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Abstract

Crowdsensing is a popular paradigm that outsources senudtyhedia
tasks to mobile workers. In the crowdsensing systems, wsnerform di-
verse tasks such as detecting sensory data and takinggsidiyremploying
(using) their smartphones, which are equipped with seraitgmultimedia
functions. We provide a crowdsensing system to efficiendiegate sen-
sory/multimedia tasks to mobile workers, and we focus ortigp@mporal
tasks that must be conducted at specific locations and tinaeh Borker
supplies his/her destination with a deadline to our systedd®mes not mind
taking detour paths to maximize profits. Once workers sutirait profiles to
our system, they will receive detourpaths, which consigasks in particu-
lar orders. Workers execute tasks by following their defmths and receive
maximal profits. We formulate this problem as a detour plagmroblem,
and the advanced problem.is - mutlti-users detour planningl@no. The dif-
ference between these two problems is that the detour plgmmoblem just
considers a worker at a'time.In:this thesis, we develop audgti@anning
algorithm (DP) and a multi-users detour planning algori{tMiDP) to solve
problems respectively. We simulate the extensive traneliscenarios and
demonstrate the effectiveness and efficiency of our algost Developing a
working prototype on Android OS-and addressing other chglieg aspects
of the considered systems are our future tasks.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, smartphone users are ubiquitous, and the sroagplnave equipped with a
lot of sensors, such as the GPS reader, the:-microphone,ttexa@aand etc. The prospect
of smartphones has huge potential; if we can-make good ubesé sensors. For exam-
ple, if smartphone users have free time, they can use thartghones to perform some
tasks. Smartphone users can take a picture or read sensamy dlaeir leisure time, but
they may not volunteer to do these tasks. Therefore, we rmed scentives [33] (e.g.
scores, and rewards) to encourage smartphone users tibatntheir efforts. Due to
the possibility of smartphones, we propose thebile crowdsensing (MCS) systenn
generalcrowdsensing7] systems collect sensory data from crowds, which are@albe
network-based, and they analyze sensory data to under$taraircumstance of a spe-
cific area. Thus, it utilizes mobile sensing (e.g. oppostiaisensing, and participatory
sensing) and human-in-the-loop for gathering a large nummbsensory data. Moreover,
crowdsensing is regarded as the extensiar@ivdsourcingbecause of the concept that it
assigns outsourcing tasks to uncertain crowds. Crowdsayrefers to a distributed prob-
lem solving paradigm. In the crowdsourcing systeaguestersubmit theirequestsnto
the platform. Requesters can be companies, organizatiomsdigiduals, and requests
include various requests (e.g., shooting photos, recgrditieos, or collecting sensory
data). These requests are traditionally performed by eygpka However, now these re-
quests are outsourced to public crowds who are willing tolete them for incentives,
also known asewards Furthermore, each request is associated witleadlineand an
amount of reward. People who accept the requests are reteres thevorkers Work-
ers earn rewards only if they complete the correspondingestg before their deadlines.
In our MCS system, we hire mobile smartphone users as workecguse we focus on
spatial-temporal requests, which must be performed aifsplcations and time. In this
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thesis, we discuss the main problesietour planning problenon the MCS system. The
problem is related to therienteering problemNext, we will introduce the orienteering
problem in sec. 1.2, and then we discuss the research prsitesec. 1.3.

1.2 Orienteering Problem

We introduce the orienteering problem in the following. §problem comes from a pop-
ular outdoor sport which is similar to treasure hunt. In #pert, each player is assigned to
an identical map. There are notations of rewards (e.g., jpanascores) on the map. The
goal of the game is to collect as many rewards as possible eiAawthe time is limited.
The players need to achieve the goal before the game is ovem Wby are finding their
own path, they need to take the distance and the value of Weede into consideration.
In short, the orienteering problem is to plan the path, aedabrkers follow their paths
to collect maximal rewards during the game. The path plapisiimportant in this game,
and there are already many literatures discussing how e $lois problem [28]. We are
inspired by the orienteering problem. In-the following $&t$, we describe our research
problems in detail.

1.3 Research Problems

1.3.1 Detour Planning Problem

We study a new class of crowdsensing systems for seriouscapphs of multimedia
content gathering [16]. In the considered systems, usémisgeospatial- and temporal-
dependent requests to collect multimedia content, suchreosreadings from sparsely-
deployed nodes, recorded videos of specific events, andpldsightseeing sites. The
corresponding users could be utility companies who neeétteeve smart-meter read-
ings, police departments who need to collect evidence afindl scenes, people who
need photos of memorable locations for pleasure, and sol@workers are smartphone
users who are heading to their firddstinationsbut have some time to spare. The work-
ers would not mind to take some detour paths for small rewavbgh can be monetary,
credits, or points, as long as they can reach the destirsatidime.

The considered systems are unique because the requestsa@cmted with deadlines
and geospatial locations, while it takes some time for thekers to travel from the lo-
cation of one request to that of another one. Moreover, iegistystems require workers
to competeagainst others for requests. We argue that the approach effactive for our
crowdsensing systems because: (i) while workers have btrteke detour paths, they are
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not capable coming up with the best detour paths and (ii) taoyncompetitions may lead
to excessive duplicated completion and wasted efforts;hvtiegrades the overall system
performance in the end.

In this thesis, we designdetour planning algorithm (DPfor our crowdsensing sys-
tem. The proposed algorithm runs on a server, and generadesoar path for each
worker. The resulting detour path is optimal in the sense ithaximizes his/her re-
ceived profits, while guaranteeing the worker can reacthéisdestination in time. We
implement the proposed algorithm in a simulator, and comjtarperformance against
several baseline algorithms. We also crawl the locatiaces@f a large number of photos
from Flickr [6], and use the traces to drive the simulatore imulation results show that
our algorithm: (i) outperforms the other algorithms by ud@9% improvement, (ii) runs
efficiently and always terminates in 82 ms, and (iii) is ablsd¢ale to large problems.

