30 8
£ % = @
E o g I
5251 —=— Our solution| | 525 —& Our solution
-0 x265 -0 x265
20 20 : ; ‘
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Bitrate (kbps) Bitrate (kbps)
(a) (b)
35 40
E)
. -
-- o=t
Z. - 35
| Z
230 % P
= g0 o
2 >
=05 b i
@ 5 G
= luti =25 - L
& —8-Our solution & I —&- Our solution
-0 x265 ! -0 x265
20 ; ; : 20 o . ;
0 2000 4000 6000 8000 0 5000 10000 15000
Bitrate (kbps) Bitrate (kbps)
(©) (d)
35 40
-0 g
=30 -7 QZj 35
7 2 oy
&~ - 30 o-"
£25 -3 =}
= | ¢ £25- 95@
22071 1 —& Our solution || & 201! —& Our solution
<} o (0}
-G x265 -G x265
15 15 : : :
0 2000 4000 6000 8000 0 0.5 1 15 2
Bitrate (kbps) Bitrate (kbps) «1d*
(e) ®

Figure 5.3: R-D curves of our proposed solution in PSNR coegbaiith x265 in different
scene: (a) one basic bunny, (b) one ne-grained bunny, (@) hasic bunny, (d) four ne-

grained bunny, (e) eight basic bunny, and (f) eight ne-geal bunny.

25

5 = 20 ‘
Hl5-bit l5-hit -
— 41 [IG6-bit M f — 15| EG-bit
2 |[IT-bit & I 7-bit
S 31 [18-bit i S [J8-bit
o ||J9-bit o 101 9-bit
w2 s
£ £
Al I A 5 H
0 il oL il
1 Bunny 4 Bunnies8 Bunnies 1 Bunny 4 Bunnies8 Bunnies
Scenario Scenario
(@) (b)

Figure 5.4: Bitrate of our proposed solution at a differemtdaipth of 8-bits,: (a)basic
bunny scenes, and (b) ne-grained bunny scenes.

)]

[&)]

& | | | Z 7 mmobit
& 2 |Elo-bit
= 0 =l | 7-bit
= m ' < O |8-bit
g Bl 5-bit g []9-bit
4 I 6-bit g
251 I 7-bit | 2 9] II
=N o
E [18-bit E
IS [19-bit =
=-10 ‘ : ‘ =-10 ‘ ‘ ‘
= 1 Bunny 4 Bunnies8 Bunnies =] 1 Bunny 4 Bunnies8 Bunnies
c c
Scene Scene
(@) (b)

Figure 5.5: Performance improvement of our proposed swiuti PSNR with (i) basic
bunnies and (b) ne-grained bunnies.

=
(,7)0.15 E 0.1
-z Z
= £ 0.05
< 0.14 5
<)
g g o [H5-bit
S z 6-bit
20.05 T
&) [7-bit
g F0.05(=g bit
. f;? []9-bit
= 0 ‘ ' - = -0.1 ‘ ‘ :
g 1 Bunny 4 Bunnies8 Bunnies 5} 1 Bunny 4 Bunnies8 Bunnies
<2 Scene Scene
(@) (b)

Figure 5.6: Performance improvement of our proposed swiuti SSIM with (i) basic
bunnies and (b) ne-grained bunnies.

26

40 40
&~ o]
a0l F __o-----"- © Z ---9
oY) 2230 ---
= R=
iy ey
'7320 - :c§20
& I —& Our solution & —& Our solution
Y -0 X265 ;
o -G x265
10 ‘ ‘ : 10 ‘ ‘ :
0 2000 . 4000 6000 8000 0 2000 4000 6000 8000
Bitrate (kbps) Bitrate (kbps)
(a) (b)
40 : : :
S0, K _o------- °
n
a1
201
&
= 1
4 1 L
&0 o -8~ Our solution
-G x265
0 - - .
0 2000 4000 6000 8000
Bitrate (kbps)

()

Figure 5.7: R-D curves of our proposed solution in PSNR coegbarith x265 in basic
four bunnies scene in: (a) 1080p, (b) 2k, and (c) 4k resatutio

2000 5000
4000
— 1500
& 3000
£ 1000+ 2000
<
£ | |
500 I Our Solution 1000 [l Our Solution
[1x265 []x265
0. L 0 i = —
1080p 2k 4K 1080p 2k aK
Resolution Resolution

(@)

(b)

Figure 5.8: Bitrate required of our proposed solution andsx2&h different resolution
in: (i) 25 PSNR and (b) 30 PSNR.

