
國立清華大學電機資訊學院資訊工程研究所

碩士論文
Department of Computer Science

College of Electrical Engineering and Computer Science

National Tsing Hua University
Master Thesis

在軟體定義網路下利用標籤交換之流量工程系統

Traffic-Engineer in Software Defined Networks using Label
Switching

茅辰寧

Chen-Nien Mao

學號：104062551
Student ID:104062551

指導教授：徐正炘博士

Advisor: Cheng-Hsin Hsu, Ph.D.

中華民國 106年 05月
May, 2017

國
立
清
華
大
學

資
訊
工
程
研
究
所

碩
士
論
文

在
軟
體
定
義
網
路
下
利
用
標
籤
交
換
之
流
量
工
程
系

統

茅
辰
寧
撰

106
05

Acknowledgments

I would like to express my gratitube toward all the people who helped
me in the past two years. I wouldn’t be able to finish my thesis were it not
for your help along the way. I want to thank my parents specifically, for it is
they who provided me with the firm support and stand behind my decisions. I
would also like to thank my labmates in Networking and Multimedia Systems
Laboratory, especially Tao-Ya Fan Chiang, who helped me a great deal in the
course of my research. Lastly, I would like to express my gratitude toward
my adviser: Prof Cheng-Hsin Hsu. Without the guidance and the suggestion
I received from him, I would not be able to accomplish what I have done and
learn so much in the past two years.

i

致致致謝謝謝

在此我要感謝在過去兩年中所有幫助過我的人，如果沒有你們的

幫助我一定沒有辦法順利完成我的論文。 在此我要特別感謝我的父

母，他們提供我堅定不移的支持，同時也支持我所作的每一個決定。

我也要感謝網路與多媒體系統實驗室的同學們，特別是范姜陶亞在過

去兩年的研究中幫助我非常的多。最後，我要感謝我的指導教授：徐

正炘教授。如果沒有他的給予我的指導以及建議，在過去的兩年內我

一定沒辦法完成如此多的事情以及學到如此多的東西。

ii

中中中文文文摘摘摘要要要

在此論文中，我們探討在軟體定義網路 (SDNs)下網路流量工程的
優化。我們將原本網路虛擬化成眾多虛擬管道，每條管道都會由一個

標籤代表，而所有的路由都會由標籤進行優化。為了達到更適應性的

路由，我們將原先交換機中的路油表(Flow Table)區分為: 1)儲存管道
路由資訊的管道表 2) 儲存流量與管道之間對應關係的流量表，而我
們提出四種演算法優化儲存的路由資訊與對應關係，並且施行流量

工程以優化系統。我們實作真實測試環境來驗證我們的方法，並且

除了實作我們提出的系統架構外，我們另外也實作分段路由(Segment
Routing, SR)，也利用Ryu提供的簡單路由(Ryu Simple Routing, RSR)。
實驗結果顯示出我們的系統在最高鏈接使用量和初始延遲的兩項指標

中都超越SR跟RSR: 1)與SR相比，我們的系統有效降低20%到46%的最
高鏈接使用量；跟RSR相比，我們更進一步降低30%到50%的使用量。
2) 跟SR相比，與我們的系統降低了39%的初始延遲；以及與RSR相
比，93.2%的初始化延遲被降低。除此之外，我們的方法更為系統帶來
了負載平衡和快速錯誤回復的能力。

iii

Abstract

We study the problem of Traffic Engineering in multi-site Software De-
fined Network (SDN). In our system, we virtualize the physical links with
virtual tunnels and each tunnel will be represented by a label. We propose to
decouple the flow table into two tables: the more static tunnel tables, and the
more dynamic path table, for higher flexibility. The tunnel tables contain a
set of pre-built tunnels, while the path table matches each traffic flow to the
labels. We formulate two optimization problems for tunnel construction and
path assigner. Four algorithms are purposed to solve the Traffic Engineering
properly, and a real testbed is implemented to prove the concept. We also
compare the proposed solution with Segment Routing (SR) and Ryu Simple
Routing (RSR), the experimental results show that our solution outperforms
SR and RSR: 1) maximal link utilization reduction between 20% and 46%
compared to SR, 30% and 50% compared to RSR. 2) Initial delay reduction
by 39% compared to SR, and 93.2% compared to RSR. Furthermore, our pro-
posed solution also brings load balancing and error resilience features to the
network system.

iv

Contents

Acknowledgments i

致致致謝謝謝 ii

中中中文文文摘摘摘要要要 iii

Abstract iv

1 Introduction 1
1.1 Contribution . 2
1.2 Thesis Organization . 3

2 background 4
2.1 Software Defined Network . 4
2.2 Tunneling in the Internet . 5
2.3 Segment Routing . 5
2.4 Multi-Protocol Label Switching . 5
2.5 Traffic Engineering . 6

3 Usage Scenario 7
3.1 Network Topology . 7
3.2 Label Switching Operation . 7

4 Problem Statement 10
4.1 Initialization Delay . 10
4.2 Load Balancing . 10
4.3 Error Resilience . 12

5 System Architecture 13
5.1 Controller . 13

5.1.1 Component Diagrams . 13
5.1.2 Tunnel Constructor . 14
5.1.3 Admission Controller . 14

5.2 Flow Tables . 14
5.2.1 Packet Forwarding . 15
5.2.2 Dynamic Adjustment . 17

v

6 Tunnel Table Construction 18
6.1 Problem Formulation . 18
6.2 Static Tunnel Finder algorithm . 19
6.3 Analysis . 21

7 Path Table Construction 22
7.1 Problem Formulation . 22
7.2 Static Path Assigner Algorithm . 24
7.3 Analysis . 26

8 Error Resilience and Network Dynamics 27
8.1 Switch Dynamic . 27
8.2 Dynamic Tunnel Finder Algorithm . 28
8.3 Path Dynamic . 29
8.4 Dynamic Path Assigner algorithm . 29

9 Implementation 31
9.1 RYU Controller . 31
9.2 Mininet Emulator . 32
9.3 Algorithms and Utilizations . 32

9.3.1 Traffic Engineering with Label switching 32
9.3.2 Segment Routing Control Logic 33
9.3.3 Ryu Default Control Logic . 33
9.3.4 Network Monitor . 33

10 Evaluations 34
10.1 Setup . 34

10.1.1 Topology Generator . 34
10.1.2 Traffic Generator . 36

10.2 Scenario and Metrics . 36
10.3 Results . 37

10.3.1 Link Utilization . 37
10.3.2 Delay . 43
10.3.3 Running Time and Flow Entries 43
10.3.4 Error Resilience . 50

11 Related Work 53
11.1 Proactive Flow Set-up . 53
11.2 Traffic Engineering using MPLS in legacy IP Networks 53
11.3 Traffic Engineering in SDNs . 54
11.4 Label Switching . 54

12 Conclusion 56
12.1 Migrating Purposed System on Segment Routing 56
12.2 Future Work . 56
12.3 Conclusion . 57

Bibliography 58

vi

List of Figures

2.1 Architecture of SDN. 4

3.1 Packet forwarding mechanism in proposed solution. 8

3.2 Use cases in a multiple sites enterprise network. 9

4.1 Traffic Engineering with MPLS label. 11

5.1 Controller components. 13

5.2 Proposed decoupled flow tables. 15

5.3 Interaction between tables in switches and controller. 16

8.1 Scenario of Dynamic Tunnel Finder. 27

9.1 Ryu Framework . 31

10.1 An example of simplified topology generated with BRITE. 36

10.2 Utilization distribution of T 24
i . 38

10.3 Max Utilization of T 24
i . 39

10.4 Link Usage in Topo243 (a) Max utilization along time (Heavy traffic), (b)

Avg. utilization along time (Heavy traffic), (c) Max utilization along time

(Light traffic), (d) Utilization CDF (Heavy traffic) 40

10.5 Max Link Utilization. 41

10.6 Average Link Utilization. 42

10.7 Initialization Delay CDF of T 24
i . 44

10.8 First Packet Initialization Delay . 45

10.9 Normalized First Packet Delay . 46

10.10Link utilization CDF of T 24
4 and T 32

4 . 46

10.11Runtime of Tunnel Finder Algorithm. 47

10.12Number of flow entries per switches. 48

10.13Number of activated flow entries per switches. 49

10.14Scenarios of Error resilience. 50

10.15Traffic recovered by alternative links. (a) S4 down (b) S2 down (c) S1 down 51

vii

List of Tables

6.1 Symbol Table used in Tunnel Finder Problem 19

7.1 Symbol used in Path Assigner Problem 23

10.1 Topology Information . 35

10.2 Bandwidth Range of each topologies . 35

viii

Chapter 1

Introduction

Currently, the explosive traffic flows which come from different services have brought

many challenges to the networks. The Quality of Service (QoS) and Quality of Experi-

ence (QoE) become more and more challenging due to the massive data transmissions.

The core network components play a crucial role in processing these data and they usu-

ally connected to different types of networks, from the wireless network to conventional

IP networks. Therefore, the traffic engineering inside the core networks is the key to

building a modern network system. The traditional core networks perform Interior Gate-

way Protocol (IGP) which relies on shortest path algorithms to route the traffic is not

sufficient enough for the massive traffic nowadays. The links are usually suffered from

congestions in some network conditions while there are still idling resources in the net-

work. The unbalanced resource usage leads to the poor performance and even congestion,

which seriously affects the QoS and QoE.

To overcome these issues, Software Defined Network (SDN) [28] with OpenFlow pro-

tocols has shown its strength in traffic engineering. The SDN controller acts as a composer

of the network system, and it is able to change routing rules by programming the switches

under the same SDN domain. The SDN is has been widely deployed in the data center

networks. For example, Google has drawn our attention by deploying B4 [20] in their

own internal networks. Although SDN solves many problems in conventional networks,

however, the speed of real world deployment can not keep up with the evolution speed of

SDN and there are some remaining traffic engineering problems : (i) initialization time in

large networks, (ii) scalability, (iii) QoS, and (iv) flexibility.

First of all, QoE is seriously impacted by the initialization delay. The problem is due

to all the switches along with the traffic path needs to communicate with the controller,

the round-trip times between each switch and controller enlarge the initialization or re-

route delay. Furthermore, the problem will be amplified by the size of networks, and the

distance of the traffic paths.

1

Second, decoupling the data flow and control flow in SDN brings the scalability issues.

The scalability may be constrained by the limited size of flow entries and the deployment

cost of SDN supported devices. The size issue may be easily achieved by hardware, but

the infrastructure cost of SDN switches is relatively high. On the other side, the scalability

of SDN is also constrained by the real network architectures, and we can not assume the

network is all under SDN. Thus, how to carefully transmit the packets between SDN

networks and the non-SDN networks is a critical challenge when we deploy SDN in the

real network.

Third, OpenFlow protocol brings the straightforward QoS support into their standard.

However, the OpenFlow provides basic QoS features and the First In First Out policy is

not suitable for the large core networks. The routing mechanism needs to be carefully

designed to perform traffic engineering and utilize the resources wisely inside the net-

work. More precisely, the crucial task of traffic engineering is to optimize the resources

allocation inside the networks.

Last, although SDN decoupling the data flow and control flow which seems to be

more flexible for the network administrator to manage the network. However, the cost

of changing routing decision is still too high for SDNs. In order to change routing rules,

SDN controller needs to program all the affected switches, both the original switches

and new switches. To handle different demands of traffic from various service, the core

network has to be evolved to provide flexibility. The cost of changing routing behavior

need to be optimized.