1.3.2 Multi-users Detour Planning Problem

In the previous section, we only considersingle user at a.tifowever, there are usually
multiple users exist simultaneously.in'a real system. Urllempremise, we use DP to
compute detour paths. We may find.that some users go far awasrfiarm the requests
which are closer to other users, and a small number of usees/eethe most requests.
The case leads to the result that-most workers are-idle, sontilag leave the system.
Though some workers can receive optimal ‘paths from thetseestiDP, it degrades the
performance of the overall system.. Thus, we propose to make gse of all users

and reduce the traveling cost of each user. fraeeling costdnclude the time the user
spent and the fuel he/she consumed to move to the targetedaties. We refer to this

problem asmulti-users detour planning problemwvhich is more complicated than the
detour planning problem.

In this system, we consider how to balance the burden amottgiawsers. Further-
more, we consider thbattery levelof the smartphones and tlaecuracyof the smart-
phone sensors [11, 15]. We choose the feasible workers vehalde to perform requests
within the constraint of his/her battery level and satisfg tjuality requirement of re-
quests.

We design amulti-users detour planning algorithm (MDRY solve this problem.
MDP is a heuristic algorithm which can compute the solutiomeal-time. In MDP, we
use autility function to figure out which user is the best choice to a request, and the
MDP return results in real-time. Because users cannot wag io a practical system,
they may leave the system due to lack of the chances to eaardewThe simulation
results show that MDP: (i) achieves at mast times the profit of DP and.9 times the
profit of the baseline, (ii) saves up 50% energy compared to DP, (iii)) achieves almost
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100% completed requests ratio if workers are sufficient, and riivs in the real-time
(< 21s).

1.4 Contributions of Thesis
The proposed MCS system makes the following contributions:

1. We address the detour planning problem on the MCS systemdd&iour planning
problem is more general than the orienteering problem witk tvindow (OPTW),
because the detour planning problem further considerfetisble spotdraveling
cost energy consumptigmndthe accuracy

2. We formulate the (single-user/multi-users) detour piag problem on the MCS
system. MCS maximizes rewards of the system by computingoaudp#th for each
worker, and it may attract more workers to contribute théares within their avail-
able time. Moreover, each worker could arrive at their esions on time. For the
single-user detour planning problem, we propose detoumpbg algorithm (DP)
to optimally solve this problem, and DP is based on dynanmogg@mming. As for
the multi-users detour planning problem, we propose nusiérs detour planning
algorithm (MDP) to efficiently assign requests to workers.

3. We implement traced-driven simulators to simulate the Mg8em. The evalua-
tion results show that the MCS'system'is suitable to be imphaaketo a practical
system. Our MDP algorithm can achieve near optimal solytzm the running
time is in real time. Thus, MCS well utilizes each worker witle test utility value
and encourages as many workers to participate in our system.

4. We found that the MCS system is also appropriateuftsan computingand the
proposed solutions could help the city planners to solveutban problems. The
city planners can issue his/her requests (e.g. traffic ciimge air pollution, and
noise detection), and workers can help to collect these fdatsustainable urban
futures.



Chapter 2

Related Work

2.1 Crowdsourcing

The crowdsourcing paradigm has been employed in the litexd@bd solve various real-
life problems. Many of these studies leverage smartphooesheir high penetration
rate. For example, Li et al. [14] design a distributed questind answer system, called
SOS, for smartphone users. 'SOS employs crowdsourcing taHe@nswers for the
guestions that can not be addressed by search engineso leasages social networks
to propagate the unanswered ‘questions via:friends’ coiomsct Yan et al. [32] adopt
crowdsourcing to develop an infarmation sharing systerie@¢aCrowdPark. A driver
who will need a parking spot soon-may use his/her smartphmneserve it in advance.
For a driver who is vacating a parking spot, he/she can ndtgyCrowdPark server for
selling the parking spot to incoming drivers. Crowdsourgxagadigm has also appeared
in commercial systems. For example, Roamler [20] allows comgs to define different
tasks for IOS users. The users install an iOS applicatior¢eive and complete tasks
SO as to earn money or points. The Roamler server pushes tagksrs based on their
preferences and locations. Different from our work, the kson [14, 32, 34, 35] and
commercial systems [20] concentrate on building the crowdsng platforms, which
facilitate interactions between the requesters and wsyk®it do noguidethe workers
for more efficient decisions.

Some other crowdsourcing systems guide the workers foetd¢icisions. For exam-
ple, Yuen et al. [36] study the task matching problem in creswdcing. Their system gen-
erates a task list for each worker based on his/her preferamd historical performance,
which helps workers to concentrate on completing taskserdtran searching for ideal
tasks. Different from our work, the problem in [36] is not gpatial-dependent. Boutsis
and Kalogeraki [2,3] propose a real-time task assigningrélgnm, which efficient assigns
tasks to the crowd. The crowd may achieve high quality rest return it in real-time.
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Even they consider the geospatial-dependent tasks, they assign a detour path and
the tasks without time-window. Bassem and Bestavros [1] ¢éegkbeo-temporal Request
Satisfaction (GRS) problem from a game-theoretic perspectind propose a heuristic
algorithm that works as follows. The algorithm derives ahgfabm the starting location
to the final destination using Yen'’s ranking algorithm [1&id chooses the task with the
highest reward on this path. The set up in [1] is quite difiéfeom ours, because they al-
low workers to compete for tasks. In contrast, we believedbardinateddetour planning
for minimizing wasted worker efforts is critical to the oadirsystem performance. More-
over, we take the properties of mobile multimedia into cdesitions while designing the
system. Last, their heuristic algorithm does not give optipaths.