27

Network Delay (ND)
: Processing Delay (PD)

Playout Delay (OD)

B g

To T1 T2 T3 T4 Time

Figure 5.9: Delay categories and its de nitioiTy represents the time client sends the
command to sever, wheilg is the time server receives. Meanwhile, sever transmit en-
coded planar map db and client obtained the data®4. Finally, the reconstructed scene

is played afT,.

28

Chapter 6

Related Work

In this chapter, we are going to survey related literatugenthree direction: (i) clouding
gaming platform, and (ii) mesh compression.

6.1 Cloud Gaming Platform

Cloud gaming platforms [17, 19, 21] can be roughly divideaittiree groups [6]: (i)
video, (ii) graphics, and (iii) hybrid streaming. Videoesdming refers to gaming plat-
forms in which each frame is rendered completely on the seawel the frames are com-
pressed into video streams for transmission to the clieme. problem with this approach
stems from the tradeoff made between bitrate and imagetgu@liaphics streaming de-
scribes transmission of game scene data and/or rendenmngands of each frame from
server to client. This approach can produce the highesererglquality, but the graphics
hardware available on the client must be capable of higlopadnce rendering, which is
not always the case, especially in cloud gaming systemstithgtreaming as implied by
the name refers to some clever combination of the above tdofpies. In this thesis, we
explore a new graphics streaming approach using planar foepeud gaming.

Hemmati et al. [17] argue that client-side rendering reggimore transmission band-
width and computational power than server-side renderigreover, server-side ren-
dering is more adaptive to various network conditions. €fae, they adopt the video
streaming approach, and propose to reduce the bandwid8uegtion by prioritizing
objects in 3D scenes and assigning bitrates to differemotdjpccordingly.

Jurgelionis et al. [21] propose and evaluate a graphicsitneggsion approach, which
renders at the client side if a GPU is available, and fallkldac/ideo streaming other-
wise. Their design decision is based on the observatiorctbatl gaming is interaction-
intensive and delay-intolerant. Thus, even though clielg sendering provides the high-
est graphics delity, providing a fallback system is ne@ays

29

There are several compression algorithms proposed fohgsmgtreaming. For exam-
ple, Meilander et al. [25] propose: (i) a caching mechanismréndering commands, (ii)
a compression algorithm for rendering instructions, aimdniulti-layer representation of
3D objects. Lin et al. [23] utilize both intra- and inter4fin@ compression of 3D models
to reduce the required transmission bandwidth. Nan et@J.if2roduce a hybrid delivery
approach, where the server progressively streams the eddo@ines and the graphics
information. Similarly, Chuah et al. [9] aim to fully leveraghe computational power
on the client by rendering the low-quality base layer locadlhile the server transmits a
high-quality enhancement layer.

The above-mentioned cloud gaming studies [9,17, 21,2293 re not exhaustive,
interested readers are referred to a survey paper [6]. Catpathe existing cloud gam-
ing platforms, our platform: (i) naturally achieves dibtried rendering and brings cloud
gaming to inexpensive computing devices with weak GPUsp@duces and compresses
concise data representations for clients with limited ekwbandwidth, and (iii) scales
to high-resolution game scenes for large displays.

6.2 Mesh Compression

With the emerging applications of 3D transmission, suchRstWe technologies of com-
pressing 3D mesh becomes more and more important. Pend®tjadurveys the start-
of-art 3D compression algorithm. To start with, mesh is ausege of triangles, whereas
not only vertex information but also connectivity relatsbip are included. Since this
thesis compress data type, which is do not include the comitginformation, literature
regarding to connectivity compression are listed for rxfiee [13, 16,41, 42]. Geometry
coding can further be classi ed into two groups: singlesrand progressive.

