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中中中文文文摘摘摘要要要

群眾感知系統是近年流行的一種工作外包的平台，此系統將感測或

多媒體工作外包給有行動裝置的工人。在群眾感知系統中，工人使用

智慧型手機來工作，這些智慧型手機具備了能夠執行感測以及多媒體

工作的能力，例如偵測噪音或拍照。我們為了有效的分配感測以及多

媒體工作給工人而提出了一個群眾感知系統，並且我們只專注於時空

相關的工作，這種工作必須在特定的地點以及時間來被執行。每個工

人會提供他的目的地以及預計到達的時間給我們的系統，並且這些工

人為了最大化利潤不介意遵從我們的繞行規劃路線來執行工作。一旦

工人上傳相關的資訊道系統上，工人將會收到各自的繞行規劃路線，

而每條繞行規劃路線都是由一群工作組成並且有特定的順序讓工人去

遵循。工人若是依循繞行規劃路線執行工作，那他將會收到他所能獲

得的最大的利潤。我們稱上述的問題為繞行規劃問題，並且又提出一

個更複雜的多人繞行規劃問題。這兩個問題的差別只在於繞行規劃問

題每次運算繞行規劃路線時只考慮一個工人。在本篇論文中，我們提

出了繞行規劃演算法 (DP)以及多人繞行規劃演算法 (MDP)去解決我

們提出的兩個問題。我們使用真實資料去驅動模擬器，其模擬結果也

顯示我們演算法的可行性以及效率。在未來我們將會實作此系統，以

及解決其中多個困難的挑戰。
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Abstract

Crowdsensing is a popular paradigm that outsources sensory/multimedia
tasks to mobile workers. In the crowdsensing systems, workers perform di-
verse tasks such as detecting sensory data and taking pictures by employing
(using) their smartphones, which are equipped with sensingand multimedia
functions. We provide a crowdsensing system to efficiently delegate sen-
sory/multimedia tasks to mobile workers, and we focus on spatial-temporal
tasks that must be conducted at specific locations and time. Each worker
supplies his/her destination with a deadline to our system and does not mind
taking detour paths to maximize profits. Once workers submittheir profiles to
our system, they will receive detour paths, which consist oftasks in particu-
lar orders. Workers execute tasks by following their detourpaths and receive
maximal profits. We formulate this problem as a detour planning problem,
and the advanced problem is multi-users detour planning problem. The dif-
ference between these two problems is that the detour planning problem just
considers a worker at a time. In this thesis, we develop a detour planning
algorithm (DP) and a multi-users detour planning algorithm(MDP) to solve
problems respectively. We simulate the extensive trace-driven scenarios and
demonstrate the effectiveness and efficiency of our algorithms. Developing a
working prototype on Android OS and addressing other challenging aspects
of the considered systems are our future tasks.

ii



Contents

中中中文文文摘摘摘要要要 i

Abstract ii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Orienteering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Detour Planning Problem . . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 Multi-users Detour Planning Problem . . . . . . . . . . . . . .. 3

1.4 Contributions of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5
2.1 Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Crowdsensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Detour Planning Problem 7
3.1 Formulate the Detour Planning Problem . . . . . . . . . . . . . . .. . . 7
3.2 Detour Planning Algorithm: DP . . . . . . . . . . . . . . . . . . . . . .10
3.3 Approximation Algorithm: DPA . . . . . . . . . . . . . . . . . . . . . .11
3.4 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Multi-users Detour Planning Problem 23
4.1 Formulate the Multi-users Detour Planning Problem . . . .. . . . . . . . 23
4.2 Multi-users Detour Planning Algorithm: MDP . . . . . . . . . .. . . . . 24
4.3 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Conclusion and Future Work 33
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Bibliography 35

iii



List of Figures

3.1 The considered detour planning problem. This thesis concentrates on

multimedia content gathering. . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Pseudocode of finding the optimal pathX
∗. . . . . . . . . . . . . . . . . 10

3.3 Late time of the HR and CR algorithms: (a) varying deadlines in Taipei

and (b) varying numbers of requests in Vancouver. . . . . . . . . .. . . . 15

3.4 Resulting profit with varying deadlines, from: (a) Taipeiand (b) Vancouver. 16

3.5 Running time with varying deadlines, from: (a) Taipei and(b) Vancouver. 17

3.6 Resulting profits with varying numbers of requests, from:(a) Taipei and

(b) Vancouver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.7 Running time with varying numbers of requests, from: (a) Taipei and (b)

Vancouver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.8 Resulting profits with different travel cost, from: (a) Taipei and (b) Van-

couver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.9 Results from Taipei dataset: (a) profit and (b) running-time. . . . . . . . . 21