1.1 Contribution

In this work, we study the above issues in SDNs and purposed a flexible architecture

to simplify the core networks, and well-designed routing algorithms to perform traffic

engineering in SDNs. To address the flexibility and reliability problem in our system, we

forward the traffic along multiple virtual paths. Purposed path finding algorithms and load

balancer also brings load balancing and fast recovering to the system. More precisely, our

proposed system has the following features:

• Low initialization latency

• Load-balance

• Scalability

• Resilience and QoS support

• Simplified mechanism in core network

2

1.2 Thesis Organization

In this thesis, we first give general introductions to the background knowledge using in

this work in chap. 2. In chap. 3, we show the high-level overview of the proposed system

and then the usage scenarios of the proposed system. To perform traffic engineering, we

discussing the focusing problems in chap. 4. In chap. 5, we give a detail introduction of

the components using in our system and the innovation approaches we used to perform

traffic engineering. In chap. 6 and chap. 7, we introduce the design goal of our algorithms

and describe the routing behaviors in detail, and then introduce the dynamic routing al-

gorithms in chap. 8. Chap. 9 gives the detail implementation of proposed system and the

testbed to proof the concept. Besides, we also implement two different solutions in our

testbed as the baselines. We describe the experiment setup and presents the results in

chap. 10. Finally, we survey the related work in chap. 11. We conclude our contributions

and discuss the future works in chap 12.

3

Chapter 2

background

2.1 Software Defined Network

Control Layer

Infrastructure Layer

Application Layer

API

Figure 2.1: Architecture of SDN.

SDN is first presented in 2008 and it has recently drawn tremendous attentions from

both academia and industry. Different from the legacy IP network, separating the con-

trol plane and data plane shows the strength of SDN and makes it easier to deploy new

innovations in real-world networks, which in turn speeds up the evolution of computer

networks. In the IP forwarding networks, each switch will handle all the forwarding

mechanisms by running its own routing protocols. However, in SDNs, the routing rules

are mainly decided by the centralized controllers, controllers will decide the routing rules

of each traffic request and then program the network nodes. Thus, the network nodes in

SDN are only responsible for forwarding the packets. Fig. 2.1 shows the architecture of

SDN. The controller generally has the global view of the infrastructure layer and using

specific protocols to communicate with the network nodes under same SDN domain. The

most well-known protocol is OpenFlow [28], which is supported by Open Networking

Foundation [33]. Besides, the controller can also communicate with the applications to

support various services, which is able to achieve Network Function Virtualization.

4

2.2 Tunneling in the Internet

Tunneling is a network engineering which transmits the packet over virtual tunnels, and

these tunnels usually traverse among several physical links. The packets are first archived

inside a routing header which has a tunneling information. The original source and des-

tination are encapsulated, and the switch will forward these packets using the tunneling

information. The tunneling information can be represented by various types. For exam-

ple, IP Encapsulation Within IP (IP in IP) [24, 37], and Generic Routing Encapsulation

(GRE) [16,24] are generally used in IP tunneling. In the cellular network, GPRS Tunnel-

ing Protocol (GTP) [2] is used to forward the packets.

2.3 Segment Routing

Segment Routing (SR) [45] is a new solution to allow network administrators to perform

network engineering. The idea is extended from source routed, which store all the routing

decision on each passing switches inside the packet header. The switches follow these

routing rules to forward the packet instead of lookup its own forwarding table. Similar to

source routed, SR also stores the routing decisions inside the packet header, but the routing

information is formed by a sequence of segments. The switches will check segments

inside the header and direct the packet to the defined segment. [14] shows the architecture

of SR and [6, 12, 43] also proposed their approaches to SR.

2.4 Multi-Protocol Label Switching

Multiprotocol Label Switching (MPLS) [3,46,52], which forwards the packets according

to the label without looking up the network address. A label stands for a label-switched

path (LSP), which is usually set up by the Label Distribution Protocol (LDP) and RSVP-

TE under an MPLS domain. The packet will be encapsulated inside an MPLS header

which contains the label information, and the switches inside the MPLS domain will

forward the packet according to the labels. MPLS also be known as the ability to per-

form traffic engineering in the IP network [47], and it usually performs with Constrained

Shortest Path First (CSPF), Open Shortest Path First (OSPF) or Intermediate System To

Intermediate System (IS-IS) protocols.

5

2.5 Traffic Engineering

According to the definition of Traffic Engineering in RFC [49]. Traffic engineering fo-

cuses on the optimization of network performance. The performance metrics includes the

1) traffic management, 2) resource allocation, 3) minimization of delay and packet loss,

4) maximization of throughput. These challenges have to be careful design to achieve

Traffic Engineering in the Network. In this thesis, we consider the above metrics and

brings 1) load balancing, 2) minimize the delay and 3) error resilience into our proposed

system. The load balancing is an important feature in traffic engineering, and we have

addressed the issue with two optimization algorithm. In the rest of the thesis, we will go

through our proposed system and solve the traffic engineering carefully.

6

Chapter 3

Usage Scenario

3.1 Network Topology

We give an overview of the proposed system considered in this thesis. We assume all sites

run on SDNs and all the switches in the same subnetwork are working with OpenFlow

protocols which controlled by a logically centralized OpenFlow controller. To simplify

the SDN solution, we classify the switches as core switches and edge switches and lever-

age the concept proposed in Fabric [7] to design our architecture. More precisely, we de-

sign our system to follow the bellowing scheme. The complexity procedures are handled

by the edge switches (ingress and egress switches), the core switches are only responsible

for forwarding the packets. The edge switches will be programmed by the controller so

that the packets can go into the network, and leave to the destination appropriately. The

detailed forwarding mechanism will be discussed in ch. 5.

3.2 Label Switching Operation

Label Switching will forward the packet relying on label number, which makes the switch-

ing between two nodes faster. The label is generally imposed between the data link layer

and network layer. The label header contains a label which can be identified by the local

domain and the header length is short and fixed (32-bits for MPLS label) [32]. In our

proposed system, we use MPLS to realize the label switching, however, we part with the

original protocols using in MPLS system. Instead, we manipulate the features in SDN

to magnificently reduce the label distribution protocols. More precisely, we extract the

concept of MPLS label in our system and let the SDN controller finish the routing jobs.

The reasons for choosing MPLS label include :(i) stackable, providing higher extensi-

bility, (ii) fixed length, allowing more efficient matching, and (iii) supported in OpenFlow

protocol. In the legacy IP networks, MPLS shows its ability to perform traffic engineering

7

and provide QoS, however, there are many issues need to be considered by the network

designers while deploying MPLS [52], e.g., the scope of the whole system, the hierarchy

of MPLS system and the path attributes of label switching paths etc. With the benefit of

SDN, these issues may be solved in SDNs environment. SDN controllers have the global

view of the whole system and network designers can easily deploy MPLS label inside

the networks. More precisely, the label distribution protocols can be replaced by SDN

controller due to the direct communication between switches and controller.

With the help of SDN, we leverage the MPLS labels and build a label switching sys-

tem to perform traffic engineering to optimize the network. Most important of all, label

switching paths can be designed into flow table, which meets the spirit of SDN.

Push Label Pop Label

Ingress Switch Egress SwitchCore Switches

… …

Swap Label

Figure 3.1: Packet forwarding mechanism in proposed solution.

Fig. 3.1 introduces tree different label switching actions which generally used in our

proposed system. When a packet first enters the network controlled by the proposed

controller, it will be Pushed a specific label. Then, the labeled packet is able to travel

among multiple physically links without interacting with the SDN controller. When the

packet reaches the egress switch, it will decapsulate the labeled packet. The label header

will be removed and forward to the destination host according to the address. Finally, the

Swap action replaces the old label with a new one, which redirects the packet to another

path. In our system, it is possible that the label will be changed inside the core network to

make the forwarding mechanism more flexible. The swap action comes from a sequence

of actions: 1) Pop the original label, and 2) Push a new assigned label.

To better understand our system, we give two usage scenarios to demonstrate the

proposed forwarding mechanism. We take enterprise networks to demonstrate the system,

however, the same solution can be used in different scenarios without any modification.

Fig. 3.2 shows a use case in which multiple sites are connected by a network owned

by the enterprise. The network comprises of two sites, and each of them represents a

label switching domain which is controlled by logically centralized SDN controllers with

a global view respectively. The controllers will coordinate with each other to optimize the

site-to-site network flows.

8

ISP Server

Path provided by ISP

Tunnel Specification

Edge switch

Core SwitchesSSSSSwiiit

…

EddEd

SDN Controller

Tu

SDN

Core

Switches

Link

Switch

Control Signal

A

Host A

Servers

… B

Host B

…

SDN ControllerSD
I

Figure 3.2: Use cases in a multiple sites enterprise network.

In the first example, if the host A wants to send data to the server on the same site, the

packets will first be forwarded to the ingress switches near host A. If the switch doesn’t

contain the corresponding rules to forward the packet, the packet-in event will be sent to

the controller and controller responses with the label(s) which stand for a dedicated path.

Then, the rules will be recorded in the traffic table at the ingress switch, which allows the

same traffic request transmit the packet automatically.

On the other hand, if host A wants to communicate with host B in different sites.

In this case, the site-to-site path can be provided by Internet Service Providers (ISPs).

The traffic flows will be transmitted with the label assigned by SDN controllers inside

our own domain, and then transmitted to others domain through paths provided by ISPs.

For an enterprise, ISPs often provide pre-configured paths using technologies such as

Frame Relay [40] or MPLS [39, 52, 53]. These tunnels are owned by ISPs, and thus

are not directly managed by our controller. The controller, however, can acquire the

tunnel information, such as QoS guarantees, from portals provided by ISPs. Note that the

underneath tunneling technologies used by ISPs may be confidential which are out of the

scope of this thesis.

Above cases demonstrate how label switching works in enterprise networks. However,

the transmission between two nonadjacent network domains can also be traditional IP for-

warding. Leveraging MPLS label also makes our proposed solution suitable for legacy

MPLS-enabled or eBGP-enabled network without implementing any additional mecha-

nism. Moreover, edge switches can also be programmed with additional rules to support

more general scenarios under a hybrid network architecture. Since we are focusing on

SDNs, the detail implementations are not provided in this thesis.

9

Chapter 4

Problem Statement

4.1 Initialization Delay

High initialization and re-route delay may not be a major concern in data centers, as the

switches are in close proximity. This may partly explain the success of SDNs in data

centers. However, the core networks are vulnerable to long initialization time, because:

(i) sites may be geographically distributed, hence the propagation delay is already high,

making the additional flow initialization time intolerable, and (ii) network conditions and

flow demands are constantly changing, making the flow highly dynamic and frequent new

flows further amplify flow initialization time.

To minimize the overall utilization and initialization delay, we first pre-build tunnels

among all these switches under the same SDNs domain. These tunnels are virtual paths in

our system which goes over one or multiple underneath network links. Our well-designed

controller is responsible for computing these tunnels and assigning a specific MPLS label

on each of them. The tunnels are essentially virtual links with some QoS guarantees, such

as bandwidth, latency, and packet loss rate.

To route traffic flows, controller fit each of them into a suitable path that is com-

posed of one or multiple tunnels when the requests first come to the ingress switches.

Therefore, by using pre-built tunnels, initialization delay can be significantly minimized,

because only edges switches are programed when new traffic requests come to the ingress

switches.