2.2 Crowdsensing

Several studies [4,9, 22, 25, 31, 31] discuss the crowdsgmngith smartphones. Xiao et
al. [31] discuss large-scale mobile crowdsensing systamd,they address the barriers
and make potential solutions:-Sherchan et al. [22] propaosarehitecture for mobile
crowdsensing, and they focus on efficiently.collecting amalyzing mobile sensory data.
Talasila et al. [25] use image processing technigues taatdimobile sensors and in-
crease the reliability of sensed data. Cardone et al. [4]qe®pa geo-social crowdsensing
platform to foster mobile users by their profiles:to sensestheronment of cities. Hasen-
fratz et al. [9] use off-the-shelf sensors:and smartphomegise the air pollution. They
focus on efficient collecting the data, and the differenddas they didn’t discuss how to
guide workers to follow detour paths for maximal profits.

There are some crowdsensing works [5, 12, 23] which focusooation dependent
tasks. He et al. [23] design an approximation algorithm tespil maximal rewards from
location dependent tasks. They also propose a pricing meshdor attracting smart-
phone users. Feng et al. [5] design a mechanism to assigticlockependent tasks to
smartphone users, and the objective is to minimize the eogt, (power consumption)
of smartphones. Jaimes et al. [12] design a mechanism tdigyraelect location-based
workers with a fixed power budget, and their algorithm mazarihe sensing coverage
of the target area. Even they are also dealing with the locatependent tasks, but their
tasks didn’t with time-window. Moreover, they won’t simaitteously consider the reward,
the cost (e.g., energy cost, and traveling cost), and theracy of tasks.



Chapter 3

Detour Planning Problem

3.1 Formulate the Detour Planning Problem

— - 7’\\777/777

Querists | .
Companies Query 7 Croudsensing Platform )
Governments Detour Planning \
Individuals Time Window [L, U] zi‘x\lgorithm - %

Location 3 = ;\)N —

1 i ource
SRR Destination e|| Detour Path
Reward p =

Deadline 7 ||Total Reward

Take
Detour Paths

Workers

()
é Collect Sensor Readings
Destination @ Gather Media Contents

Figure 3.1: The considered detour planning problem. Thasithconcentrates on multi-
media content gathering.

Fig. 3.1 illustrates the considered crowdsensing systemchawconsists of three en-
tities: (i) the platform, (ii) requesters, and (iii) worleer Let N be the number of to-
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tal requests that haven’t been assigned to any workers. Bestcgends a request

(1 < i < N) with a time window|L;, U;], rewardp;, location, and service timg; to
the platform using a web site or via a smartphone applicalitwe requesters can be com-
panies, governments, and individualsr;lfs completed by a worker between timgand
U;, that worker receives rewagd. A worker sends his/her current, source locationbd,
destination locatior, and deadling’ to the crowdsensing platform. Whenever there is a
new worker, the crowdsensing platform computes the detatin’y for the worker using
thedetour planning DP) algorithm proposed in Sec. 3.2. Moreover, a new detatir {3
generated if a worker is late or lost when following the poexaly computed detour path.
The resulting detour path allows the worker to maximizelt@stotal reward, and ensures
the worker to arrive the destination by the specific deadlidpon receiving the detour
path, a worker follows it to complete the individual reqgest

Requesters may submit several types of requests. Fig. 3vissiam representative
types: (i) sensor data collection and (i) media data gatgeExamples of the latter type
include taking a photo of a landmark, which'may be done atipialtiose-by locations
referred to adeasible spots We letz; = 1.(1'< i/< N) be the number of feasible
spots of request;. We let f; be theservice timeof request-;, i.e., the amount of time a
worker has to spend at. To plan the detour paths, we also need to know that travel tim
between any two feasible spots.“Welet, ;. be the travel time from feasible spotof
requestr; to feasible spoy of request-;, and collectively write this distance matrix as
M. Similarly, ¢;, ;, andC represent theostof traveling from a request to another, which
can be attributed to gas cost and car depreciation rate. [ oéimdC are predetermined,
for example, by using Google Map and other online maps a large constant.

Next, we define the decision variables and some intermedatables for the con-
sidered worker assigning problem. We use boolean varidablespresent the patX.
Specifically,z; ; = 1 if the detour path leads a worker moving from request j; and
z;; = 0 otherwise. We also usg to represent the worker’s planned arrival time at the
location of request;. We letu, ; = 1 (1 <1i <n,1 < j < z)if feasible spotj of request
r; is on the detour path; and ; = 0 otherwise.

Inspired by the formulations given in Vansteenwegen et2dl],[we mathematically
formulate our worker assigning problem as:



N-1 N z 7%
max Z[pz - Ci iy Wira U b i j (3.1)
i=1 j=2 a=1 b=1
N N-1
s.t. Zmlj = riny =1 (3.2)
j=2 i=1
N-1 N
> wig=Y m;<1LVk=2 .. N-1 (3.3)
i=1 j=2
N-1 N z 2
Z( mia,jbui,auj,b + fi)«rz‘,j S Tmax (34)
i=1 j=2 a=1 b=1
j=1
Zi Zj
si+ fi + Z Zmia,jbui,auj,b =8 < E(1—2),Vi,j=1,..,N (3.6)
a=1 b=1
si+fi <U,Vi=1,..,.N (3.8)
Ti g, Wi 4 S {0, 1} (39)

The objective function Eq: (3.1).is to maximize the totalecied reward minus travel
cost, which is referred to as profit.. The constraints in EQ®)(8nsure that the path starts
from requestl to requestN. The constraints in Eq. (3.3) make sure that every feasible
spot is visited once. The constraints in Eq. (3.4) ensurethieatotal time of each path
doesn’t exceed the deadline specified by each worker. Th&reamts in Eqg. (3.5) make
sure that only one feasible spot of each request is visitdte cbnstraints in Eq. (3.7)
set the timeline of the path. The constraints in Eqgs. (3.8)(&mM) consider the worker’s
arrival time and service time.