Different from connectivity compression, geometry conggien could be lossy. To
exploit the fact that adjacent vertices are highly coreslatmost compressions follow
a procedure: quantization on vertex, prediction of quactidata, and lossless encoding.
Quantization method includes uniform/non-uniform and-ooiform includes vector and
scale quantization [15]. In single-rate geometry compogssnost used quantization
module is scale quantization. In [13,33,41] encode mesh@s$ad 16 bit quantization res-
olution globally. Chow. [8] propose a quantization resantthat is adaptively changed
according to the input blocks of triangles. Secondly, m#oih modules is then applied
to further reduce required bitrate by leveraging the spptigperty. Common used pre-
diction includes delta prediction, linear prediction, gleelogram prediction and second-
order prediction. Finally, lossless coding techniqueshsas Huffman encoding and other
entropy coding in. [11]

30

Progressive meshes, proposed by Hoppe. [18], supportmsctiat transmit a basic
mesh rst and then gradually improve its quality by transmibre meshes. When it
comes to compression, it removes vertices and triangleatiitely, and in returns, add
back iteratively when transmission. Li and Kuo [22] rstiiatluce a coder that remove a
vertex at a time while Cohen et al. [10] further improves it bynoving a set of vertices.
Advance data structure is then applied to progressive cesspn. Peng and Kuo. [35]
use octree structure to encode a mesh. That is each leveleof@presents different level
of sophistication of mesh.

In this thesis, we study those compression modules abovalacide the module
parameters through real experiments on a brand new data type

31

Chapter 7

Discussion

7.1 Inter frame compression

In this thesis, we concentrate on intra-frame planar mappecession and leave inter-
frame planar map as a future work. While surveying the litegabn inter-frame mesh
compressions, we nd few studies compare to intra-frame m@ssion. Work from Ya-
masaki and Aizawa [44] named inter-frame mesh compressres\arying mesh and
divide those meshes into patches to leverage the redundfaniiation across frames.
Due to 3D models complicated correlations, they develogehpaatching algorithm and
use vector quantization plus entropy coding in compressipaline.

However, time-varying mesh compression algorithm may odaable in planar map
with the following two reason: (i) the patch matching algiom is designed to 3D meshes
and cause unnecessary computation overhead on 2D plana(itnplanar map is repre-
sented in barycentric coordinates and do not share theakpetperties for compression.
We then take a closer look to time varying planar map and rat fllanar map includes
both clipped and unclipped triangle and in terms of the woddrdinate, those unclipped
triangles are most likely to remain unclipped in near-byrfes. Therefore, we may use
the properties of unclipped triangles to develop more siaited planar map compres-
sion.

7.2 Integration with Game Engine

As our goal is to implement a real cloud gaming platform, gnéing with game engine
is an important issue worth discussion. Messaoudi et al. §issecting and analysis
one of the most used gaming engine - Unity3D. The authorsleligame engine into the
following modules: (i) arti cial intelligence, (i) physis engine, (iii) scripting, (iv) input,

(v) multimedia rendering, and (vi) networking. In case dégrating with a game engine,

32

our proposed pipeline serves as a combination of multimesidering and networking
modules. That is, Unity3D or other game engine builds thelyal element as well as
other game logics, whereas our pipeline renders whatewbeiacene given by the game
engine. To be more speci ¢, our pipeline requires the follgyninputs from game engine:
(i) 3D objects, (ii) gamers' viewing information, and (illighting sources. With those
inputs we can then rendering and interact with gamers usingmposed pipeline.
Therefore, our next step is to integrate with existing opauwree game engine, such
as ORGE [32] and mini3D [31]. Before integrating with game eegive need to slightly
revise our propose vertex rendering modules to support Goated light source and to
receive dynamic lighting con guration from game engine.te&kfintegrating with game

engine, we can then evaluate end-to-end performance ahéfuecognize research prob-
lems in the future.