4.1 Pseudocode of finding all feasible pathsX. . . . . . . . . . . . . . . . . 25

4.2 Resulting profit with varying requests. . . . . . . . . . . . . . . .. . . . 27

4.3 Resulting traveling cost with varying requests. . . . . . . .. . . . . . . . 28

4.4 Resulting completed requests ratio with varying requests. . . . . . . . . . 28

4.5 Resulting the running time with varying requests. . . . . . .. . . . . . . 29

4.6 Resulting profit with varying workers. . . . . . . . . . . . . . . . .. . . 30

4.7 Resulting traveling cost with varying workers. . . . . . . . .. . . . . . . 30

4.8 Resulting completed requests ratio with varying workers. . . . . . . . . . 31

4.9 Resulting the running time with varying workers. . . . . . . .. . . . . . 32

iv



List of Tables

3.1 Ontime Ratio (%) of Various Algorithms . . . . . . . . . . . . . . . .. . 12

v



vi



Chapter 1

Introduction

1.1 Motivation

Nowadays, smartphone users are ubiquitous, and the smartphones have equipped with a

lot of sensors, such as the GPS reader, the microphone, the camera, and etc. The prospect

of smartphones has huge potential, if we can make good use of these sensors. For exam-

ple, if smartphone users have free time, they can use their smartphones to perform some

tasks. Smartphone users can take a picture or read sensory data in their leisure time, but

they may not volunteer to do these tasks. Therefore, we need some incentives [33] (e.g.

scores, and rewards) to encourage smartphone users to contribute their efforts. Due to

the possibility of smartphones, we propose themobile crowdsensing (MCS) system. In

general,crowdsensing[7] systems collect sensory data from crowds, which are especially

network-based, and they analyze sensory data to understandthe circumstance of a spe-

cific area. Thus, it utilizes mobile sensing (e.g. opportunistic sensing, and participatory

sensing) and human-in-the-loop for gathering a large number of sensory data. Moreover,

crowdsensing is regarded as the extension ofcrowdsourcing, because of the concept that it

assigns outsourcing tasks to uncertain crowds. Crowdsourcing refers to a distributed prob-

lem solving paradigm. In the crowdsourcing system,requesterssubmit theirrequestsinto

the platform. Requesters can be companies, organizations, or individuals, and requests

include various requests (e.g., shooting photos, recording videos, or collecting sensory

data). These requests are traditionally performed by employees. However, now these re-

quests are outsourced to public crowds who are willing to complete them for incentives,

also known asrewards. Furthermore, each request is associated with adeadlineand an

amount of reward. People who accept the requests are referred to as theworkers. Work-

ers earn rewards only if they complete the corresponding requests before their deadlines.

In our MCS system, we hire mobile smartphone users as workers,because we focus on

spatial-temporal requests, which must be performed at specific locations and time. In this
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thesis, we discuss the main problem,detour planning problem, on the MCS system. The

problem is related to theorienteering problem. Next, we will introduce the orienteering

problem in sec. 1.2, and then we discuss the research problems in sec. 1.3.

1.2 Orienteering Problem

We introduce the orienteering problem in the following. This problem comes from a pop-

ular outdoor sport which is similar to treasure hunt. In thissport, each player is assigned to

an identical map. There are notations of rewards (e.g., money, or scores) on the map. The

goal of the game is to collect as many rewards as possible. However, the time is limited.

The players need to achieve the goal before the game is over. When they are finding their

own path, they need to take the distance and the value of the rewards into consideration.

In short, the orienteering problem is to plan the path, and the workers follow their paths

to collect maximal rewards during the game. The path planning is important in this game,

and there are already many literatures discussing how to solve this problem [28]. We are

inspired by the orienteering problem. In the following sections, we describe our research

problems in detail.

1.3 Research Problems

1.3.1 Detour Planning Problem

We study a new class of crowdsensing systems for serious applications of multimedia

content gathering [16]. In the considered systems, users submit geospatial- and temporal-

dependent requests to collect multimedia content, such as sensor readings from sparsely-

deployed nodes, recorded videos of specific events, and photos of sightseeing sites. The

corresponding users could be utility companies who need to retrieve smart-meter read-

ings, police departments who need to collect evidence of criminal scenes, people who

need photos of memorable locations for pleasure, and so on. The workers are smartphone

users who are heading to their finaldestinations, but have some time to spare. The work-

ers would not mind to take some detour paths for small rewards, which can be monetary,

credits, or points, as long as they can reach the destinations in time.

The considered systems are unique because the requests are associated with deadlines

and geospatial locations, while it takes some time for the workers to travel from the lo-

cation of one request to that of another one. Moreover, existing systems require workers

to competeagainst others for requests. We argue that the approach is not effective for our

crowdsensing systems because: (i) while workers have time to take detour paths, they are
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not capable coming up with the best detour paths and (ii) too many competitions may lead

to excessive duplicated completion and wasted efforts, which degrades the overall system

performance in the end.