Hardness of our problem. The worker assigning problem iggeneralized/ersion of
the orienteering problenfOP), which computes a path to visit some locations in order t
maximize the profit and arrive at the destination in time. dgal et al. [8] show that OP
problems are NP-hard, and Vansteenwegen et al. [28] prEser@P variations: (i) single
worker, (i) multiple workers, (iii) single worker with tierwindowed requests, and (iv)
multiple workers with time-windowed requests. The first tvariations (without time-
windowed requests) have been well studied in the literatuge, Schilde et al. [21] and
Vansteenwegen et al. [27] propose algorithms to solve sirehd multiple-worker OP
problems without time-windowed requests. To our best kedgé, OP problems with
time-windowed requests have not been throughly studiece thio most recent works
are: Righini and Salani [19] and Montemanni and Gambardéi, [which solve the
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Detour Planning (DP) Algorithm
1: Let o, =< Vy, 0,0,up >, Vo, j € x

2: Let Ozl’l.V = Oé171.VU{U171}; a11.ua =a171.uU{u171 = 1}

3: Enqueueq ; into E //E: vertices to visit

4: while E # () do

5. Dequeueq;, € E

6: //[Extend they; , to a newq;,

7:  for each neighboring; , € x\{i s }1<k<, dO

temp.V = ;.. VU{v;,};  temp.w = o . w+pj-c;, 5, ();

8: Let
temp.e = o z.etm;,  +f;;  tempa = ;. uU{u;, = 1} /lextand the path

o: if temp.e < U; then
10: if temp.w > a;,.w then
11 Let o;, = temp; Enqueueq;, into E
12: Let X* =,

Figure 3.2: Pseudocode of finding the optimal pxth

single- and multiple-worker variations; respectively.

The considered worker assigning problem (Egs. (3.1)-(&%)lose to the OP prob-
lem with single worker and-time“windowed requests. Howgewar crowdsensing prob-
lem has the following unique features:

1. Each request; is associated with a non-trivial service tinfie For example, it may
take a worker 3 minutes to download the sensor readings eraakoto.

2. Each request; may be satisfied from; feasible spotsz; = 1 if the request can
only be performed at a specific location.

3. Relocating a worker from requestto r; imposes nontrivial cost ; on that worker.

Therefore, the existing OP solutions cannot be applied topooblem. We develop a
worker assigning algorithm in Sec. 3.2.

3.2 Detour Planning Algorithm: DP

We develop an optimal algorithm for our detour planning peal Our Detour Plan-
ning (DP) algorithm is inspired by the dynamic programmidgoathm presented in
Righini and Salani [19], but we explicitly take the three uregfeatures (see Sec. 3.1)
into considerations. We let; ; be the state of a potential detour path from source location
s to feasible spoj of requestr;. More specifically, we define; ;=< V, w, e, u >, where
V is the current pathy is the profit,e is the elapse time, and keeps track of the visited

10



Il e

the maximum objective function values known so far. Fig.[@&sents the pseudocode of
our algorithm, which consists of two steps: (i) initialiat and (ii) expansion. In partic-

ular, lines 1-2 initialize alt; ;, and lines 4-11 iteratively extend , to «;,,. The optimal

2,5
detour path is stored in,, ;, which is returned aX* in line 12.

We analyze the efficiency of the proposed DP algorithm below.

Remark 1 The DP algorithm given in Fig. 3.2 has a time complexityOgf N 7)2V%),
where Z is the maximum feasible spots for each request. That is max;<;<n{z}.
This is because the dequeue command at line 5 may optgly’ > (42 states, and
the for-loop starts from line 7 has a complexity@fN Z) as it may check all the states.

Hence, the time complexity of the DP algorithnOi§ N Z2)2V%).

We next briefly explain a possible optimization that can bpliad to the DP algo-
rithm.

Remark 2 The proposed DP algorithm_can be optimized in various ways ekample,
Righini and Salani [19] propose a bidirectional-approach ywhich they use DP algorithm
from both sides, the beginning and the end. Each directitenels the path and stops right
before exceeding the half of the total number of requestsn,Tihe two detour paths are
merged into an optimal detour path.

3.3 Approximation Algorithm: DPA

In previous sections, we present an optimal algorithm DRJ&iour planning problem.
In this section, we propose a (pseudo-)approximation algarDPA, based on DP. The
main difference between them is that the running time of DBpethds on a user selected
parameter € (0,1]. We define a scaling factdr = #x2=, wherep,,,, is the maximal
score among all locations, ard s the total number of locations.

DPA works as follows. First, we scale the scoréo pj, = | %= | for all locationn.
Second, we apply dynamic programming to compute the patntivé highest score. In
particular, we iteratively expand the path from a user'sseuo his/her destination. For
each location, we record multiple subpaths from the source to itself. Wy &eep
the potentialsubpathshat may become part of the optimal paths. We defiotential
subpaths as the subpaths that either reach fewer locatpead less time, or achieve
higher accumulated score, compared to any known subpaths @pon reaching the
destination, we return the best known path
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In the DPA algorithm, largerr’ (larger ¢) leads to more subpaths with the same
score, which in turn allows us to drop more subpaths and tbhieee lower complex-
ity. However, doing so affects the optimality of pakhas well. LetX™* be the optimal
path. We denote the total scoresXfand X* as P(X) and P(X*), and we can derive
P(X) > (1 — ¢)P(X™) (the proof is similar to the one in [13]). This means that DPA
achieves an approximation gap @fwhile highere leads to both lower complexity and
higher approximation gap.