7.3 Holes Filling Issue and User Study

o

o

o

9]

'
[aEN

KN

'
N

=

o

.
w

NS

A

1 Bunny 4 Bunnies8 Bunnies
Scene

1 Bunny 4 Bunnies8 Bunnies
Scene

Quality Improvement in, PEV(Q
Quality Improvement in PEVQ

@) (b)

Figure 7.1: Performance improvement of our proposed swiuh PEVQ with (i) basic
bunnies and (b) ne-grained bunnies.

In Chap. 5, we evaluate our proposed method with common uskew vjuality met-
rics, such as PSNR and SSIM, where PSNR evaluate the imagadagign pixel-wised
and SSIM analysis the structures of image. Yet, in a inteaetpplication, we aim to
predict user's viewing experience before putting into nearkVe then evaluate the ren-
dered scene quality in OPVQ, computed by comparing ther@igicene in games against
the rendered one in different platform. OPVQ is an algoritfrRerceptual Evaluation of
Video Quality (PEVQ) described in ITU-T J.247 Annex B [20]eté, we use Skarseth et
al's. [40] open source package as OPVQ toolkit.

We found that our proposed method performs poorly comparitt265 under the
same bandwidth constraints. We then take a closer on thaati@i results by plotting
the one basic bunny scene and the one high quality bunny scdfig. 7.2. We than

33

found that even giving a lot more bandwidth, the improved BE3¢ores is very limited
and considered it as a natural limitation from our proposethad.

N

-

| | B/E,z/a/—a—:ur solution||
-3 x265 -G x265

—&- Our solution
0

0 2000 4000 6000 800C 0 2000 4000 6000 8000
Bitrate (kbps) Bitrate (kbps)

(a) PEVQ score in one basic bunny scene. (b) PEVQ score in one ne-grained bunny scene.

w
Q
w
N

N
)

Quality in PEVQ
(Y]
\

Quality in PEVQ
[N

.

o

Figure 7.2: One bunny rendered scene in PEVQ scores.

Fig. 7.3 is a rendered scene from the basic one bunny scenen ¥dloening in the
rendered scene, we nd there is small holes. There are twapresagenerating small holes
in our proposed method: (i) when generating 2D planar magetbccasionally facing
some occlusion on clipping modules, and (ii) when compresisteecompress the planar
map, there is some loose compression and cause small nespat on vertex.

(a) rendered bunny scene (b) zoom-in bunny scene

Figure 7.3: One bunny rendered scene.

34

Chapter 8
Conclusion

We studied the feasibility of leveraging the 2D planar mapasning and distributed ren-
dering in cloud gaming. We rst presented the server andhtlppelines, based on the
standalone 2D planar map rendering pipeline with additiminseveral components for
compression and transmission. We then dived into the cakecige of the platform: the
design of the compressor/decompresser of 2D planar mapsh Whs not been studied
before. We designed a parameterized compression compamehterived the optimal
parameters through real experiments. We then put up theregdipelines in our plat-
form, and compared its performance against the statees&thx265. Our evaluation
results are quite promising. Although our platform is outpened by x265 in PSNR
at low bitrate, we signi cantly outperform it at high bites. In addition, our platform
outperforms x265 in terms of video quality, e.g., by up tod0rd SSIM. Other merits of
the proposed platform include: (i) fast running time, esqcat the client side and (ii)
high scalability to ultra-high resolutions without bitegbenalty.

The current work can be extended in several directionst, Eorsddress the problem
of low PEVQ scores, we may use morphological antialiasirg] [Il the holes in
rendered scenes, based on the precise silhouette infornfedim planar map generation.
Second, the platform can be extended to support foveateterneg, which renders a
part of the region at full quality, and others at degradedityjualLast, we can analyze
gamers' mobility pattern to leverage temporal redundamcyur planar map streams.
These enhancements will further improve the performancaioplatform.