In this thesis, we design adetour planning algorithm (DP)for our crowdsensing sys-

tem. The proposed algorithm runs on a server, and generates adetour path for each

worker. The resulting detour path is optimal in the sense that it maximizes his/her re-

ceived profits, while guaranteeing the worker can reach his/her destination in time. We

implement the proposed algorithm in a simulator, and compare its performance against

several baseline algorithms. We also crawl the location traces of a large number of photos

from Flickr [6], and use the traces to drive the simulator. The simulation results show that

our algorithm: (i) outperforms the other algorithms by up to100% improvement, (ii) runs

efficiently and always terminates in 82 ms, and (iii) is able to scale to large problems.

1.3.2 Multi-users Detour Planning Problem

In the previous section, we only consider single user at a time. However, there are usually

multiple users exist simultaneously in a real system. Underthe premise, we use DP to

compute detour paths. We may find that some users go far away toperform the requests

which are closer to other users, and a small number of users receive the most requests.

The case leads to the result that most workers are idle, so they may leave the system.

Though some workers can receive optimal paths from the results of DP, it degrades the

performance of the overall system. Thus, we propose to make good use of all users

and reduce the traveling cost of each user. Thetraveling costsinclude the time the user

spent and the fuel he/she consumed to move to the targeted destination. We refer to this

problem asmulti-users detour planning problem, which is more complicated than the

detour planning problem.

In this system, we consider how to balance the burden among multiple users. Further-

more, we consider thebattery levelof the smartphones and theaccuracyof the smart-

phone sensors [11,15]. We choose the feasible workers who are able to perform requests

within the constraint of his/her battery level and satisfy the quality requirement of re-

quests.

We design amulti-users detour planning algorithm (MDP)to solve this problem.

MDP is a heuristic algorithm which can compute the solution in real-time. In MDP, we

use autility function to figure out which user is the best choice to a request, and then

MDP return results in real-time. Because users cannot wait long in a practical system,

they may leave the system due to lack of the chances to earn rewards. The simulation

results show that MDP: (i) achieves at most1.4 times the profit of DP and2.9 times the

profit of the baseline, (ii) saves up to51% energy compared to DP, (iii) achieves almost
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100% completed requests ratio if workers are sufficient, and (iv)runs in the real-time

(< 21s).

1.4 Contributions of Thesis

The proposed MCS system makes the following contributions:

1. We address the detour planning problem on the MCS system. The detour planning

problem is more general than the orienteering problem with time window (OPTW),

because the detour planning problem further considers thefeasible spots, traveling

cost, energy consumption, andthe accuracy.

2. We formulate the (single-user/multi-users) detour planning problem on the MCS

system. MCS maximizes rewards of the system by computing a detour path for each

worker, and it may attract more workers to contribute their efforts within their avail-

able time. Moreover, each worker could arrive at their destinations on time. For the

single-user detour planning problem, we propose detour planning algorithm (DP)

to optimally solve this problem, and DP is based on dynamic programming. As for

the multi-users detour planning problem, we propose multi-users detour planning

algorithm (MDP) to efficiently assign requests to workers.

3. We implement traced-driven simulators to simulate the MCSsystem. The evalua-

tion results show that the MCS system is suitable to be implemented to a practical

system. Our MDP algorithm can achieve near optimal solution, and the running

time is in real time. Thus, MCS well utilizes each worker with the best utility value

and encourages as many workers to participate in our system.

4. We found that the MCS system is also appropriate forurban computing, and the

proposed solutions could help the city planners to solve theurban problems. The

city planners can issue his/her requests (e.g. traffic congestion, air pollution, and

noise detection), and workers can help to collect these datafor sustainable urban

futures.
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Chapter 2

Related Work

2.1 Crowdsourcing

The crowdsourcing paradigm has been employed in the literature to solve various real-

life problems. Many of these studies leverage smartphones for their high penetration

rate. For example, Li et al. [14] design a distributed question and answer system, called

SOS, for smartphone users. SOS employs crowdsourcing to findthe answers for the

questions that can not be addressed by search engines. It also leverages social networks

to propagate the unanswered questions via friends’ connections. Yan et al. [32] adopt

crowdsourcing to develop an information sharing system, called CrowdPark. A driver

who will need a parking spot soon may use his/her smartphone to reserve it in advance.

For a driver who is vacating a parking spot, he/she can notifythe CrowdPark server for

selling the parking spot to incoming drivers. Crowdsourcingparadigm has also appeared

in commercial systems. For example, Roamler [20] allows companies to define different

tasks for iOS users. The users install an iOS application to receive and complete tasks

so as to earn money or points. The Roamler server pushes tasks to users based on their

preferences and locations. Different from our work, the works in [14, 32, 34, 35] and

commercial systems [20] concentrate on building the crowdsourcing platforms, which

facilitate interactions between the requesters and workers, but do notguide the workers

for more efficient decisions.