3.4 Evaluations

In this section, we conduct trace-driven simulations toweata the proposed DP algo-

rithm.
Table 3.1: Ontime Ratio (%) of Various Algorithms
City Taipei Vancouver
Algorithm HR | CR{DP{ HR | CR |DP
DeadlineT =1 0 |~0,/100| -0 | O |100
2 4.1(4.1]100} 4.1, 0 |100
4 0 [ 04100/] O | O |100
8 00,9100 0 |4.1/100
16 29:1{58:3/ 100 33.3/41.6/ 100
City Taipei Vancouver
Algorithm HR |CR |DP||HR | CR |DP
No. RequestsV = 5(12.5 8.3 100/ O | O |100
10 O | O |100] O |4.1/100
15 0O (823|100 O | O |100
20 O | O |100] O | O |100
25 0 [4.1]100] O | O |100
3.4.1 Setup

We have developed a simulator for the detour planning pmhlsing C/C++, and run
the simulations on a commodity PC with an AMD 2.6 GHz CPU. Witthe simula-

tor, we have implemented the proposed DP algorithive are not aware of any algo-
rithms solving the considered problem, thus we have alsdeimented four heuristic

IWe thank the authors of [19] for sharing their datasets agarihm implementation with us.
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algorithms, Highest-Reward (HR), Highest-Reward with OnTicoastraints (HROT),
Closest-Request (CR) and Closest-Request with OnTime const(@RIOT), for com-
parisons. The HR algorithm works as follows. It gives redsiegith higher rewards
higher priority, and iteratively extends the detour patth®request with the highest pri-
ority. It stops when adding the next request renders the evarkssing his/her deadline.
The CR algorithm works in a similar way, but gives the closesjuest higher priority.
The HR and CR algorithms mimic human behaviors when no alguaris used to gener-
ate detour paths. We then create the ontime versions (HROTROT) of the algorithms,
which validate the ontime constraint before extending autepath to the next request.
In particular, HROT and CROT do not consider requesinless the worker may travel
from r; to e before timeT'. Hence, HROT and CROT guarantee that workers can reach
their destinations in time.

To drive our simulator, we consider the actual requests dfimedia content gath-
ering, and we collect actual geospatial traces.from Fli6kiags follows. We first collect
the names of 25 attractions from travel' Web'sites.' In pdercTaipei [24] and Vancou-
ver [26] are considered in our evaluations. We then look eddhgitude/latitude of each
attraction, and search for Elickr photos that are -takenagezby longitude/latitude and
are tagged with the attraction’s name. By close-by, we reféiné photos taken within 1
km radius of each attraction..We end.up with having up to 20@fitqgs for each attrac-
tion. We extract the longitudes/latitudes from-individpalotos, and cluster them into a
few feasible spots using hierarchical clustering with @shiold of 500 meters. The mean
longitude/latitude of each cluster is used as the locati@nfeasible spot. The number of
feasible spots for each attraction is between 1 and 31, diemgeon the attraction’s height
and popularity.

Each simulation lasts for 25 hours. We assume the requdkiw fa Poisson arrival
process and we set the average number of requests per hau t&clhch request happens
at a random attraction, with a time window size between 1+6$and a reward between
1-40 U.S. dollars, both follow uniform distributions. Werydhree system parameters
in the simulations.T' € {1,2,4,8,16} is the deadline of arriving at the destination,
N € {5,10,15,20,25} is the number of attractions, aidd € {0,0.06,0.12,0.24,0.48}
dollars per km is the average gas and car depreciation casteM¥ = 8, N = 10, and
C = 0.12 if not otherwise specified. We run each simulation 24 timesl, @eport the
simulation results with 95% confidence intervals whenepgliaable. We consider four
performance metrics: (ipte timeof HR and CR, (ii)ontime ratiq which is the fraction
of workers who reach their destinations in time, (piofit of the resulting detour path,
and (iv)running timeof each algorithm.
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3.4.2 Results

Importance of the DP problem. In Fig. 3.3, We first report sample late time from the HR
and CR algorithms, which mimic human behavior. This figurea¢ythat the HR and CR
algorithms lead to up to almost 10 hrs of average late timés iSlsignificant considering
that the deadline of arriving at the destinations is as e®ithr. Long late time will drive
the potential workers away from the crowdsensing systenesn&¥t present the ontime
ratio of HR, CR, and DP algorithms in Table 3.1. This table cleahlows the benefit of
the DP algorithm: the computed detour paths are always entkig. 3.3 and Table 3.1
depict the importance of the considered DP problem, as huwoamputed detour paths
(mimicked by HR and CR) lead to late arrivals at the destinati@ince the HR and CR
algorithms do not meet the basic requirement of the DP pnoplee no longer consider
them in the rest of this paper.

Optimized profits. Fig. 3.4 presents the profits of different algorithms undeying
deadlines. This figure reveals that the DP. algorithm alwaygpeyforms the HROT and
CROQOT algorithms. Moreover, theperformance gain of the DBrélgm over the other two
algorithms increases with longer-deadlines. In particwéh 7" = 16, the DP algorithm
almost doubles the profits, comparedto the other two alyost

Efficiency. Fig. 3.5 plots the running time of the considered algorithkfve observe
that the heuristic algorithms finish-in no’time; and the DRatgm takes about 6 ms to
terminate in the worst case, whichishowsiits efficiency.