35

Bibliography

[1] D. Arthur and S.Vassilvitskii. k-means++: The advargagf careful seeding.
In Proc. of the ACM-SIAM Symposium on Discrete algorithms (S@DApages
1027-1035, 2007.

[2] P. Asente, M. Schuster, and T. Pettit. Dynamic planar ithagtration. ACM Trans-
actions on Graphics26(3):30, 2007.

[3] P. Baudelaire and M. Gangnet. Planar maps: an interap@oadigm for graphic
design. InProc. of the SIGCHI Conference on Human Factors in Computinte8ys
(CHI'89), pages 313-318, 1989.

[4] G. Bernstein and D. Fussell. Fast, exact, linear boole@osputer Graphics Jour-
nal, 28(5):1269-1278, 2009.

[5] W. Cai, R. Shea, C. Huang, K. Chen, J. Liu, V. Leung, and C. Hsue flture of
cloud gaming.Proceedings of the IEEER.04(4):687—-691, 2016.

[6] W. Cali, R. Shea, C. Huang, K. Chen, J. Liu, V. Leung, and C. Hsu.uey on
cloud gaming: future of computer gameéBEE Access4:7605—-7620, 2016.

[7] W. Cheng and T. Ooi. Receiver-driven view-dependent stieg of progressive
mesh. InProceedings of the 18th International Workshop on Network@perating
Systems Support for Digital Audio and Video (NOSSDAV'f&yes 9—-14, 2008.

[8] M. Chow. Optimized geometry compression for real-timadering. InProc of
Visualization pages 347-354. IEEE, 1997.

[9] S. Chuah, N. Cheung, and C. Yuen. Layered coding for mobiectigaming
using scalable blinn-phong lighting.IEEE Transactions on Image Processing
25(7):3112-3125, 2016.

[10] D. Cohen, D. Levin, and O. Remez. Progressive compresdiarbitrary triangular
meshes. IrProc. of Visualizationvolume 99, pages 67—72, 1999.

36

[11] T. Cover and J. Thomag&lements of information theoryohn Wiley & Sons, 2012.

[12] M. Deering. Geometry compression.Pnoc. of Conference on Computer Graphics
and Tnteractive Techniques (SIGGRAPH'9%ges 13-20, 1995.

[13] M. Deering. Geometry compression. Pnoc. of Computer graphics and interactive
techniquespages 13-20. ACM, 1995.

[14] A. Ellis, W. Hunt, and J. Hart. Svgpu: real time 3d rendgrto vector graphics
formats. InProc. of High Performance Graphics (HPG'1§ages 13-21, 2016.

[15] A. Gersho and R. Gray. Vector quantization I: Structurd performance. INWector
guantization and signal compressigrages 309-343. Springer, 1992.

[16] S. Gumhold and W. StralRer. Real time compression ofgl&amesh connectivity.
In Proc. of Computer graphics and interactive techniquesges 133-140. ACM,
1998.

[17] M. Hemmati, A. Javadtalab, A. Shirehjini, S. Shirmolraadi, and T. Arici. Game
as video: bit rate reduction through adaptive object emapdin Proc. of ACM In-
ternational Workshop on Network and Operating Systems Stufgrdpigital Audio
and Video (NOSSDAV'13pages 7-12, 2013.

[18] H. Hoppe. Progressive meshes.Hroc. of the Computer graphics and interactive
techniquespages 99-108. ACM, 1996.

[19] C. Huang, K. Chen, D. Chen, H. Hsu, and C. Hsu. GamingAnywhtre rst
open source cloud gaming systelACM Transactions on Multimedia Computing,
Communications, and Applications0(1s):10:1-10:25, January 2014.

[20] Objective perceptual multimedia video quality mea@snent in the presence of a full
reference. Standard, ITU Telecommunication Standaidiz&ector, 2008.

[21] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, Bavid, J. Laulajainen,
R. Carmichael, V. Poulopoulos, A. L. P. R&, A. Glora, and C. Bouras. Platform
for distributed 3d gaminglnternational Journal of Computer Games Technology
2009:1-15, 2009.