Some other crowdsourcing systems guide the workers for better decisions. For exam-

ple, Yuen et al. [36] study the task matching problem in crowdsourcing. Their system gen-

erates a task list for each worker based on his/her preference and historical performance,

which helps workers to concentrate on completing tasks rather than searching for ideal

tasks. Different from our work, the problem in [36] is not geospatial-dependent. Boutsis

and Kalogeraki [2,3] propose a real-time task assigning algorithm, which efficient assigns

tasks to the crowd. The crowd may achieve high quality results and return it in real-time.

5



Even they consider the geospatial-dependent tasks, they won’t assign a detour path and

the tasks without time-window. Bassem and Bestavros [1] tackle a Geo-temporal Request

Satisfaction (GRS) problem from a game-theoretic perspective, and propose a heuristic

algorithm that works as follows. The algorithm derives a path from the starting location

to the final destination using Yen’s ranking algorithm [17],and chooses the task with the

highest reward on this path. The set up in [1] is quite different from ours, because they al-

low workers to compete for tasks. In contrast, we believe that coordinateddetour planning

for minimizing wasted worker efforts is critical to the overall system performance. More-

over, we take the properties of mobile multimedia into considerations while designing the

system. Last, their heuristic algorithm does not give optimal paths.

2.2 Crowdsensing

Several studies [4, 9, 22, 25, 31, 31] discuss the crowdsensing with smartphones. Xiao et

al. [31] discuss large-scale mobile crowdsensing systems,and they address the barriers

and make potential solutions. Sherchan et al. [22] propose an architecture for mobile

crowdsensing, and they focus on efficiently collecting and analyzing mobile sensory data.

Talasila et al. [25] use image processing techniques to validate mobile sensors and in-

crease the reliability of sensed data. Cardone et al. [4] propose a geo-social crowdsensing

platform to foster mobile users by their profiles to sense theenvironment of cities. Hasen-

fratz et al. [9] use off-the-shelf sensors and smartphones to sense the air pollution. They

focus on efficient collecting the data, and the difference isthat they didn’t discuss how to

guide workers to follow detour paths for maximal profits.

There are some crowdsensing works [5, 12, 23] which focus on location dependent

tasks. He et al. [23] design an approximation algorithm to pursuit maximal rewards from

location dependent tasks. They also propose a pricing mechanism for attracting smart-

phone users. Feng et al. [5] design a mechanism to assign location dependent tasks to

smartphone users, and the objective is to minimize the cost (e.g., power consumption)

of smartphones. Jaimes et al. [12] design a mechanism to greedily select location-based

workers with a fixed power budget, and their algorithm maximize the sensing coverage

of the target area. Even they are also dealing with the location dependent tasks, but their

tasks didn’t with time-window. Moreover, they won’t simultaneously consider the reward,

the cost (e.g., energy cost, and traveling cost), and the accuracy of tasks.
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Chapter 3

Detour Planning Problem

3.1 Formulate the Detour Planning Problem

r

L U

f

p

b

e

T

Figure 3.1: The considered detour planning problem. This thesis concentrates on multi-

media content gathering.

Fig. 3.1 illustrates the considered crowdsensing system, which consists of three en-

tities: (i) the platform, (ii) requesters, and (iii) workers. LetN be the number of to-
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tal requests that haven’t been assigned to any workers. A request sends a requestri

(1 ≤ i ≤ N ) with a time window[Li, Ui], rewardpi, location, and service timefi to

the platform using a web site or via a smartphone application. The requesters can be com-

panies, governments, and individuals. Ifri is completed by a worker between timeLi and

Ui, that worker receives rewardpi. A worker sends his/her current, orsource, locationb,

destination locatione, and deadlineT to the crowdsensing platform. Whenever there is a

new worker, the crowdsensing platform computes the detour pathX for the worker using

thedetour planning(DP) algorithm proposed in Sec. 3.2. Moreover, a new detour path is

generated if a worker is late or lost when following the previously computed detour path.

The resulting detour path allows the worker to maximize his/her total reward, and ensures

the worker to arrive the destination by the specific deadline. Upon receiving the detour

path, a worker follows it to complete the individual requests.

Requesters may submit several types of requests. Fig. 3.1 shows two representative

types: (i) sensor data collection and (ii) media data gathering. Examples of the latter type

include taking a photo of a landmark, which may be done at multiple close-by locations

referred to asfeasible spots. We let zi ≥ 1 (1 ≤ i ≤ N ) be the number of feasible

spots of requestri. We letfi be theservice timeof requestri, i.e., the amount of time a

worker has to spend atri. To plan the detour paths, we also need to know that travel time

between any two feasible spots. We letmix,jy be the travel time from feasible spotx of

requestri to feasible spoty of requestrj, and collectively write this distance matrix as

M. Similarly, cix,jy andC represent thecostof traveling from a request to another, which

can be attributed to gas cost and car depreciation rate. BothM andC are predetermined,

for example, by using Google Map and other online maps.E is a large constant.