4.2 Load Balancing

The idea of load balancing is to offload the traffic to another unused link, which utilize

the network resource efficiently. [38] has shown the ability to use multiple paths routing

to gain better performance. In our proposed system, we also set up more than one tunnels

10

for each switch pair. By doing so, our controller is able to utilize the idling resources in

the network to transmit the packets.

Perform load balancing wisely also help to avoid the chance to congestion. Adopting

MPLS label switching in our proposed system allow us to perform load balancing in an

elegant way. The load balancing can be conducted by changing the designated label in any

switch inside the system, which makes the system more flexible and efficient. Because

we don’t need to program all the path when the routing decision is changing, the delay

cost of changing rules is relatively reduced. Furthermore, instead of using shortest path

algorithm, we choose tunnels by computing the disjoint set of each switches pair. The

tunnel is then selected by the length of the disjoint paths and the detail implementation is

discussed in chap. 6.

Switch 1 Switch 2 Switch 3

Switch 4

Host A

Switch 5 Switch 6 Switch 7

Label 1

Label 2

Label 3

Host A

Host C

Host BHost B

Host D

Figure 4.1: Traffic Engineering with MPLS label.

The load balancing features are implemented in our admission algorithm, we give a

few examples to demonstrate this features. Fig. 4.1 illustrates the mechanism of load

balancing. First of all, traffic flows from HA to HB are directed to the tunnel with label

1 and we assume that there is no other traffic on this network. If there is a new traffic

from HC to HD, the DPA will then choose a path with lower link utilization which may

be the tunnel with label 1 or 3 (we choose 3 in this case) to decrease the possibility

of congestions. Furthermore, if there is a congestion between S2 and S3, the controller

can generate a label-swapped event at S2 and the traffic flows can offload to label 2 to

gain better link utilization (To perform load balancing in real time, a network monitor is

required, which is out of the scope of this work).

11

4.3 Error Resilience

Different from the network in the data center, the network in the real world are more

dynamic and it is possible that many unforeseen events will occur, which challenges the

network system. To handle these events in real time, we adopt redundant tunnels and

proposed dynamic algorithms to handle such conditions and bring resilience to the system.

When the system setup, the tunnel finder will patch the network with redundant tun-

nels to provide more flexible routing choose. On the other hand, the additional tunnels

also bring fast-recovery to the system. Network failures can be resolved faster, resulting

in shorter downtime experienced by users. We use failure node event to prove the concept,

however, the proposed event handlers inside the controller can be further extended to sup-

port more various of the failure event, and most of them can be solved by our proposed

algorithms (see chap. 8).

12

Chapter 5

System Architecture

5.1 Controller

5.1.1 Component Diagrams

Tunnel Constructor Admission Controller

Proactive Switch Module

Static Tunnel

Finder

Dynamic Tunnel

Finder

Static Traffic

Assigner

Dynamic Traffic

Assigner

Tunnel Table

Traffic Status

Topology Traffic TableUnexpected events

Tunnel Table

Traffic Request

Tunnel Table

MPLS-enabled Network

Flow Command Dispatcher

Figure 5.1: Controller components.

We implement five modules inside the controller, and Fig. 5.1 gives the components

diagram of proposed controller. The proactive switch is the main control logic, which

acts as an event handler. The events are first handled by the proactive switch and then

13

processed by the appropriate modules respectively. Inside our controller, the modules are

classified into two group according to their mission: 1) Tunnel Constructor is responsible

for building tunnels inside the given network, and 2) Admission Controller is responsible

for processing traffic request and perform load balancing. Finally, both the tunnel and path

rules are parsed by the Flow dispatcher and issues flow-mod commands to the underlying

switches with OpenFlow protocol.

5.1.2 Tunnel Constructor

Tunnel Constructor, which composes of two tunnel finder modules, is responsible for find-

ing or recovering tunnels between every two switches. The Static Tunnel Finder (STF)
module tries to optimize the tunnels among the switches when the system setup or topol-

ogy change. All the switches inside the network will be programmed with the computed

tunnel information, and store in the tunnel tables as mentioned above. The tunnel con-

structor can also compute backup tunnels in the system, and the network administrators

are able to fully configure the parameters to adjust the number of backup tunnels.

On the other hand, if there is any unexpected event occur, the dynamic module, Dy-
namic Tunnel Finder (DTF), aims to find a possible tunnel in real time. The module

is triggered when there are new edge switches connect to the network, or fast recovery

mechanism fails to recover the tunnel from the node failure.

5.1.3 Admission Controller

We also implement two modules to perform admission control. Dynamic Path As-
signer (DPA) acts as an online traffic admission controller which decides whether the

system has enough resources to accept more traffic, and assigning a traffic flow to a proper

path in real time. Furthermore, we also purposed an offline traffic balancer to achieve load

balancing in our system. Static Path Assigner (SPA) is our load balancer which aims to

balance the traffic periodically in order to avoid the traffic congestions.

5.2 Flow Tables

We propose to decouple an ordinary flow table in a switch into a tunnel table and a path ta-

ble, in order to: (i) maintain high interactivity and (ii) support more flexible and dynamic

traffic assignments.

In tunnel table, we store pre-built tunnels information, which is computed by the con-

troller when the topology changes. The controller proactively installs the tunnel tables on

14

Path Table

Tunnel Table

Path Table

Tunnel Table

…
…

…
…

Figure 5.2: Proposed decoupled flow tables.

switches, and these tunnels are represented by MPLS labels respectively. All the infor-

mation will be translated to flow-mod commands, and store in the flow table inside the

corresponding switches. Each flow entries represents a matching relationship between the

label and the output port, and the proactive installations of such forwarding information

are similar to building routing tables in legacy IP networks.

On the other hand, we store the bindings between labels (tunnels) and the traffic flows

in the path table. When a new unlabeled packets visit the network, the controller will

compute a path by our path assigner algorithm (DPA), and programs the ingress switch to

forward the traffic flow with the label.

Leveraging the novel idea of using two tables, we reduce the complexity of the net-

work architectures. The core switches are simplified and the control plan is mainly sepa-

rated to the edge switches, leading forwarding mechanism more responsive.

5.2.1 Packet Forwarding

We give an example to illustrate the operations between the controller modules and the

decoupled flow tables in Fig. 5.3. First of all, the STF derives all new tunnels inside topol-

ogy when the system setup. The tunnel information is stored in the controller and then

proactive switch module invokes the flow command dispatcher to translate the informa-

tion into flow-mod commands. The tunnel information will then be stored in the Tunnel
Table among these switches before any traffic flow arrive in the system. In this example,

part of the information about the tunnel table computed by controller are: 1) tunnel 1 from

S1 to S3 via S2, and 2) tunnel 2 from S3 to S4.

Next, when the traffic request from H1 to H2 newly arrives at the ingress switch S1, the

15

Traffic Table

, Push Label 1, go to

tunnel table

Action: Go to controller

Tunnel Table

Label: 1, outport: 1

Traffic Table

…

Tunnel Table

Label: 1, outport: 3

Traffic Table

Label 2, pop label, go to tunnel

table

Tunnel Table

, to Host, outport 1,

Traffic Table

Label 1, pop label

, Push Label 2, go to

tunnel table

Tunnel Table

Label: 2, outport: 2

SDN Controller

Ingress Switch Egress SwitchCore Switch Core Switch

Switch 1 Switch 2 Switch 3 Switch 4Host A Host B

Swap LabelPush Label Pop Label

Tunnel Label 1 Tunnel Label 2

Figure 5.3: Interaction between tables in switches and controller.

packet in event will be sent to the controller. The Proactive switch will invoke the DTA to

determine if the system has enough resource to accept more traffic into the system, without

affecting the ongoing traffic in the network. If the admission is granted by the admission

controller, the assigner will response with the labels, which determine the tunnel(s) to

use for packets between H1 and H2. The proactive switch module then invokes the flow

command dispatcher to translate the path table into flow-mod commands.

In this case, controller designates tunnel 1 and tunnel 2 for this request. In ingress

switch S1, the packet will be encapsulated with label 1 and direct the packet to the tunnel

1. All the switches along the tunnel will match and forward the packet according to their

tunnel table. When the packet reaches the end of the tunnel, S3 removes the label from

the packet and matches the packet against its path table again, in order to determine if

the packet needs to be sent to another tunnel. In this example, S3 will swap the label and

redirect the packet to tunnel 2. When the packet reaches its egress switch S4, the label will

be removed and send to the destination HB. The detailed packet forwarding procedures

are shown below:

1 Packet in event is sent to the controller due to there is no matching rule in the path

table.

2 Controller set up the traffic flow on both ends of the tunnel, and S1 switch pushes

label 1 to the packet.

3 The packet with label 1 will hit the tunnel table which is already set up by the

16

controller.

4 The packet will transmit among the core switches (only S2 in this case) with the

label.

5 In order to change switch, the label will be swapped in S3.

6 New label 2 will be pushed to the packet.

7 The label 2 will hit the tunnel rule in S3 tunnel table.

8 When the packet comes to S4, it will pop the label.

9 The packet will be sent to the HB.

Note that for simplicity, in the above description, we assume the traffic flow exist in

host-to-host level, not socket-to-socket. Nonetheless, our design and system are flexible

and can support socket-level forwarding.

5.2.2 Dynamic Adjustment

If a new switch joins the system, a switch state change event will be sent to the controller.

If the switches is a core switch, which means that the state change will not affect the cur-

rent traffic immediately and we will leave the problems to the STF for better optimization.

Thus, the controller will trigger the static algorithm to find tunnels. On the other hand,

if the switch is an edge switch, and it’s highly possible that there will be traffic requests

on the switch. The same state change event will then be sent to the dynamic module to

construct the temporary tunnels among the others switches. The dynamic tunnel finder

will try to find tunnels without affecting the others in-used tunnels. However, the tunnel

will still be further optimized by static algorithm periodically.

17

Chapter 6

Tunnel Table Construction

In this chapter, we will introduce the proposed tunnel finder algorithm. For constructing

tunnels among the given network topology, we first design Static Tunnel Finder (STF) to

find disjoint set on each switches pair. Then, the tunnel is picked up in shortest order from

the disjoint set. To avoid overlong end-to-end tunnels, which leads to inefficiency, stretch

factor [8] is used to constraint the maximum length.

6.1 Problem Formulation

Although shortest path routing can reduce the transmission time of propagation delay,

however, we design our system to be more reliable and flexible. In this algorithm, our

goal is to identify the largest number of mutually disjoint tunnels between each switch

pairs, so that we can maximize the available bandwidth among each switch pairs.

In this problem we model the underlying network as a directed graph. Let N be the

set of nodes in the network, which corresponds to switches in the network. Let P be the

set of all the possible non-trival path without repeating node between each switch pair

(Notice that the word path, which is a way from source to destination, is different from

the Path, which compose of tunnels with QoS guarantee). Let L be the set of all the links

in the network. For each p ∈ P , we also define BottleNeckp = min(c(l)), where c(l)

stands for the capacity of each l, 1 ≤ l ≤ L. Define Sn,p and Dn,p, which are the source

node and the destination mode in each P respectively. Define yp, which act as a decision

variable. We define the decision variable B(p) for 1 ≤ p ≤ P , which corresponds to

the allocated bandwidth for each p in P , the range of B(p) is [0,max(c(l))], 1 ≤ l ≤ L.