[22] J. Li and C. Kuo. Progressive compression of 3D graphicd@m® InProc. of
Multimedia Computing and Systenpaiges 135-142. IEEE, 1997.

[23] L. Lin, X. Liao, G. Tan, H. Jin, X. Yang, W. Zhang, and B. LiLiverender: a
cloud gaming system based on compressed graphics streamnirRyoc. of ACM
International Conference on Multimedia (MM'14)ages 347-356, 2014.

37

[24] S. Lloyd. Least squares quantization in pchiEE Transactions on Information
Theory 28(2):129-137, 1982.

[25] D. Meilander, F. Glinka, S. Gorlatch, L. Lin, W. Zhang, and X. Liaoinging mo-
bile online games to clouds. RProc. of IEEE Computer Communications Workshops
(INFOCOM WKSHPS'14)pages 340-345, 2014.

[26] R. Mekuria, M. Sanna, S. Asioli, E. Izquierdo, D. Bulteimand P. Cesar. A 3d
tele-immersion system based on live captured mesh geontet®roc. of the ACM
Multimedia Systems Conference (MMSys, J2)ges 24-35, 2013.

[27] F. Messaoudi, G. Simon, and A. Ksentini. Dissecting garangines: the case of
Unity3D. In Network and Systems Support for Games (NetGames), 2015 Interna
tional Workshop onpages 1-6. IEEE, 2015.

[28] D. Mishra, M. Zarki, A. Erbad, C. Hsu, and N. Venkatasubeamian. Clouds+
games: A multifaceted approaclicEE Internet Computingl8(3):20-27, 2014.

[29] X. Nan, X. Guo, Y. Lu, Y. He, L. Guan, S. Li, and B. Guo. A ndwoud gaming
framework using joint video and graphics streamingPtac. of IEEE International
Conference on Multimedia and Expo (ICME'1¢pges 1-6, 2014.

[30] A. Nordland. Compression of 3D media for internet trarssion. Master's thesis,
University of Oslo, 2016.

[31] May 2017.http://mini3d,org
[32] May 2017.http://orge3d,org

[33] C. B. V. Pascucci and G. Zhuang. Single-resolution cosgiom of arbitrary trian-
gular meshes with properties. Rroc. of Data Compression Conference (DCC'99)
pages 247-256. IEEE, 1999.

[34] J. Peng, C. Kim, and C. Kuo. Technologies for 3D mesh cosgioa: A survey.
Journal of Visual Communication and Image Representatiéf6):688—733, 2005.

[35] J. Peng and C. Kuo. Geometry-guided progressive las8Bsmesh coding with
octree (OT) decomposition. 24(3):609-616, 2005.

[36] PlayStation Now web page, January 20h&p://www.playstation.com/
en-us/explore/playstationnow/

[37] January 2017. https://www.playstation.com/en-gb/explore/
playstation-now/faq/

38

[38] A. Reshetov. Morphological antialiasing. Rroc. of Conference on High Perfor-
mance Graphics (HPG'09pages 109-116, 20009.

[39] P. Ross. Cloud computing's killer app: GaminBEE Spectruny6(3):14-14, 2009.

[40] K. Skarseth, H. Bjarlo, P. Halvorsen, M. Riegler, and Cwaxiz. OpenVQ: a video
guality assessment toolkit. Proc. of ACM International Conference on Multimedia
(MM'16), OSSC papetpages 1197-1200, 2016.

[41] G. Taubin and J. Rossignac. Geometric compression giréopological surgery.
ACM Transactions on Graphics (TOG)7(2):84-115, 1998.

[42] C. Touma and C. Gotsman. Triangle mesh compres$imt. of graphics interface
pages 26—34, 1998.

[43] February 2017http://x265.0rg

[44] T. Yamasaki and K. Aizawa. Patch-based compressioririog-varying meshes.
In Proc. of IEEE International Conference on Image Processi@R'10), pages
3433-3436, 2010.

39