Next, we define the decision variables and some intermediatevariables for the con-

sidered worker assigning problem. We use boolean variablesto represent the pathX.

Specifically,xi,j = 1 if the detour path leads a worker moving from requesti to j; and

xi,j = 0 otherwise. We also usesi to represent the worker’s planned arrival time at the

location of requestri. We letui,j = 1 (1 ≤ i ≤ n, 1 ≤ j ≤ zi) if feasible spotj of request

ri is on the detour path; andui,j = 0 otherwise.

Inspired by the formulations given in Vansteenwegen et al. [28], we mathematically

formulate our worker assigning problem as:
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max
N−1
∑

i=1

N
∑

j=2

[pi −
zi
∑

a=1

zj
∑

b=1

cia,jbui,auj,b]xi,j (3.1)

s.t.

N
∑

j=2

x1,j =
N−1
∑

i=1

xi,N = 1 (3.2)

N−1
∑

i=1

xi,k =
N
∑

j=2

xk,j ≤ 1, ∀k = 2, ..., N − 1 (3.3)

N−1
∑

i=1

N
∑

j=2

(

zi
∑

a=1

zj
∑

b=1

mia,jbui,auj,b + fi)xi,j ≤ Tmax (3.4)

zi
∑

j=1

ui,j ≤ 1, ∀i = 1, ..., N (3.5)

si + fi +

zi
∑

a=1

zj
∑

b=1

mia,jbui,auj,b − sj ≤ E(1− xi,j), ∀i, j = 1, ..., N (3.6)

Li ≤ si, ∀i = 1, ..., N (3.7)

si + fi ≤ Ui, ∀i = 1, ..., N (3.8)

xi,j, ui,j ∈ {0, 1}. (3.9)

The objective function Eq. (3.1) is to maximize the total collected reward minus travel

cost, which is referred to as profit. The constraints in Eq. (3.2) ensure that the path starts

from request1 to requestN . The constraints in Eq. (3.3) make sure that every feasible

spot is visited once. The constraints in Eq. (3.4) ensure that the total time of each path

doesn’t exceed the deadline specified by each worker. The constraints in Eq. (3.5) make

sure that only one feasible spot of each request is visited. The constraints in Eq. (3.7)

set the timeline of the path. The constraints in Eqs. (3.8) and (3.9) consider the worker’s

arrival time and service time.

Hardness of our problem.The worker assigning problem is ageneralizedversion of

theorienteering problem(OP), which computes a path to visit some locations in order to

maximize the profit and arrive at the destination in time. Golden et al. [8] show that OP

problems are NP-hard, and Vansteenwegen et al. [28] presentfour OP variations: (i) single

worker, (ii) multiple workers, (iii) single worker with time-windowed requests, and (iv)

multiple workers with time-windowed requests. The first twovariations (without time-

windowed requests) have been well studied in the literature, e.g., Schilde et al. [21] and

Vansteenwegen et al. [27] propose algorithms to solve single- and multiple-worker OP

problems without time-windowed requests. To our best knowledge, OP problems with

time-windowed requests have not been throughly studied. The two most recent works

are: Righini and Salani [19] and Montemanni and Gambardella [18], which solve the
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Detour Planning (DP) Algorithm
1: Let αi,j = < V∅, 0, 0,u∅ >, ∀αi,j ∈ χ

2: Let α1,1.V = α1,1.V∪{v1,1}; α1,1.u =α1,1.u∪{u1,1 = 1}

3: Enqueueα1,1 intoE //E: vertices to visit

4: while E 6= ∅ do

5: Dequeueαi,x ∈ E

6: //Extend theαi,x to a newαj,y

7: for each neighboringαj,y ∈ χ\{αi,k}1≤k≤zi do

8: Let
temp.V = αi,x.V∪{vj,y}; temp.w = αi,x.w+pj-cix,jy ();

temp.e = αi,x.e+mix,jy+fj; temp.u = αi,x.u∪{uj,y = 1} //extand the path
9: if temp.e ≤ Uj then

10: if temp.w ≥ αj,y.w then

11: Let αj,y = temp; Enqueueαj,y intoE

12: Let X∗ = αn,1

Figure 3.2: Pseudocode of finding the optimal pathX
∗.

single- and multiple-worker variations, respectively.

The considered worker assigning problem (Eqs. (3.1)–(3.9)) is close to the OP prob-

lem with single worker and time-windowed requests. However, our crowdsensing prob-

lem has the following unique features:

1. Each requestri is associated with a non-trivial service timefi. For example, it may

take a worker 3 minutes to download the sensor readings or take a photo.