Scalability of the DP algorithm. We presentithe simulation results with diverse num-
bers of requests in Figs. 3.6 and 3.7, for resulting profitsramning time, respectively.
These two figures demonstrate that the DP algorithm scalasge numbers of requests
and feasible spots quite well. In Taipeli, the average nurabfasible spots per-request
is 1.96 and the maximal number of feasible spots per-reqaedi. In Vancouver, the
average and maximal numbers of feasible spots per-reque6t48 and 31, respectively.
Fig. 3.6 reveals that the DP algorithm outperforms all ottdlgorithms under all consid-
ered numbers of requests. Fig. 3.7 depicts that the DP #igoterminates much slower
in Vancouver (Fig. 3.7(b)) than in Taipei (Fig. 3.7(a)): w82 ms running time is ob-
served in Vancouver. This difference can be explained byabethat the attractions in
Vancouver have more feasible spots (162 in total), comptareide attractions in Taipei
(49 in total), as reported above. We conclude that the DPristhgo does scale ta62
feasible spots, yet runs k1 82 ms, which essentially is in real-time.

Implication of cost. Fig. 3.8 reports the sample resulting profits from the athors
with different travel cost. This figure reveals that, when ther-km cost is lower, the
proposed DP algorithm results in higher profits. Moreoves,DP algorithm outperforms
the heuristic algorithms under all considered travel costs
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DPA is Efficient. Fig. 3.9(a) presents the profit with different number of tomas.
We observe that DPA with = 0.8 achieves almost optimal reward (DP) in every number
of locations, and DPA witlk = 0.2 slightly deviates from DP and the reward is more
closer in larger number of locations. Moreover, Fig. 3.¥ws that, compared to DP,
DPA with e = 0.2 achieves 2X speed up, and DPA with= 0.8 even achieves 3X speed
up.

Tradeoff Complexity and Optimality. Fig. 3.9 demonstrates that the DPA algorithm
successfully allows the users to tradeoff complexity antthuglity. Because users can let
¢ be smaller to achieve the almost optimal reward (Fig. 3)9¢ag better solution also
consumes more running time for computing the result (Fig(3).

3.5 Discussion

We are actively developing a complete crowdsensing systemdltimedia content gath-
ering. The following challenges arise when designing sugeaspatial- and temporal-
dependent system.

1. The systems should producéeasibledetour path for each new worker. A detour
path is feasible if and only if the worker can reach his/hestidation in time.

2. The systems should campute the detourjpaths to maximézevérall productivity
in the format of the total worker profit.

3. The systems should simultaneously. compute multiplesybercause we must make
a good use of all users.

4. The systems should concerns the energy consumption asdrsagccuracy when
assign requests to users.

We address the first two challenges so far. The remaining hatlenges, as well as other
practical concerns, are we discussed them in the next seckarthermore, we name
the more complicated version of detour planning problem alitusers detour planning
problem, and it will solve the four challenges.
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Chapter 4

Multi-users Detour Planning Problem

4.1 Formulate the Multi-users Detour Planning Problem

We regard the multiple detour planning problem as a more tioatpd version of the
detour planning problem. We use almost variables whichrafeic.3.1, and we add/re-
define some variables to fit the more ‘complicated version.ufbize worker, we leb,,
andd,, be the start location and end location of workerand the battery level of worker
w is g,. We reuse boolean variable§, but it represents multiple paths now. More
specifically,z,, ; ; = 1 if the detour path instructs:the’ workerto move from query to j;
andz,,; ; = 0 otherwise. For the requests, we-must satisfy the qualitf each request
i, and each requestconsumes energy. a() is-the accuracy model for evaluating how
many workers to achieve required quality of each request.

We formulate the multiple detour planning problem of maximg the overall re-
wards, and it is derived from the formulation of the detoanpling problem in Sec. 3.1.

N-1 N zi  Aj
max Z[pz - Z Cig gy Wi,aj b Tuw i j (4.1)
i=1 j=2 a=1 b=1
w N w N
Y Y =Y i =1 (4.2)
w=1 j=1,j'=0y w=1i=1,il=d,,
N-1 N
> Tuik =Y Turg <algp),Vw =1, WVk=2 ., N-1 (4.3)
i=1 j=2
N—-1 N Zi Zj
Z(Z Z My jy WiaWip + [i)Twij < Tw,Yw =1, W (4.4)
i=1 j=2 a=1 b=1
Us 5 S 1,\V/l: 1,...,N (45)
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S; =+ fz —f- ZZm%jbui’aujvb — Sj S M(]_ — [Ewﬂ"]‘),VZ’,j = ]_, ...,N,‘v’w = 1, ,W

a=1 b=1

(4.6)
Tu,igs iy € {0, 1} (4.9)
N—-1 N
N it < goVw =1, W (4.10)

i=1 j=2

The objective function Eq. (4.1) is to maximize the benefhjchi is defined as over-
all collected rewards minus overall travel costs. The aamstis in Eq. (4.2) ensure that
all paths starts from query to query N for each worker. The constraints in Eq. (4.3)
ensure that every feasible spot is visited once of the spegdrker. The constraints in
EqQ. (4.4) ensure that the total time of each path doesn'tezktlee deadline specified
by each worker. Eqs. (4.1)—(4.4) are/slightly revised frogs.E3.1)—(3.4), and the con-
straints in Egs. (4.5)—(4.9) are same to Egs. (3.5)—(3.9).(£10) prevents the worker
run out his/her battery.