We also define mp,l (1 ≤ p ≤ P , 1 ≤ l ≤ L), where mp,l = 1 if path p includes link l;

mp,l = 0 otherwise. Since we are not using shortest path as our routing scheme, we define

k, which is the maximum length of selected tunnels between two nodes, to avoid overlong

tunnel in the system. The k is determine by the stretch factor, which is the quotient of hop

18

Table 6.1: Symbol Table used in Tunnel Finder Problem
Symbol DefinitionDefinition
N Set of nodes in the network

P Set of all the possible non-trival path

L,Li Set of all the links in the network

BottleNeckp The bottle capacity of path t

c(l) capacity of link l

Sn,p The source node of path p

Dn,p The destination node of path p

B(p) The allocated bandwidth for path p

mp,l Whether path p includes link l

k Maximum length of selected tunnels

number of selected tunnel and the hop number of shortest path of the given switch pair.

stretch factor =
∑L
l=1mp,l

shortest path hop
, ∀p ∈ P

Thus, the k can be written as: k = stretch factor × shortest path hop. With the

defined notations, we write the tunnel finder problem as:

maximize
P∑

p=1

B(p) (6.1a)

s.t.B(p)mp,l ≤
c(l)

(
∑P

p′=1 yp′mp′,l)
,∀l ∈ L,∀p ∈ P ; (6.1b)

B(p) ≤ BottleNeckp,∀p ∈ P ; (6.1c)
L∑

l=1

B(p)mt,l ≤ k, ∀p ∈ P (6.1d)

The objective function in Eq. (6.1a) aims to find the maximum bandwidth of each

paths. If the bandwidth of a path equals to zeros, which means that the path is not selected

by the solver. The constraint in Eq. (6.1b), each link is shared by several paths ,and thus

the path capacity is less than or equal to the minimum link share among the links used

by the path. In Eq. (6.1c), we define the bottle neck of each path, p, by the minimal

link capacity among all the links in the given topology. In Eq. (6.1d), we make sure the

selected tunnels will never exceed the constraint k to gain better efficiency.

6.2 Static Tunnel Finder algorithm

To solve the disjoint set problem, we extend D. Torrieri’s heuristic solution [50]. Al-

gorithm 1 shows the pseudo code of modified fast-disjoint tunnel finder. The algorithm

19

Algorithm 1 Static Tunnel Finder (STF)
1: Src,Dst //source node and destination node

2: SP hop = shortest path(Src,Dst)

3: k //Path limit which constrained by Eq. 6.1

4: Adj matrix //adjacency matrix of the given topology

5: function DISJOINTFINDER(Src,Dst,Adj matrix)

6: Prefix tunnels //List of sub-tunnel list from source node

7: Suffix tunnels //List of sub-tunnel list to destination node

8: length //current target length

9: disjoint ans //Final ans which is the optimal set

10: while length ≤ k do
11: Break if neither Prefix tunnels nor Suffix tunnels are not able to increase

12: //skip the checking until shortest path reach

13: if length ≥ SP hop then //Check interaction

14: for each sub tunnelA in Prefix tunnels do
15: for each sub tunnelB in Suffix tunnels do
16: if sub tunnelA[-1] == sub tunnelB[0] then
17: disjoint ans.append(sub tunnelA + sub tunnelB)

18: Adj matrix(sub tunnelA[−1], n) = 0,∀n ∈ N
19: Adj matrix(n, sub tunnelB[0]) = 0, ∀n ∈ N
20: //Need to prepare Prefix tunnels for next round

21: if ceil((length + 1)/2) > (length + 1)/2 then
22: for each sub tunnel in Prefix tunnels do
23: if Adj matrix(sub tunnel[−1], n), ∀n ∈ N then
24: sub tunnel.append(n)

25: //Need to prepare Suffix tunnels for next round

26: if floor((length + 1)/2) == (length + 1)/2 then
27: for each sub tunnel in Suffix tunnels do
28: if Adj matrix(n, sub tunnel[−1]), ∀n ∈ N then
29: sub tunnel.prepend(n)

30: return(disjoint ans)

20

first compute the shortest hop SP hop using breadth first search. The algorithm al-

ways find all the possible tunnels start from source node and tunnels go to the destina-

tion node (store the tunnels info in Prefix tunnels or Suffix tunnels respectively).

In each loop, either Prefix tunnels or Suffix tunnels is increased by 1. If the last

nodes in Prefix tunnels intersect with the first nodes of Suffix tunnels, which means

that there is a tunnel from source to destination, the two sub-tunnels will be merged and

appended to the disjoint set. To avoid choosing the same node, the all the adjacency in-

formation about the interaction node will be wiped out. The process continue until there

is no more node can be added to the Prefix tunnels or Suffix tunnels, or length limit

exceeds.

6.3 Analysis

The optimal disjoint path algorithm is similar to multi-commodity flow problem [13],

which is a NP-complete problem. We add some constraints to solve this problem in

polynomial time. However, the maximal length constraint will not affected our system,

but brings efficiency to the network.

Algorithm 1 runs in polynomial time.
Proof. We first adopt BFS to find the shorest path hop, which generally takes O(N +

L), where O(1) < O(L) < O(N2) [48]. The main loop runs in O(k) rounds. In each

rounds, we may need to update the sub-tunnels list (line 21-29), which runs in O(TN)

and T is the numbers of sub-tunnels. For checking the intersection of each sub-tunnels

(line 14-19), it takes O(T 2N) to find the intersection. Therefore, the complexity of al-

gorithm 1 can be expressed as O(KT 2N). Since 0 < T < N and k is a constant value,

O(KT 2N) ∼= O(N3).

21

Chapter 7

Path Table Construction

On the other hands, we design another two algorithms to assign traffic. The first one

is Static Path Assigner (SPA) which balance the load to minimize the link utilization.

To handle new traffic requests and unforeseen events, we design an Dynamic Path As-

signer (DPA) to determine the paths for the traffic in real time (see chap: 8).

7.1 Problem Formulation

We consider a network with S sites denoted as Si (1 ≤ i ≤ S) connected by an underlying

network. We model our system as a directed graph with S nodes and T edges, each vertex

denotes a site in the network and each edge denotes selected tunnels between two sites.

Each tunnel is written as Ti (1 ≤ i ≤ T) with σi and δi are the source and the destination of

selected tunnel i. Note that these S sites are connected by T directed site-to-site tunnels,

each tunnel in here are composited of one or several link(s).

There are L links between switches in the system, each link is written as Li (1 ≤ i ≤
L), and c(l) (1 ≤ l ≤ L) denotes the capacity of the link. Each traffic flow is defined as

Fi (1 ≤ i ≤ F). θi and ηi denote the switches connected to the source and the destination

of traffic flow i. bi denotes the bandwidth requirement of traffic flow i.

In this problem, we consider the problem of (i) optimizing the utilization of tunnels

between sites (ii) balancing the load among tunnels. That is, given a set of matching traffic

flows with tunnels so that we can minimize the maximum link utilization. Noted that in

this problem we consider the situation after the admission control, that is to say we only

consider the case that all the requirement of the traffics can be fulfilled by the tunnels we

have in the system in some way.
We define 0-1 decision variable xt,f for 1 ≤ t ≤ T , 1 ≤ f ≤ F , where xt,f = 1 if

tunnel t from Si to Sj is on the path of this traffic flow; xt,f = 0 otherwise. We define a
0-1 variable as mt,l (1 ≤ l ≤ L, 1 ≤ t ≤ T), if tunnel t contains link l , mt,l = 1; mt,l = 0
otherwise. We also define another 0-1 variable as wi,j,t for 1 ≤ i, j ≤ S, 1 ≤ t ≤ T ,
where wi,j,t = 1 if σt = i and δt = j; wi,j,t = 0 otherwise. We define S ′(x) as S - {Sx},

22

Table 7.1: Symbol used in Path Assigner Problem
Symbol DefinitionDefinition
Ti Set of selected non-trival tunnel with label i

S,Si Network sites

mp,l Whether path p includes link l

L,Li Set of all the links in the network

c(l) capacity of link l

Fi Traffic flow

σi The source of selected tunnel i

δi The destination of selected tunnel i

θi Ingress switch of traffic flow i

ηi Egress switch of traffic flow i

bi bandwidth requirement of traffic flow i

Cl Current used bandwidth of link l

xt,f Whether tunnel t is on the Path of Traffic f

mt,l Whether selected t includes link l

wi,j,t Whether Si and Sj are the source node and end node of tunnel t

S ′(x) The set consists of all the vertices in S other than x

R Limitation of Binary Search

23

that is the set consists of all the vertices in S other than x. With the notations defined
above, we mathematically formulate the traffic assigner problem as:

minimize max
1≤l≤L

T∑
t=1

F∑
f=1

xt,fmt,lbf/c(l) (7.1a)

s.t.
∑

n∈S′(θf)

∑
t∈T

wθf ,n,txt,f −
∑

n∈S′(θf)

∑
t∈T

wn,θf ,txt,f = 1,∀f ∈ F ; (7.1b)

∑
n∈S′(e)

∑
t∈T

we,n,txt,f −
∑

n∈S′(e)

∑
t∈T

wn,e,txt,f = 0,

∀e ∈ S′(θf , ηf), ∀f ∈ F ; (7.1c)∑
n∈S′(ηf)

∑
t∈T

wηf ,n,txt,f −
∑

n∈S′(ηf)

∑
t∈T

wn,ηf ,txt,f = −1, ∀f ∈ F ; (7.1d)

T∑
t=1

F∑
f=1

xt,fmt,lbf ≤ c(l) ∀l ∈ L; (7.1e)

xt,f ∈ {0, 1}, 1 ≤ t ≤ T, 1 ≤ f ≤ F. (7.1f)

mt,l ∈ {0, 1}, 1 ≤ l ≤ L, 1 ≤ t ≤ T. (7.1g)

wi,j,t ∈ {0, 1}, 1 ≤ i, j ≤ S, 1 ≤ t ≤ T. (7.1h)

The objective function in Eq. (7.1a) aims to minimize the maximal tunnel utilization in

our system. Eq. (7.1b) ensures that the traffic flow never returns to the source of the

traffic. Eq. (7.1c) ensures that none of the intermediate sites consume the traffic flow.

Eq. (7.1d) ensures that the traffic flow enters the destination and never leaves it. The

constraint in Eq. (7.1e) ensures that the traffic over a link does not exceed its capacity.

Since our decision variable xi,j,f is a 0-1 decision variable, it can only take value either 0

or 1 according to Eq. (7.1f). In the formulation in Eq. (7.1), we only take the bandwidth

as a QoS metric (Eq. (7.1e)), but administrators can add more QoS metrics, such as packet

loss rate and latency.

7.2 Static Path Assigner Algorithm

To solve this problem, we develop a static algorithm called SPA (Static Path Assigner).

Using the same objective function as in Sec. 7.1, our algorithm leverage constrained BFS,

along with Binary Search. To maintain a balanced load among links in the system, we de-

fine a value α denoting the maximal allowed link utilization. A flow f can only flow

through a tunnel t if every link l on that tunnel satisfies the constraint: Cl + bf ≤
c(l)α, ∀l, where Cl denotes the currently used bandwidth. The constrained BFS guar-

antees:
∑T

t=1

∑F
f=1 xt,fmt,lbf ≤ c(l)α, ∀l ∈ L.

Our algorithm leverage binary search to find best α value based on the current avail-

able bandwidth. Algorithm 2 gives the pseudo code of our algorithm. We define a variable

R as the limitation on the rounds of binary search. We also define L and U as the lower

and upper bounds of binary search.