2. Each requestri may be satisfied fromzi feasible spots.zi = 1 if the request can

only be performed at a specific location.

3. Relocating a worker from requestri to rj imposes nontrivial costci,j on that worker.

Therefore, the existing OP solutions cannot be applied to our problem. We develop a

worker assigning algorithm in Sec. 3.2.

3.2 Detour Planning Algorithm: DP

We develop an optimal algorithm for our detour planning problem. Our Detour Plan-

ning (DP) algorithm is inspired by the dynamic programming algorithm presented in

Righini and Salani [19], but we explicitly take the three unique features (see Sec. 3.1)

into considerations. We letαi,j be the state of a potential detour path from source location

s to feasible spotj of requestri. More specifically, we defineαi,j=<V, w, e, u >, where

V is the current path,w is the profit,e is the elapse time, andu keeps track of the visited

10



requests and feasible spots. We letχ={αi,j}1≤i≤N,1≤j≤zi be the set of all the states with

the maximum objective function values known so far. Fig. 3.2presents the pseudocode of

our algorithm, which consists of two steps: (i) initialization and (ii) expansion. In partic-

ular, lines 1–2 initialize allαi,j, and lines 4–11 iteratively extendαi,x toαj,y. The optimal

detour path is stored inαn,1, which is returned asX∗ in line 12.

We analyze the efficiency of the proposed DP algorithm below.

Remark 1 The DP algorithm given in Fig. 3.2 has a time complexity ofO((NZ)2NZ),

whereZ is the maximum feasible spots for each request. That isZ = max1≤i≤N{zi}.

This is because the dequeue command at line 5 may obtain
∑(NZ)−2

k=0

(

(NZ)−2
k

)

states, and

the for-loop starts from line 7 has a complexity ofO(NZ) as it may check all the states.

Hence, the time complexity of the DP algorithm isO((NZ)2NZ).

We next briefly explain a possible optimization that can be applied to the DP algo-

rithm.

Remark 2 The proposed DP algorithm can be optimized in various ways. For example,

Righini and Salani [19] propose a bidirectional approach, in which they use DP algorithm

from both sides, the beginning and the end. Each direction extends the path and stops right

before exceeding the half of the total number of requests. Then, the two detour paths are

merged into an optimal detour path.

3.3 Approximation Algorithm: DPA

In previous sections, we present an optimal algorithm DP fordetour planning problem.

In this section, we propose a (pseudo-)approximation algorithm DPA, based on DP. The

main difference between them is that the running time of DPA depends on a user selected

parameterǫ ∈ (0, 1]. We define a scaling factorF = ǫpmax

N
, wherepmax is the maximal

score among all locations, andN is the total number of locations.

DPA works as follows. First, we scale the scorep to p′n = ⌊pn
F
⌋ for all locationn.

Second, we apply dynamic programming to compute the path with the highest score. In

particular, we iteratively expand the path from a user’s source to his/her destination. For

each locationl, we record multiple subpaths from the source to itself. We only keep

the potentialsubpathsthat may become part of the optimal paths. We definepotential

subpaths as the subpaths that either reach fewer locations,spend less time, or achieve

higher accumulated score, compared to any known subpaths atl. Upon reaching the

destination, we return the best known pathX.
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In the DPA algorithm, largerF (larger ǫ) leads to more subpaths with the same

score, which in turn allows us to drop more subpaths and thus achieve lower complex-

ity. However, doing so affects the optimality of pathX as well. LetX∗ be the optimal

path. We denote the total scores ofX andX∗ asP (X) andP (X∗), and we can derive

P (X) ≥ (1 − ǫ)P (X∗) (the proof is similar to the one in [13]). This means that DPA

achieves an approximation gap ofǫ, while higherǫ leads to both lower complexity and

higher approximation gap.

3.4 Evaluations

In this section, we conduct trace-driven simulations to evaluate the proposed DP algo-

rithm.

Table 3.1: Ontime Ratio (%) of Various Algorithms

City Taipei Vancouver

Algorithm HR CR DP HR CR DP

DeadlineT = 1 0 0 100 0 0 100

2 4.1 4.1 100 4.1 0 100

4 0 0 100 0 0 100

8 0 0 100 0 4.1 100

16 29.1 58.3 100 33.3 41.6 100

City Taipei Vancouver

Algorithm HR CR DP HR CR DP

No. RequestsN = 5 12.5 8.3 100 0 0 100

10 0 0 100 0 4.1 100

15 0 8.3 100 0 0 100

20 0 0 100 0 0 100

25 0 4.1 100 0 0 100

3.4.1 Setup

We have developed a simulator for the detour planning problem using C/C++, and run

the simulations on a commodity PC with an AMD 2.6 GHz CPU. Within the simula-

tor, we have implemented the proposed DP algorithm1. We are not aware of any algo-

rithms solving the considered problem, thus we have also implemented four heuristic

1We thank the authors of [19] for sharing their datasets and algorithm implementation with us.
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algorithms, Highest-Reward (HR), Highest-Reward with OnTimeconstraints (HROT),

Closest-Request (CR) and Closest-Request with OnTime constraints (CROT), for com-

parisons. The HR algorithm works as follows. It gives requests with higher rewards

higher priority, and iteratively extends the detour path tothe request with the highest pri-

ority. It stops when adding the next request renders the worker missing his/her deadline.