4.2 Multi-users Detour Planning Algorithm: MDP

We apply a heuristic solution, named multi-users detounrmiteg (MDP) algorithm,
in the MCS system, because the optimal solution (DP) is nagded to solve multi-users
detour planning problem. The objective of the MDP algoritisrto maximize the profits
and minimize the traveling cost of each worker. Therefore, |8t/ ,, be the utility of
the workerw to perform request:

N
Pn + Zk:l mii,,,k
Py = - (4.11)

Moy, a0

We define input,, =< o,d, g,T > of workerw, whereo is the sourceq is the desti-
nation,g is the energy, and' is the deadline. Then the inppt =< (,[B—U}, p,q, f,6 >
of request, wherel is the location|B — U] is the time-windowp is the rewardyg is the
quality, f is the service time, andl is the energy consumption. The algorithm receives
these input data and outputs detour p&thFig. 4.1 presents the pseudocode of our algo-
rithm. Lines 1-2 initialize the current locatiof), and timey,, of each workerv, and the
returned paths(. Line 4 computes all utility valué/ = {h,,,}. Line 5-15 continuously
update the returned pathds, which satisfy all constraints. Finally, it returns all det
paths in line 16.
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Multiple Detour Planning (MDP) Algorithm
Input: I={i,=<o0,d,g, T > Yw=1t0W}
J={j.=<L[B-Ul,p,q, f,d >,Yn=110N}

Output: X
17y = 10.0,Yp =0, Vw =110 W
2 X=10

3: while J # () andI # () do
4:  ComputeH, and then sori) order byn,, ,, decreasing

5.  while H # () do
6 huw,n = POP(H)
7 if j,.[B — U], i,.g, andi,,. T are satisfiedhen
8 X =X UZygun
9 Updater,,, y.,, andi,,.g
10: if 5, satisfy its qualitythen
11: Removej,, from J
12: break
13:  if X does not updatthen
14: X = XU Zuyay in.d
15: Removei,, from I
16: ReturnX

Figure 4.1: Pseudocode of finding all feasible paths

4.3 Evaluations

4.3.1 Setup

In the evaluation, we use the dataset, which is collecteu fitze real-world. We collect
the dataset through a PTT, which is the most popular bulletizrd system in Taiwan.
PTT includes at least.5 million registered users and more th20000 boards. On the
whole, PTT is one of the largest forums, and users post mare2thD00 articles every-
day. We gather the articles from the most popular board in, Rfd we totally collected
5700 articles in10 days from April11 to April 20, 2014. Then, we use the information
in the articles to be the input of requests and workers. Faulgiting spatial-temporal
requests, we extract IP addresses of the articles. The liesgis are assumed to be the
requested locations, and the posted time is the start tintleeofime window of the re-
guest. We use triangulation [29, 30] to approximate geatioas from their IP addresses.
We hired three servers to be the anchors to help us to actpeiigeb-locations from each
IP address. In specific, the servers ping each IP addressnahgza the round-trip time
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(RTT) to measure the distances between the target IPs asgthers. Then we estimate
the real location according to these distances. Furthexymwee divide Taiwan into grids,
and we determine the real location on grids of each IP addMescompute the mean
squared error between grids and estimated locations, arsgintbe estimated locations
to appropriate grids with minimal mean squared error. Beside randomly assign two
grids to be the source and destination of each worker. M@reawe simulate the mobil-
ity of idle workers by random waypoint model. Because workeos't stay at specific
locations too long, we let workers change their moving waya pre-defined period. If
workers received requests, they stop following the rand@ypeint model. They follow
the assigned detour path, and they keep following the randaypoint model after they
finish whole requests.

We implement a traced-driven simulator in Java, and the lsitowis driven by the
PTT dataset. Each request use the real posted time be the tbagiof time window.
Then we randomly assume its fake posted time is uniformliyéaf 1, 5] hours and the
end time of time window is uniformly laterin [ 5] hours. The profit is distributed in |
40] U.S. dollars. The required quality of requests/varies farm, 3, 4, 5. The service
time is uniformly distributed inT,/3] minutes. The request energy cost is in the work [10].
Each worker randomly chooses two locations from dataseé tbi¥her source and end
locations, and we let the larger posted time of the two locetito be the deadline of the
worker. The battery levels of workers are uniformly distitéed in R0%, 80%]. In our
experiments, we consideraéd0 workers and varied the number of queries 50,[100,
200, 400, 800], and we also fixed the number of requests86 and varied the number of
workers in p0, 100, 200, 400, 800].

In the following, we introduce the performance metrics fealaating our solutions:
1) profit as the total reward of performed requests takes out the maast among the
locations of requests; 2)aveling costas total consumed energy (e.g. gasoline) of work-
ers in moving, and we represent the consumed energy by j@uld)completed requests
ratio as the number of requests, which are completed with satigfieities and per-
formed within time-windows, over the total number of regsesn our experiments, we
implement three algorithms: 1) multi-users detour plagrafgorithm (MDP), 2) detour
planning algorithm (DP), and 3) nearest algorithm (CROT). dmpare MDP against
other two algorithms to evaluate the performance.

4.3.2 Results

Superior profits. Fig. 4.2 presents the average profit under varying the nusnider
requests. We observed that MDP is always better than DP andr CR@ MDP and
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DP are achieve almost same profit when-the number of requ&st iBhe reason is that
the number of requests is relatively small thanth@workers,100 workers can perform
most requests in both solutions. When the number of requastaees, MDP outperforms
DP and CROT. MDP achieves at mdst times profits of DP at the number of request is
800, and MDP earns at least9 times profits of CROT.

Efficient movement. Fig. 4.3 presents the average traveling cost under varyiag t
numbers of requests. The figure shows that CROT consumesréesdirtg cost than
MDP and DP. Because CROT assigns requests to nearest workekgrsvconsume less
traveling cost to arrive at locations of nearby request®nEUROT saves more traveling
cost, CROT achieves less profits than MDP and DP (Fig. 4.2). b¥erwed Fig. 4.3 and
Fig. 4.2 when the numbers of request abeand800. Separately, MDP consumeéd and
1.2 times traveling cost of CROT, but MDP achieve8 and2.9 times profits of CROT.
When the number of requests1i80, MDP savesi1% traveling cost compared to DP
and achieve$.26 times profits of DP. Thus, MDP assigns workers more efficieantDP
and CROT while maximizing the profits.