24

Algorithm 2 Static Traffic Assigner (SPA).
1: Upper = 1.0, Lower = 0 //The upper/lower bounds

2: Final Assignment = φ //The final answer

3: Sort traffic flow F by bandwidth bf in desc. order

4: α = φ // Utilization

5: while Upper − Lower < threshold do
6: α′ = (Upper + Lower)/2

7: CurrentAssignment = φ

8: for each flow f in F do
9: path = ConstrainedBFS(θf , ηf , bf , α

′)

10: if path = φ then
11: A′ ← φ

12: Break

13: else
14: update available link bandwidth

15: CurrentAssignment.append(path)

16: if CurrentAssignment = φ then
17: Lower = α′

18: else
19: Upper = α′

20: α = α′

21: A← A′

22: if α is not defined, return no answer

25

7.3 Analysis

The SPA algorithm runs in polynomial time.
Proof. We first sort the flow in the system in line 3, which has a complexity of

O(F log (F)). For the binary search loop starting from line 4, it is executed for R times.

The time complexity can be expressed as O(R) where O(1) ≤ O(R) ≤ O(log (S)) [48].

In each iteration it take turns to find a path using ConstrainedBFS for each flow f ∈
F . Each ConstrainedBFS in line 8 takes at most O(S + L), where O(1) < O(L) <

O(S2) [48]. Each update of link bandwidth in line 13 takes O(L). Combined with the

iteration mentioned above, these two complexity will be O(FR(S + L)) and O(FRL)

with O(FR(S+L)) being the dominant one. In the worest case, if the nodes is fully con-

nected and the limitation is infinite, O(FR(S+L)) can be expressed as O(F log (S)S2).

This yield the lemma.

26

Chapter 8

Error Resilience and Network
Dynamics

8.1 Switch Dynamic

To handle unexpected failure situations, we also design a Dynamic Tunnel Finder (DTF)

algorithm to find an additional tunnels in real time. We want to find an alternative tunnel

to reconstruct the affected tunnels under the condition that the impact of building new

tunnels should be minimized. More precisely, our goal is to find a tunnel with lowest

utilization so that the load balancing module can still utilize the tunnels.

! !

Set of start nodes Set of end nodes

Node S Node E

Figure 8.1: Scenario of Dynamic Tunnel Finder.

Figure 8.1 gives an example of a failure event. The failed switch splits the tunnels

into two sub-tunnels. Our algorithm aims to find a tunnel which connects to the two sub-

tunnels. Node S and Node E is two hypothetical nodes which connect to all the switches

among the two split tunnels respectively. To recover two switches set, we want to find

a node-to-node shortest tunnel from node S to node E. Once we find the tunnel, we can

create a temporal tunnels (which will further be optimized by STF) by the overlapping

nodes of the tunnel and original sub-tunnels. To solve this problem, we adopt modified

Dijkistra algorithm to find a tunnel with lowest utilization to avoid affecting QoS of other

working tunnels.

27

8.2 Dynamic Tunnel Finder Algorithm

Algorithm 3 gives the pseudo code for solving the tunnel problem. Once the tunnel has

been found, we can determine the best conjunction points to put a temporal tunnel. Rather

than tagging a new label on the temporal tunnel, we will first try to build the tunnel with

existed tunnels. The same algorithm is used to find tunnels when new edge switches con-

nect to the network. In this case, instead of finding shortest path between two hypothetical

nodes, we directly find tunnels

If the given algorithm fail to find a alternative tunnel or the tunnel increase the utiliza-

tion dramatically, the static tunnel finder will be triggered immediately to recomputed the

tunnels.

Algorithm 3 Dynamic Tunnel Finder (DTF)
1: M //the map of the given topology

2: S //set of start nodes

3: E //set of end nodes

4: U //utilization of each links as edge weight

5: function DISJOINTFINDER(S,E,U)

6: s //A node which connect to all the nodes in S

7: e //A node which connect to all the nodes in E

8: for each v in M do
9: Util[v]←∞

10: Prev[v]← φ

11: queue(v)

12: Util[s] = 0

13: while queue 6= φ do
14: n← node with lowest utilization

15: dequeue(n)

16: for each neighbor v of n do
17: if lower utilization is found then
18: Util[v] = Util[v] + utilization(n,v)

19: Prev[v] = n

20: if n is e then
21: path = convertToPath(Prev)

22: return path

23: break

Lemma 1. DTF will assign the traffic in polynomial time.

Proof. In line 9, the point to point shortest path will have the time complexityO(NP).

Notice that we adopt point-to-point algorithm, the run time is expected to lower than

28

shortest path algorithm since the complexity of the both methods are the sane, Thus,

combining with loop, the time complexity will be dominated by O(TNP).

8.3 Path Dynamic

To handle the new flow requests and the nodes failure, we develop a dynamic algorithm

to assign the traffic flow in polynomial time. Before we introduce our solution, we first

discuss all the possible events: i) A new traffic request is arrived at the ingress switch.

ii) Switch fails unexpectedly. If a new traffic request trigger the proactive switch module,

controller will first check it’s traffic table and response with the assigned label directly. If

the controller doesn’t have the record of the request, DPA will be trigger to assign tunnels.

For failure events, if the failed switch is a edge switch, we will ignore the flows since

the the flows can not be recovered by controller. Thus, we simply remove these flows from

our system. On the other hand, if the failed switch is central switch. Controller will first

recover the traffic using backup tunnels. Since we choose tunnels from disjoint set, the

traffic usually can be recovered by backup tunnels. If the backup tunnels failed to support

the affected flows, dynamic traffic assigner will allocate those flows by calculating an

alternative path. In this problem, our goal is also trying to find a possible path in real

time. Our algorithm will allocate the flows according to its bandwidth requirement, the

demanding flow will be first assigned. To perform path selecting in real time, we adopt

BFS to find a path among possible tunnels.

8.4 Dynamic Path Assigner algorithm

Algorithm 4 Dynamic Path Assigner (DPA)
1: F //set of flows need to be assign

2: Sort traffic flow F by bandwidth bf in desc. order

3: while F is not empty do
4: A← φ //The final answer

5: A = ConstrainedBFS(θf , ηf , bf)

6: if A = φ then
7: //Needs to reallocate traffic

8: TriggerSPA();

9: else
10: // Update utilization

11: UpdateF low(); //OpenFlow commands

29

Lemma 2. DPA will assign the traffic in polynomial time.

Proof. We first sort the flow in line 3,which has a complexity of O(F log (F)). In

line 7, ConstrainedBFS takes at most O((S + L)L). Thus, the overall complexity will be

dominated by O(F (S + L)L).

30

Chapter 9

Implementation

9.1 RYU Controller

Ryu SDN Framework

Built-in Applications

Ryu Libraries

OpenFlow Protocols IP Network Protocols

TE with

Label

Switching

Segment

Routing

Logic

Ryu

Default

Logic

User-defined

Applications …

OpenFlow Switches

Figure 9.1: Ryu Framework

The proposed routing controller is implemented in SDN controller on top of Ryu [41].

31

Ryu is an SDN framework written in Python. In Ryu, control logics are designed as Ryu

applications. Ryu provides the component-based framework with well-defined API, and

developers are able to combine/modify the existing components or add new components

to build up their own applications. Ryu supports various protocols, both SDN protocols

and IP network protocols for managing network infrastructures includes OpenFlow, Net-

conf and OF-config. Fig. 9.1 shows the overview of Ryu SDN framework. There are

some built-in applications and libraries in Ryu such as tenant isolation, L2 switch, OF

REST, topology discovery, firewall, etc. For OpenFlow protocols, Ryu supports fully 1.0

to 1.5 and Nicira Extensions.

9.2 Mininet Emulator

Mininet [30] is a network emulator system, and it creates network nodes and links inside

a single Linux Kernel. Mininet virtualizes the network topology into a system, which has

the real host (you can control host via ssh), switches with real network interfaces, network

link with configurable parameters. Inside the emulator, packets are processed with the

same behavior as the real world system. To achieve the precise measurement requirement

of the proposed system, we have patched mininet to support multiple interfaces between

two nodes.

9.3 Algorithms and Utilizations

We have implemented a proof-of-concept testbed that uses mininet 2.1.0 and Ryu 3.17.

The Ryu controller uses OpenFlow 1.3 protocols which fully support MPLS actions, to

communicate with the underlying OpenVSwitches 2.4.0 [35]. To verify our the feasibility

of proposed system, a few Ryu applications, and network tools are implemented. In each

control applications for Ryu, we implement several handler functions defined by Ryu

framework, including (i) switch connection (EventOFPStateChange) (ii) switch fea-

ture reply (EventOFPSwitchFeature), and (iii) packet-in hander (EventOFPPacketIn),

etc.

9.3.1 Traffic Engineering with Label switching

In the proposed Proactive Switch application, we implement all the 4 algorithms. When

EventOFPStateChange event send to the controller, the controller will proactively

install all the path information which computed by STF inside each switch. We assume

the required bandwidth of each traffic requests is known by the controller. Thus, the

32

SPA will allocate the tunnel resources for each edge switches pair into a table for better

resource distribution. When the packet in events are sent to the controller, the controller

will first check the above traffic table inside the controller and program the edge switches.

If the table miss the request, DPA will be activated and assign a possible path to the

request.

9.3.2 Segment Routing Control Logic

We also implement the segment routing from Cisco Pathman-SR [36]. The pathman-

sr is an application for another SDN controller, OpenDaylight [34], and we transplant

the segment routing logic from OpenDaylight to Ryu. We implement the Interior Gate-

way Protocol (IGP) for collecting path information and adopting shortest path algorithm

for MPLS tunnel creation. To compare our system with segment routing, we also adopt

MPLS label for indicating each network segments and proactively install these segment

information inside all the networks nodes as we did in our proposed system. For com-

paring the traffic engineering features, different from the pathman-sr which leaves the

path selection to the network administrators, we design a feasible path assigned logic to

select the segments for each traffic requests. The network administrator always chooses

a path with the lowest utilization, and the total length of each assigned path will also be

constraint by the stretch factor for fair and precise comparison.

9.3.3 Ryu Default Control Logic

To demonstrate the ability of proposed system, we adopt RYU Default Controller as one

of our baselines. The Ryu default applications run the spanning tree protocol to prevent

cycle and response the packet in event with corresponding routing results. Different from

TEL and SRI, the routing decisions are determined without considering traffic engineering

when the traffic reaches the switches inside the network.

9.3.4 Network Monitor

To monitor our network, we have implemented a network monitor for mininet and provide

REST API to RYU. The monitor records the state of each switch created by mininet, and

the information includes flow tables and link utilization. We also record the packet infor-

mation with tcpdump for analysis. To perform traffic engineering in real time, the monitor

is able to use REST API to communicate with Ryu controller, so that the controller is able

to make load balancing decision in real time. However, in this work, the network monitor

are designed for simulated switches. To perform load balancing in runtime, a dedicated

network monitor is required.

33

Chapter 10

Evaluations

10.1 Setup

We conduct our experiments on modified Mininet 2.1.0p and Open vSwitch 2.5.1. We

build our control applications (see 9.3) on Ryu 4.11, and we record the statistic using our

network monitor.

10.1.1 Topology Generator

Fig. 10.1 is an example of the topology using in our experiments. We use topology gen-

erator BRITE [29] to generate the topologies for our experiments. BRITE generates the

network topologies at router- and AS-level, reflects the interconnectivity characteristics

of the real world internetwork. We use the top-down model in BRITE to generate hier-

archical topology, and the latency between switches is proportional to the distance. We

add 16 ms delay as the mean value of the latency between all the switches, and 20 ms as

a constant value of the latency between controller and switches. For the capacity of the

links, we set the bandwidth to be a constant equal to 1 Gbps.