The CR algorithm works in a similar way, but gives the closest request higher priority.

The HR and CR algorithms mimic human behaviors when no algorithm is used to gener-

ate detour paths. We then create the ontime versions (HROT and CROT) of the algorithms,

which validate the ontime constraint before extending a detour path to the next request.

In particular, HROT and CROT do not consider requestri unless the worker may travel

from ri to e before timeT . Hence, HROT and CROT guarantee that workers can reach

their destinations in time.

To drive our simulator, we consider the actual requests of multimedia content gath-

ering, and we collect actual geospatial traces from Flickr [6] as follows. We first collect

the names of 25 attractions from travel Web sites. In particular, Taipei [24] and Vancou-

ver [26] are considered in our evaluations. We then look up the longitude/latitude of each

attraction, and search for Flickr photos that are taken at close-by longitude/latitude and

are tagged with the attraction’s name. By close-by, we refer to the photos taken within 1

km radius of each attraction. We end up with having up to 2000 photos for each attrac-

tion. We extract the longitudes/latitudes from individualphotos, and cluster them into a

few feasible spots using hierarchical clustering with a threshold of 500 meters. The mean

longitude/latitude of each cluster is used as the location of a feasible spot. The number of

feasible spots for each attraction is between 1 and 31, depending on the attraction’s height

and popularity.

Each simulation lasts for 25 hours. We assume the requests follow a Poisson arrival

process and we set the average number of requests per hour to be 4. Each request happens

at a random attraction, with a time window size between 1–6 hours and a reward between

1–40 U.S. dollars, both follow uniform distributions. We vary three system parameters

in the simulations.T ∈ {1, 2, 4, 8, 16} is the deadline of arriving at the destination,

N ∈ {5, 10, 15, 20, 25} is the number of attractions, andC ∈ {0, 0.06, 0.12, 0.24, 0.48}

dollars per km is the average gas and car depreciation cost. We letT = 8, N = 10, and

C = 0.12 if not otherwise specified. We run each simulation 24 times, and report the

simulation results with 95% confidence intervals whenever applicable. We consider four

performance metrics: (i)late timeof HR and CR, (ii)ontime ratio, which is the fraction

of workers who reach their destinations in time, (iii)profit of the resulting detour path,

and (iv)running timeof each algorithm.
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3.4.2 Results

Importance of the DP problem. In Fig. 3.3, We first report sample late time from the HR

and CR algorithms, which mimic human behavior. This figure reveals that the HR and CR

algorithms lead to up to almost 10 hrs of average late time. This is significant considering

that the deadline of arriving at the destinations is as shortas 1 hr. Long late time will drive

the potential workers away from the crowdsensing systems. We next present the ontime

ratio of HR, CR, and DP algorithms in Table 3.1. This table clearly shows the benefit of

the DP algorithm: the computed detour paths are always ontime. Fig. 3.3 and Table 3.1

depict the importance of the considered DP problem, as humancomputed detour paths

(mimicked by HR and CR) lead to late arrivals at the destinations. Since the HR and CR

algorithms do not meet the basic requirement of the DP problem, we no longer consider

them in the rest of this paper.

Optimized profits. Fig. 3.4 presents the profits of different algorithms under varying

deadlines. This figure reveals that the DP algorithm always outperforms the HROT and

CROT algorithms. Moreover, the performance gain of the DP algorithm over the other two

algorithms increases with longer deadlines. In particular, with T = 16, the DP algorithm

almost doubles the profits, compared to the other two algorithms.

Efficiency. Fig. 3.5 plots the running time of the considered algorithms. We observe

that the heuristic algorithms finish in no time, and the DP algorithm takes about 6 ms to

terminate in the worst case, which shows its efficiency.

Scalability of the DP algorithm. We present the simulation results with diverse num-

bers of requests in Figs. 3.6 and 3.7, for resulting profits and running time, respectively.

These two figures demonstrate that the DP algorithm scales tolarge numbers of requests

and feasible spots quite well. In Taipei, the average numberof feasible spots per-request

is 1.96 and the maximal number of feasible spots per-requestis 15. In Vancouver, the

average and maximal numbers of feasible spots per-request are 6.48 and 31, respectively.