Limited workload. Fig. 4.4 presents the completed requests ratio under ety
numbers of requests. MDP achievi&s, completed requests ratio at the number of re-
quests is50, and MDP finishes more requests than DP and CROT abtiatand47%,
separately. However, the differences between the algositare gradually decreasing
when the number of requests is increasing. Because the nainwerkers is fixed ta 00
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and many temporal constraints, they can’t perform a largebar of requests. When the
number of requests 80, MDP still ‘achieves mare requests than DP and CROT about
20% and45%, respectively.

Real-time computation. Fig. 4.5 presents the running time under varying the num-
bers of requests. When the number of requests is smallettitawe observed that MDP
is slower than CROT. Even MDP consumes a little bit more tinaat6ROT, the compu-
tation of MDP is still in a real-time, which is less tharseconds. Nevertheless, MDP is
faster than CROT when the number of requests is larger and #éguel00. MDP spends
at most4.7 seconds when the number of request8(i8, and MDP is5 seconds and
seconds faster than DP and CROT, respectively.

Raising overall profits. Fig. 4.6 presents the average profit under varying the nusnber
of workers. We observed that three algorithms rapidly iaseethe average profit at the
number of workers from0 to 200. Because the number of requests(8, the 50 to 200
workers could easily perform some requests of them. MDRPysiabreases until there
are 800 workers, but the overall profit still increases. When the nemtf workers is
800, MDP achieve®.64 times profits of CROT. When the number of workersis MDP
achievesl.6 times profits of DP. Even the achieved profits are close betWw&eP and
DP while increasing number of workers, MDP outperforms OPha time.

Assigning workers well. Fig. 4.7 presents the average traveling cost under varying
the numbers of workers. We noticed that MDP consumes legslitng costs than others
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when the number of workers islargerand equal t{#h Itreveals that MDP makes good
assignments when large numbers of workerssare in the syataihlyIDP only consumes
at mostl.35 times traveling cost than CROT when smaller numbers of wer&ez in the
system. But achieved profits from MDP. dr@and3 times against CROT when numbers
of workers ares0 and100. Moreover, MDP saves up &8% traveling cost compared to
DP when the number of workers880.

Fine completed ratio. Fig. 4.8 presents the completed requests ratio under \aryin
the numbers of workers. We found that MDP and DP achieves meanty 100% and
83% completed requests ratio when the number of worket8(s There are two reasons.
1) MDP assigns as many workers as possible to achieve th@edouality, which is
evaluated from the accuracy model. 2) MDP assigns a workatlaoation of a request,
which closes to some requests, and the worker may perfommtineeach required quality
and earn more profit. Otherwise, we think that DP assignsevettio achieve their optimal
profit, but the assignment from DP may be not appropriate lusol@e cases, such as a
worker receives a request which is closer to other workers.

Scalability. Fig. 4.9 presents the running time under varying the numifensrkers.
We observed that MDP is faster than DP and CROT in each cas&)@Rdachieves.4X
and2.3X speed up compared to DP and CROT when the number of workgos.is
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

¢ In this thesis, we propose 'a mobile crowdsensing (MCS) sysaémah we discuss
the detour planning problem and the extended multi-usaicud@lanning prob-
lem. The difference between the orienteering problem viitie twindows and the
proposed problems is-the more consideration about feasdts, traveling cost,
energy consumption, and the accuracy of sensory data.

e In MCS system, workers aim for maximal profit and perform ewvexyuest within
its time and energy constraints. Moreover, workers musteaat their destination at
the planned time. We mathematically formulate the singlerand multi-users de-
tour planning problems, and we address detour planningitigo(DP) and multi-
user detour planning algorithm (MDP) to solve the two pratderespectively.

e Furthermore, we implemented traced-driven simulatorsnwulste the MCS sys-
tem, and we use a real dataset, which is collectethidays from PTT, the most
popular bulletin board system in Taiwan. The simulatiorultssof DP show that
our algorithm: (i) outperforms the other algorithms by upl@% improvement,
(i) runs efficiently and always terminates with#2 ms, and (iii) is able to scale
to larger problems. The simulation results of MDP show th&R\Vi (i) achieves at
most1.4 times the profit of DP an@.9 times the profit of the baseline, (ii) saves
up to51% energy compared to DP, (iii) achieves almogh% completed requests
ratio if workers are sufficient, and (iv) runs in the real-¢irfc 21s).
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5.2 Future work

e We plan to improve the mechanism of submitting the resultsw kb efficiently
upload the results to the crowdsensing system with cormedstamps and GPS
data is important. Workers have diverse network conditems different sizes of
results. We need to decide which results should be uploadddferent network
conditions. The mechanism of uploading results also inftesrthe performance
of the system. Workers may perform the task in correct timaéthey upload them
later due to the worse network condition. We have to diststgwhether the results
are feasible or not. Furthermore, we could also find malEwarkers who upload
results in wrong timestamps and GPS data. Since there aseplissues, workers
may not agree to provide their tracks.

e We think that our MCS system is possible to attract many warkerparticipate
into the system, so the MCS system is appropriate for urbampuating by utilizing
these workers. The city planners can submit specific regtestetect the environ-
ment of the city and track the-maebility of workers to analyke traffic condition
or the usage of land. Thus, workers can help.the city planieepsan the future
constructions.

e Due to the difficulties of deciding rewards, we plan to ganofyr crowdsensing
system, which workers must pay‘for playing games. We tramstdits/rewards to
scores of games, and we usethe augmented reality techoitjiggier games. The
challenges are to unify games to the system and players plagg smoothly.

e We plan to implement a working prototype on Android smartp® Thus, we can
design the experiments for real workers, and we may deplog@ipal system.
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