To ensure the connection between each node, we also add links between each isolated

nodes in the network. The host is randomly connected to the edge switches in each the

topologies. To demonstrate our system in different scales, we generate the topology from

8 nodes to 32 nodes. For each size, we also randomly generates five different topologies,

because the results not only affected by sizes and also the connection complexity of each

node. We defined our topology as Toponi , n is the total switches nodes in the topology, i

is the topology index. The detail information can be found in Table 10.1.

34

Table 10.1: Topology Information

Topo Edge sw. Core sw. Links Host

Topo81 4 4 25 16

Topo82 4 4 25 16

Topo83 4 4 25 16

Topo84 4 4 26 16

Topo85 4 4 25 16

Topo161 7 9 54 28

Topo162 7 9 55 28

Topo163 7 9 55 28

Topo164 7 9 55 28

Topo165 7 9 55 28

Topo241 9 15 86 36

Topo242 9 15 86 36

Topo243 9 15 85 36

Topo244 9 15 87 36

Topo245 9 15 84 36

Topo321 12 20 108 48

Topo322 12 20 105 48

Topo323 12 20 105 48

Topo324 12 20 104 48

Topo325 12 20 101 48

Table 10.2: Bandwidth Range of each topologies

Topo Min. Bandwidth Max. Bandwidth Avg. Request/sec Bandwidth (Mbps/#req.)

Topo8i 75 Mbps 100 Mbps 22.33 53.56

Topo16i 10 Mbps 100 Mbps 27.33 103.49

Topo24i 40 Mbps 100 Mbps 50.33 73.70

Topo32i 10 Mbps 100 Mbps 67.00 64.77

35

S1

S2

S3

S8

S7
S6

S5

S4

S9

..
.

H4-H6

..
.H19-H21

..
.

..
.

..
.

..
.

..
.

H1-H3

H7-H9

H10-H12

H13-H15

H16-H18

Figure 10.1: An example of simplified topology generated with BRITE.

10.1.2 Traffic Generator

We also implemented a traffic generator, which generates traffic flows with the arrival

rate of Poisson distribution with λA minutes. The duration of each generated traffic flow

follows the Poisson distribution with λD minutes. The destination of each traffic flow is

randomly selected from all the hosts in other ASes that follows the uniform distribution.

In table 10.2, we fix random seeds so that all the configurations (total bandwidth, the

number of request and the source and destination hosts) are the same in the same size.

The bandwidth requirement of each traffic flow is selected between 10Mbps and bmax

100Mbps that follows the uniform distribution. For comparing our system with others,

we use different bandwidth configurations for each topology size. The configuration is

shown in table 10.2. We then use Iperf [19] to generate the real traffic in Mininet.

10.2 Scenario and Metrics

With the control applications and configuration mentioned above, we conduct our exper-

iments on a linux machine with Intel i7-4790 CPU and 16 Gb ram. The duration of our

experiment is set to 3 minutes. We run each experiment for 10 rounds and report the

aggregate results. We consider three controlling logics and shows the results respectively:

• TEL Our proposed Traffic Engineering system with Label switching.

• SRI Segment Routing with IGP.

36

• RSR Ryu Spanning tree Routing.

In TEL and SRI, we also set the same stretch factor to avoid overlong paths, and the

tunnel information is proactively installed inside the network. To perform error resilience

in the proposed TEL, we find at most two possible tunnels from the disjoint set (k = 2)

for each switch pairs.

We consider the following performance metrics to validate our system:

• Link utilization. The traffic load of links in the system.

• Flow initialization delay. The time it takes for the first packet of a traffic flow from

source to destination.

• Running time. The runtime of our proposed algorithms.

10.3 Results

10.3.1 Link Utilization

Fig. 10.2 shows the link distributions in 24 nodes topologies. Two observations can be

seen in the results: 1) Since our proposed TEL balances the traffic by overloading the traf-

fic to lower utilization links, TEL use more links compare to SRI and RSR. 2) There are

a few links which utilization exceeds 50% compare to the other two control logics which

consume all the capacity of the links. Fig. 10.3 also indicates the maximum utilization

along with the time, TEL achieves the lowest maximum utilization since TEL always

tries to optimal the link utilization. The bounces utilization in every minute is due to the

new traffic requests. The controller will inject the control messages after each packet in

requests, however, this issues can be minimized by separating the control signals to a

dedicated line.

However, it’s possible that more links are used by TEL compared to SRI and RSR

since TEL uses the non-shortest paths to determine the routing, and offload the traffic to

idle links. Fig. 10.4(a) shows that TEL reduce the max link utilization with 55% com-

pared to SRI, and 54.9% compared to RSR. In fig. 10.4(b), The average link utilization is

increased by 32% compared to SRI, and compared to RSR 9.5% respectively. However,

fig. 10.4(d) shows that TEL balances the links efficiently, and 90% of the links have the

utilization lower than 50%. The congestion can be prevented by TEL which gains better

using experience on the client sides. We also show the comparison under light traffic in

fig. 10.4(c), TEL also achieves the lowest utilization compare the others control logics.

Our algorithms outperforms SRI, RSR in terms of load balancing.

37

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

1
)

TEL

(a)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

1
)

SRI

(b)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

1
)

RSR

(c)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

2
)

TEL

(d)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

2
)

SRI

(e)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

2
)

RSR

(f)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

3
)

TEL

(g)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

3
)

SRI

(h)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

3
)

RSR

(i)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

4
)

TEL

(j)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

4
)

SRI

(k)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

4
)

RSR

(l)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

5
)

TEL

(m)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

5
)

SRI

(n)

Link Utilization (%)
0 20 40 60 80 100

N
u
m
b
er

of
L
in
k
s

0

20

40

60

80

100
Util. Distrubation (Topo

24

5
)

RSR

(o)

Figure 10.2: Utilization distribution of T 24
i

38

Time (s)
20 40 60 80 100 120 140 160 180

M
ax

.
L
in
k
U
ti
li
za
ti
on

(%
)

0

20

40

60

80

100

Max Link Utilization (Topo
24

1
)

TEL
SRI
RSR

(a)

Time (s)
20 40 60 80 100 120 140 160 180

M
ax

.
L
in
k
U
ti
li
za
ti
on

(%
)

0

20

40

60

80

100

Max Link Utilization (Topo
24

2
)

TEL
SRI
RSR

(b)

Time (s)
20 40 60 80 100 120 140 160 180

M
ax

.
L
in
k
U
ti
li
za
ti
on

(%
)

0

20

40

60

80

100

Max Link Utilization (Topo
24

3
)

TEL
SRI
RSR

(c)

Time (s)
20 40 60 80 100 120 140 160 180

M
ax

.
L
in
k
U
ti
li
za
ti
on

(%
)

0

20

40

60

80

100

Max Link Utilization (Topo
24

4
)

TEL
SRI
RSR

(d)

Time (s)
20 40 60 80 100 120 140 160 180

M
ax

.
L
in
k
U
ti
li
za
ti
on

(%
)

0

20

40

60

80

100

Max Link Utilization (Topo
24

5
)

TEL
SRI
RSR

(e)

Figure 10.3: Max Utilization of T 24
i

39

Time (s)
20 40 60 80 100 120 140 160 180

M
ax

.
L
in
k
U
ti
li
za
ti
on

(%
)

0

20

40

60

80

100

Max Link Utilization (Topo
24

3
)

TEL
SRI
RSR

(a)

Time (s)
20 40 60 80 100 120 140 160 180

L
in
k
U
ti
li
za
ti
on

(%
)

0

10

20

30

40

50
Avg. Link Utilization (Topo

24

3
)

TEL
SRI
RSR

(b)

Time (s)
20 40 60 80 100 120 140 160 180

M
ax

.
L
in
k
U
ti
li
za
ti
on

(%
)

0

20

40

60

80

100

Max Link Utilization (Topo
24

3
)

TEL
SRI
RSR

(c)

Link Utilization

0 20 40 60 80 100

C
D
F

0

0.2

0.4

0.6

0.8

1
Link Utilization CDF (Topo

24

3
)

TEL

SRI

RSR

(d)

Figure 10.4: Link Usage in Topo243 (a) Max utilization along time (Heavy traffic), (b)

Avg. utilization along time (Heavy traffic), (c) Max utilization along time (Light traffic),

(d) Utilization CDF (Heavy traffic)

40

Topo8 Topo16 Topo24 Topo32

U
ti
li
za
ti
on

(%
)

0

20

40

60

80

100
Maximum Link Utilization

TEL SRI RSR

Figure 10.5: Max Link Utilization.

41

Topo8 Topo16 Topo24 Topo32

U
ti
li
za
ti
on

(%
)

0

20

40

60

80

100
Average Link Utilization

TEL SRI RSR

Figure 10.6: Average Link Utilization.

42

We conduct the experiments on different size of topologies, fig. 10.5 shows that TEL

is able to reduce the utilization in different topologies. TEL always achieves the lowest

maximum link utilization. On the other hand, in fig 10.6, the increased average utilization

is negligible since the average link utilizations of TEL are close to the other solutions.

Therefore, we can conclude that TEL is bandwidth-aware since fewer links are neither

useless nor congestion as shown in the results. TEL leverages the proposed load balanc-

ing algorithms to optimal the network resources distribution to achieve load balancing.

The max utilizations are reduced by TEL which decreases the possibility of network con-

gestion.

10.3.2 Delay

We plot the CDF of normalized initial delay of T 24
i , which is the average delay time per

hop in Fig. 10.7. TEL are able to transmit the packet within 100 ms. However, we find

that around 20% of the requests do not receive the first packets within 100 ms if we using

SRI, and around 50% if we using RSR. Compare to SRI which also use pre-built tunnels

to minimize the delay, TEL achieves better results since SRI takes more time on segments

selection and TEL adopt load balancing algorithm to allocate the traffic which avoids the

congestion. For SRI and RSR control logics, some requests were queued in the switches,

which leads to significantly higher initial delay: up to 2000 ms.

Shorter initialization delay. We give the average number of initial delay of all the

topologies in Fig. 10.8 and the normalized delay in 10.9. TEL achieves the lowest initial

delay compared to SRI and SRS. Our solution reduces the initial delay since we setup

all pre-build tunnels in the system and our algorithms also avoid congestion. In average,

93.22% of initial delay is reduced by TEL compared to RSR. Since SRI also use the

pre-defined paths to route packets, 39.02% of initial delay is reduced.

The initialization delay is increased with the number of hops along the traffic path.

However, in fig. 10.8, we observe that the delay of Topo32 is shorter than Topo24 in both

SRI and RSR. The reason may due to that more traffic is either lost or congestion in the

network. Fig. 10.10 gives the CDF comparison of T 24
4 and T 32

4 , we can see that more

links are overloading in T 24
4 compare to the links in T 32

4 (9% of links are overloading in

T 24
4 , 3-5% in others). The same issue doesn’t appear in TEL since TEL always avoid

congestion in networks.

10.3.3 Running Time and Flow Entries

Running Time
We show the running time of tunnel finder for TEL and SRI in fig. 10.11. The run-

43

Delay (ms)
0 1000 2000 3000 4000

C
D
F

0

0.2

0.4

0.6

0.8

1
Normalized Initial Delay CDF (Topo

24

1
)

TEL
SRI
RSR

(a)

Delay (ms)
0 1000 2000 3000 4000

C
D
F

0

0.2

0.4

0.6

0.8

1
Normalized Initial Delay CDF (Topo

24

2
)

TEL
SRI
RSR

(b)

Delay (ms)
0 1000 2000 3000 4000

C
D
F

0

0.2

0.4

0.6

0.8

1
Normalized Initial Delay CDF (Topo

24

3
)

TEL
SRI
RSR

(c)

Delay (ms)
0 1000 2000 3000 4000

C
D
F

0

0.2

0.4

0.6

0.8

1
Normalized Initial Delay CDF (Topo

24

4
)

TEL
SRI
RSR

(d)

Delay (ms)
0 1000 2000 3000 4000

C
D
F

0

0.2

0.4

0.6

0.8

1
Normalized Initial Delay CDF (Topo

24

5
)

TEL
SRI
RSR

(e)

Figure 10.7: Initialization Delay CDF of T 24
i

44

Topo8 Topo16 Topo24 Topo32

D
el
ay

(m
s)

0

1000

2000

3000

4000

5000

6000
Initialization Delay

TEL SRI RSR

Figure 10.8: First Packet Initialization Delay

45

Topo8 Topo16 Topo24 Topo32

D
el
ay

(m
s)

0

500

1000

1500
Normalized Initialization Delay

TEL SRI RSR

Figure 10.9: Normalized First Packet Delay

Link Utilization

0 20 40 60 80 100

C
D
F

0

0.2

0.4

0.6

0.8

1
Link Utilization CDF (Topo

24

4
)

TEL

SRI

RSR

(a)

Link Utilization

0 20 40 60 80 100

C
D
F

0

0.2

0.4

0.6

0.8

1
Link Utilization CDF (Topo

32

4
)

TEL

SRI

RSR

(b)

Figure 10.10: Link utilization CDF of T 24
4 and T 32

4

46

Topo8 Topo16 Topo24 Topo32

R
u
n
ti
m
e
(m

s)

0

100

200

300

400
Tunnel Finding Runtime

TEL SRI

Figure 10.11: Runtime of Tunnel Finder Algorithm.

47

ning time is directly proportional to the size of topologies. SRI has lower running time

than TEL since SRI used shortest path approach and didn’t take utilization into consid-

eration while building the tunnels. However, compared to the optimal solution solver

(CPLEX [9]) which takes 7 hours to solve the 16 nodes topology, our proposed heuristic

algorithm is still able to scale up.

Topo8 Topo16 Topo24 Topo32

N
u
m
b
e
r
o
f
F
lo
w

E
n
t
r
ie
s

0

50

100

150

200

250

300
Flow entries per switches

TEL SRI RSR

Figure 10.12: Number of flow entries per switches.

Flow entries

Fig. 10.12 gives the average entries numbers of three different approaches. Since both

TEL and SRI are the proactive approach, the flow entries for each path are installed in

each switch before any traffic. Thus, both TEL and SRI used more entries than RSR. TEL

consumes most flow entries on the backup path which aims for providing more rapidly

error recovery features. However, the numbers of the backup paths can be fully adjusted

by the network administrator.

The number of flows is increasing along with the nodes number of topologies since

we have to compute paths between any of two switches pair. In fig. 10.13 shows the

activated flow entries which used to forward the packets in each experiment. The number

of activated number is mainly dominated by the traffic request number and it is irrelevant

48

Topo8 Topo16 Topo24 Topo32

N
u
m
b
er

o
f
F
lo
w

E
n
tr
ie
s

0

50

100

150

200

250

300

350

400
Activated Entries

Backup Entries

Figure 10.13: Number of activated flow entries per switches.

49

to the sizes of topologies. However, we can still observe the usage of flow entries is

low. Therefore, the proactive path can be wisely decreased, and how to minimize the path

without affecting the routing performance is in our future works.

10.3.4 Error Resilience

(a)

(b)

(c)

Figure 10.14: Scenarios of Error resilience.

To demonstrate the error resilience feature, we use the topologies in fig. 10.14 to

demonstrate the TEL handling three unexpected failures. We assume there are only two

50

Times (sec)
50 100 150

N
u
m
b
er

of
P
ac
ke
ts

0

2000

4000

6000

8000

10000

12000

14000
Error Resilience

s2-s5
s2-s4
s1-s3
s4 down
s2 down
s1 down

Figure 10.15: Traffic recovered by alternative links. (a) S4 down (b) S2 down (c) S1 down

51

hosts in the network, and H1 are sending packets to H2 through the path: S1 → S2 →
S4 → S6. We demonstrate the three events to verify the error resilience of our system:

1) In fig. 10.14(a), the S4 fails unexpectedly, and the controller is able to find a path from

the backup paths. 2) In fig. 10.14(b), the S2 downs, and there is no backup path. The path

is computed by DPA. 3) In fig. 10.14(c), if the edge switch failed, and our system is not

going to handle these flows.

Fig. 10.15 shows the links usage of the above scenario, we pick up three non-overlapping

links which stand for the three different paths respectively. At 43 sec., the S4 fails to for-

ward the packets, and controller is able to recover the traffic by paths: S1 → S2 and

S2 → S5 → S6. We can observe that the traffic is redirected from link S2−S4 to S2−S5.

At 85 sec., another switch S2 down, however, controller fails to recover the path using

backup path. The DPA is triggered and the traffic is reassign to paths: S1 → S3 and

S3 → S5 → S6. We can verify the results on the same figure, which shows the traffic is

transferred to link S1 − S3. Finally, edge switch S1 is down at 122 sec, and the controller

will not need to handle the traffic since packets are not able to reach the host anyway. We

simply store the status and resume the traffic once S1 is back online.

52

Chapter 11

Related Work

11.1 Proactive Flow Set-up

In this section, we survey the studies on traffic engineering in both legacy and software-

defined networks. First of all, we want to go through the proactive flow set-up, since our

proposed tunnel is very similar to proactive flow setup in the previous work [26, 31, 54].

In [31], Lin et al. proposed to use a centralized Border Gateway Protocol (BGP)

implemented in the controller to communicate with legacy Autonomous Systems (AS).

The controller then uses the information from BGP update message to proactively set up

flows in the SDN AS. Their system is complementary to our system in the sense that

we can use their system to communicate with ISPs that run the legacy network in their

system. Moshref et al. proposed FAST [31], which is a new abstraction to design switches

with different state machines. Instead of installing flow entries to switches, the controller

installs state machine that represents different applications (e.g., stateful firewall, TCP

connection) to switches. The state machine will proactively install flow entries to switches

when necessary. Curtis et al. proposed DevoFlow [10], which leverages the wildcard in

OpenFlow protocol to deal with small traffic flows without involving the controller. The

switch only sends the packet-in event to the controller when a flow grows beyond a certain

threshold

11.2 Traffic Engineering using MPLS in legacy IP Net-

works

There is a rich body of literature about load balancing and other traffic engineering appli-

cations in the domain of legacy IP networks [11, 22, 42, 51]. While these works achieve

excellent performance in simulation using either real-world network or synthetic traces,

53

due to the complexity, only a handful of these work get the chance to be implemented [55]

or even evaluated in real world network [23].

In this paper, we leverage the spirit of MPLS to achieve load balance in SDNs and

we also want to mention previous work of achieving load balance in IP networks. [46]

gives an overview of the benefit using MPLS for traffic engineering. For example, MPLS

integrating traffic from multiple paths to a single tunnel and a simple routing scheme make

MPLS easy to deploy on the routers and also increase the scalability. In their opinion,

MPLS is an effective and manageable solution for traffic engineering. [52] implements

MPLS in Internet Service Providers’ (ISP) networks and they also discuss the general

MPLS issues in IP network. In their experiments, MPLS enhances the performance and

also provide QoS in the ISP networks. SecondNet [15] built a virtual data center network

using port-switching based source routing. They leverage MPLS to implement the source

routing, using the stack of MPLS labels consumed by each hop. Their approach achieves

high bandwidth utilization and also provide bandwidth guaranteed.

11.3 Traffic Engineering in SDNs

There are several traffic engineering related studies [5, 17, 21] in SDNs. In [5], Benson

et al. leverage the predictable nature of data center network to mitigate the impact of

congestion caused by unpredictable traffic. This work focuses on Intra-DC traffic engi-

neering. Both [17] and [21] consider the traffic engineering of inter-DC WAN. These

two work achieve high link utilization by dynamically setting up tunnels according to the

demands of services that are assumed to be known, controllable, or predictable. Our work

considers the case of the multi-site enterprise networks, which can not make powerful as-

sumptions on data plane traffic. In this work, we design and implement a system to load

balance unpredictable traffic through pre-build tunnels (to avoid data path setup delay).

11.4 Label Switching

SDNs were designed to lower the reduce the complexity of switch and separate the control

flow from the switches to the central controller. M. Casado et al. proposed Fabric [7], they

persuade using MPLS label to simplify the core network. In their proposed system, for-

warding mechanisms are handled by the ingress/egress switches and the SDN controller.

Leveraging MPLS simplify the forwarding procedure and also allow core network and

edge devices evolve independently.

Reducing Initialization time with the pre-built tunnels is one of the features of our

proposed system, M. Soliman et al. also proposed another approach to solving this prob-

54

lem in SDN [44]. They proposed implementing source routed in SDN. Each packet is

assigned dedicated path by added a sequence of port number, which stand for the destina-

tion port number of switches along the path. on the packet header and the switches inside

the core network will directly forward the packet according to the port. Their solution

lowers the convergence time by 47%, which is pretty close to our solution. However,

source routed doesn’t follow the spirit of SDNs and even the latest OpenFlow protocols

don’t contain the source routed. Furthermore, they also need to program the switches to

let core network switches recognized the special header, which will bring up deployment

concerns and additional overhead.

Similar to our proposed architecture, the SR is also based on the MPLS, but using its

own SPRING protocol which is also able to simplify the implementation compared to the

traditional MPLS. The emerging SR architecture is proposed by C. Filsfils et al. from

Cisco [14]. SR is respected to perform traffic engineering, service function chaining, and

network resiliency. A. Sgambelluri et al. validated the SR architecture in the SDNs [43].

In their implementation, the controller running SR protocols is designed and configures

the label on the edge nodes to forward the packets. M. Lee and J. Sheu proposed a routing

algorithm based on the SR in SDNs [25], which consider the link bandwidth and criticality

to optimize the network throughput. However, they only proposed an algorithm based on

the bellmen-ford algorithm. In their work, they didn’t consider how to create paths in the

real network systems, and the algorithm fails to cover the resiliency issues.

J. Bellessa proposed a label switching in a hybrid-OpeFlow network environment [4].

They also strive for releasing the memory from the intensive flow rules and improve the

flexibility in SDN, especially when the scalability is large enough. In their system, they

proposed using the layer-2 address as the MPLS label and each packet’s MAC destination

field was swapped with the label. The flow was transmitted according to these labels.

However, using MAC address as label cause additional overhead while the flow matching

procedures. Furthermore, they leveraged the MAC address table in commodity switches

to store the flow rules to support non-SDN switches, but the SDN controller can not as-

sign the rules into these tables which lead to additional administration issues and exploit

the flexibility of label switching. In their implementation, they used legacy MPLS proto-

cols to build an MPLS network which is also unnecessary, because in SDN network, the

controller has a global view of the network topology and we can wisely define the MPLS

paths and also conduct traffic engineering to achieve better performance.

55

Chapter 12

Conclusion

12.1 Migrating Purposed System on Segment Routing

We purposed our idea of using label switching in SDN in [18]. SR has recently pur-

posed and been standardized in a very fast speed (2016). Although our proposed system

shares similar concepts with SR, our proposed system is more general than SR. There

are still some issues in SR which can be solved in proposed system. For example, the

tunnel finding problem (or path selection problem) is seldom discussing in previous SR

works [12,25]. In this work, we had purposed unique solutions which can also be adopted

in SR. The idea of decoupling flow entries and the proposed optimizing algorithm can

also work with SR protocols to brings flexibility and reliability to solve the tunnel finding

problem.

SR has drawn a lot of attention in SDNs, and Cisco is also trying to promote the

SR [1]. Therefore, we also working on migrating the current label switching to the source

routing version and brings the Traffic Engineering abilities to SR.

12.2 Future Work

In this section, we discuss several future works in our system. In Tunnel Finder, the routes

for each pre-built tunnel need to be carefully decided, how to find the best tunnels is an

important question. The limitation of flow entry in switches has always been a concern,

how to pick sufficient tunnels to minimize the number of flow entry used in our system

without affecting the routing flexibility is also an interesting question. In Traffic Assigner,

we assume that controller knows the required bandwidth of each traffic request, however,

it is not the case in the real world system. Determine if the system has the resource to

accept the incoming traffic flow is an important question.

As mentioned in sec. 3.2, our solution adopting MPLS to route the packets which

56

allow us to scale the system to non-SDN AS. One possible solution is adopting Border

Gateway Protocol (BGP) to interconnect with the SDN Autonomous System (AS) and

non-SDN AS [27]. The routing decisions are still made by centralize controllers and use

the MPLS protocols to flood the routing information.

12.3 Conclusion

In this work, we demonstrate the potential of using label-switching in SDNs to efficiently

perform traffic engineering and drastically reduce the initialization overhead experienced

by the first packet. We replace the packeting-based routing with label switching so that

the load balancing and error resilience can be easily performed by our controller. Further-

more, decoupling the flow tables into tunnel table and path table brings the flexibility to

the system, the latency sensitive traffic assigning task can be processed individually.

We mathematically formulate one model for each table and solve them by proposed

heuristic algorithm. For better interactivity and latency issues, we also implemented a

dynamically algorithms for tunnel construction and admission control to provide quick

response online. We show in our experiments that using our proposed system could reduce

maximal link utilization over SRI between 20% and 46%, and RSR between 30% and

50%. The normalized initialization delay is reduced by 39.02% and 93.22% compared to

the SRI and RSR.

57

Bibliography

[1] Segment Routing. http://www.segment-routing.net/.

[2] Transition scenarios for 3gpp networks. RFC 3574, 2003. https://tools.

ietf.org/html/rfc3574.

[3] D. Awduche. MPLS and traffic engineering in IP networks. IEEE Communications

Magazine, 37(12):42–47, 1999.

[4] J. BELLESSA. Implementing MPLS with label switching in software-defined net-

works. Master’s thesis, University of Illinois at Urbana-Champaign, 2015.

[5] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: fine grained traffic engi-

neering for data centers. In Proceedings of ACM Conference on emerging Network-

ing EXperiments and Technologies (CoNEXT’11). ACM, 2011.

[6] S. Bidkar, A. Gumaste, and A. Somani. A scalable framework for segment routing

in service provider networks: The omnipresent Ethernet approach. In In Proc. of

IEEE 15th International Conference on High Performance Switching and Routing

(HPSR), pages 76–83, 2014.

[7] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian. Fabric: a retrospective

on evolving SDN. In Proceedings of the first workshop on Hot topics in software

defined networks, pages 85–90. ACM, 2012.

[8] L. Cowen. Compact routing with minimum stretch. Journal of Algorithms,

38(1):170–183, 2001.

[9] IBM ILOG CPLEX optimizer. http://www-01.ibm.com/software/

integration/optimization/cplex-optimizer/.

[10] A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee. De-

voFlow: scaling flow management for high-performance networks. In Proc. of ACM

Conference on Applications, technologies, architectures, and protocols for computer

communications (SIGCOMM’11), 2011.

58

[11] E. Danna, S. Mandal, and A. Singh. A practical algorithm for balancing the max-min

fairness and throughput objectives in traffic engineering. In Proc of IEEE Interna-

tional Conference on Computer Communications (INFOCOM’12), 2012.

[12] L. Davoli, L. Veltri, P. Ventre, G. Siracusano, and S. Salsano. Traffic engineering

with segment routing: Sdn-based architectural design and open source implemen-

tation. In In Proc. of Fourth European Workshop on Software Defined Networks,

pages 111–112, 2015.

[13] S. Even, A. Itai, and A. Shamir. On the complexity of time table and multi-

commodity flow problems. In Foundations of Computer Science, 1975., 16th Annual

Symposium on, pages 184–193. IEEE, 1975.

[14] C. Filsfils, N. Nainar, C. Pignataro, J. Cardona, and P. Francois. The segment rout-

ing architecture. In in prec. of 2015 IEEE Global Communications Conference

(GLOBECOM), pages 1–6. IEEE, 2015.

[15] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang. Second-

net: a data center network virtualization architecture with bandwidth guarantees. In

Proceedings of the 6th International COnference, page 15. ACM, 2010.

[16] S. Hanks, T. Li, D. Farinacci, and P. Traina. Generic routing encapsulation (GRE).

RFC 1701, 1994.

[17] C. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wat-

tenhofer. Achieving high utilization with software-driven WAN. In Proc. of ACM

Conference on Applications, technologies, architectures, and protocols for computer

communications (SIGCOMM’13). ACM, 2013.

[18] Y. Huang, M. Lee, T. Fan-Chiang, X. Huang, and C. Hsu. Minimizing flow initial-

ization latency in software defined networks. In in Proc. of Network Operations and

Management Symposium (APNOMS), 2015, pages 303–308. IEEE, 2015.

[19] Iperf home page. https://iperf.fr/.

[20] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-

derer, J. Zhou, M. Zhu, et al. B4: Experience with a globally-deployed software de-

fined wan. ACM SIGCOMM Computer Communication Review, 43(4):3–14, 2013.

[21] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-

derer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: Experience

with a globally-deployed software defined WAN. In Proc. of ACM Conference on

59

Applications, technologies, architectures, and protocols for computer communica-

tions (SIGCOMM’13). ACM, 2013.

[22] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope: re-

sponsive yet stable traffic engineering. In Proc. of ACM Conference on Appli-

cations, technologies, architectures, and protocols for computer communications

(SIGCOMM’05), 2005.

[23] S. Kandula, I. Menache, R. Schwartz, and S. Babbula. Calendaring for wide area

networks. In Proc. of ACM Conference on Applications, technologies, architectures,

and protocols for computer communications (SIGCOMM’14), 2014.

[24] C. Kozierok. The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols

Reference. No Starch Press, 1th edition, 2005.

[25] M. Lee and J. Sheu. An efficient routing algorithm based on segment routing in

software-defined networking. Computer Networks, 103:44–55, 2016.

[26] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-Shabibi,

K. Wang, and J. Bi. Seamless interworking of SDN and IP. In Proc. of ACM

SIGCOMM’13, 2013.

[27] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-Shabibi,

K. Wang, and J. Bi. Seamless interworking of sdn and ip. In ACM SIGCOMM

computer communication review, volume 43, pages 475–476. ACM, 2013.

[28] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner. OpenFlow: enabling innovation in campus networks. In

Proc. of ACM SIGCOMM’08, 2008.

[29] A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite: An approach to universal topol-

ogy generation. In Modeling, Analysis and Simulation of Computer and Telecom-

munication Systems, 2001. Proceedings. Ninth International Symposium on, pages

346–353. IEEE, 2001.

[30] Mininet home page. http://mininet.org/.

[31] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan. Flow-level state

transition as a new switch primitive for SDN. In Proc. of ACM Workshop on Hot

Topics in Software Defined Networking (HotSDN’14), 2014.

[32] RFC3031: Multiprotocol Label Switching Architecture. https://tools.

ietf.org/html/rfc3031#section-3.1.

60

[33] Open Networking Foundation. https://www.opennetworking.org/.

[34] OpenDaylight home page. http://http://www.opendaylight.org/.

[35] Open vSwitch home page. http://openvswitch.org/.

[36] OpenDaylight Pathman SR App from cisco. https://github.com/

CiscoDevNet/pathman-sr.

[37] C. Perkins. IP encapsulation within IP. RFC 2003, 1996.

[38] P. Pham and S. Perreau. Increasing the network performance using multi-path rout-

ing mechanism with load balance. Ad Hoc Networks, 2(4):433–459, 2004.

[39] R. Prabagaran and J. Evans. Experiences with class of service (CoS) translations

in IP/MPLS networks. In Proc. of IEEE Conference on Local Computer Networks

(LCN’01), 2001.

[40] V. Rawat, R. Tio, S. Nanji, and R. Verma. Layer two tunneling protocol (L2TP) over

frame relay. RFC 3070, 2001.

[41] Ryu SDN Framework Home Page. http://osrg.github.io/ryu/.

[42] C. Scoglio, T. Anjali, J. C. de Oliveira, I. Akyildiz, and G. Uhl. TEAM: A traffic

engineering automated manager for DiffServ-based MPLS networks. IEEE Com-

munications Magazine, 42(10):134–145, 2004.

[43] A. Sgambelluri, A. Giorgetti, F. Cugini, G. Bruno, F. Lazzeri, and P. Castoldi.

First demonstration of sdn-based segment routing in multi-layer networks. In Opti-

cal Fiber Communication Conference, pages Th1A–5. Optical Society of America,

2015.

[44] M. Soliman, B. Nandy, T. Lambadaris, and P. Ashwood-Smith. Source routed for-

warding with software defined control, considerations and implications. In in Pro-

ceedings of the 2012 ACM conference on CoNEXT student workshop, pages 43–44.

ACM, 2012.

[45] Source packet routing in networking (SPRING), 2016. https://tools.ietf.

org/html/rfc7855.

[46] G. Swallow. MPLS advantages for traffic engineering. IEEE Communications Mag-

azine, 37(12):54–57, 1999.

61

[47] G. Swallow. MPLS advantages for traffic engineering. IEEE communications mag-

azine, 37(12):54–57, 1999.

[48] R. R. T. Cormen, C. Leiserson and C. Stein. Introduction to Algorithms. The MIT

Press, 3th edition, 2009.

[49] RFC2702: Requirements for Traffic Engineering Over MPLS. https://tools.

ietf.org/html/rfc2702#section-2.0.

[50] D. Torrieri. Algorithms for finding an optimal set of short disjoint paths in a com-

munication network. IEEE Transactions on Communications, 40(11):1698–1702,

1992.

[51] H. Wang, H. Xe, L. Qiu, Y. Yang, Y. Zhang, and A. Greenberg. Cope: Traf-

fic engineering in dynamic networks. In Proc. of ACM Conference on Appli-

cations, technologies, architectures, and protocols for computer communications

(SIGCOMM’06), 2006.

[52] X. Xiao, A. Hannan, B. Bailey, and L. Ni. Traffic engineering with MPLS in the

internet. IEEE Network Magazine, 14(2):28–33, 2000.

[53] X. Xiao and L. Ni. Internet QoS: a big picture. IEEE Network Magazine, 13(2):8–

18, 1999.

[54] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali. On scalability of Software-Defined

Networking. IEEE Communications Magazine, 51(2):136–141, 2013.

[55] M. Zhu, J. Li, Y. Liu, D. Li, and J. Wu. TED: Inter-domain traffic engineering

via deflection. In Proc of IEEE International Symposium on Quality of Service

(IWQoS’14), 2014.

62