Fig. 3.6 reveals that the DP algorithm outperforms all otheralgorithms under all consid-

ered numbers of requests. Fig. 3.7 depicts that the DP algorithm terminates much slower

in Vancouver (Fig. 3.7(b)) than in Taipei (Fig. 3.7(a)): up to 82 ms running time is ob-

served in Vancouver. This difference can be explained by thefact that the attractions in

Vancouver have more feasible spots (162 in total), comparedto the attractions in Taipei

(49 in total), as reported above. We conclude that the DP algorithm does scale to162

feasible spots, yet runs in< 82 ms, which essentially is in real-time.

Implication of cost. Fig. 3.8 reports the sample resulting profits from the algorithms

with different travel cost. This figure reveals that, when the per-km cost is lower, the

proposed DP algorithm results in higher profits. Moreover, the DP algorithm outperforms

the heuristic algorithms under all considered travel costs.
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Figure 3.3: Late time of the HR and CR algorithms: (a) varying deadlines in Taipei and

(b) varying numbers of requests in Vancouver.
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Figure 3.4: Resulting profit with varying deadlines, from: (a) Taipei and (b) Vancouver.
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Figure 3.5: Running time with varying deadlines, from: (a) Taipei and (b) Vancouver.
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Figure 3.6: Resulting profits with varying numbers of requests, from: (a) Taipei and (b)

Vancouver.
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Figure 3.7: Running time with varying numbers of requests, from: (a) Taipei and (b)

Vancouver.
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Figure 3.8: Resulting profits with different travel cost, from: (a) Taipei and (b) Vancouver.
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Figure 3.9: Results from Taipei dataset: (a) profit and (b) running-time.
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DPA is Efficient. Fig. 3.9(a) presents the profit with different number of locations.

We observe that DPA withǫ = 0.8 achieves almost optimal reward (DP) in every number

of locations, and DPA withǫ = 0.2 slightly deviates from DP and the reward is more

closer in larger number of locations. Moreover, Fig. 3.9(b)shows that, compared to DP,

DPA with ǫ = 0.2 achieves 2X speed up, and DPA withǫ = 0.8 even achieves 3X speed

up.

Tradeoff Complexity and Optimality. Fig. 3.9 demonstrates that the DPA algorithm

successfully allows the users to tradeoff complexity and optimality. Because users can let

ǫ be smaller to achieve the almost optimal reward (Fig. 3.9(a)), the better solution also

consumes more running time for computing the result (Fig. 3.9(b)).

3.5 Discussion

We are actively developing a complete crowdsensing system for multimedia content gath-

ering. The following challenges arise when designing such ageospatial- and temporal-

dependent system.

1. The systems should produce afeasibledetour path for each new worker. A detour

path is feasible if and only if the worker can reach his/her destination in time.

2. The systems should compute the detour paths to maximize the overall productivity

in the format of the total worker profit.

3. The systems should simultaneously compute multiple users, because we must make

a good use of all users.

4. The systems should concerns the energy consumption and sensor accuracy when

assign requests to users.

We address the first two challenges so far. The remaining two challenges, as well as other

practical concerns, are we discussed them in the next section. Furthermore, we name

the more complicated version of detour planning problem as multi-users detour planning

problem, and it will solve the four challenges.
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Chapter 4

Multi-users Detour Planning Problem

4.1 Formulate the Multi-users Detour Planning Problem

We regard the multiple detour planning problem as a more complicated version of the

detour planning problem. We use almost variables which are in Sec.3.1, and we add/re-

define some variables to fit the more complicated version. About the worker, we letow

anddw be the start location and end location of workerw, and the battery level of worker

w is gw. We reuse boolean variablesX, but it represents multiple paths now. More

specifically,xw,i,j = 1 if the detour path instructs the workerw to move from queryi to j;

andxw,i,j = 0 otherwise. For the requests, we must satisfy the qualityqi of each request

i, and each requesti consumes energyδi. a() is the accuracy model for evaluating how

many workers to achieve required quality of each request.

We formulate the multiple detour planning problem of maximizing the overall re-

wards, and it is derived from the formulation of the detour planning problem in Sec. 3.1.

max
N−1
∑

i=1

N
∑

j=2

[pi −
zi
∑

a=1

zj
∑

b=1

cia,jbui,auj,b]xw,i,j (4.1)

s.t.

W
∑

w=1

N
∑

j=1,j!=ow

xw,ow,j =
W
∑

w=1

N
∑

i=1,i!=dw

xw,i,dw = 1 (4.2)

N−1
∑

i=1

xw,i,k =
N
∑

j=2

xw,k,j ≤ a(qk), ∀w = 1, ...,W, ∀k = 2, ..., N − 1 (4.3)

N−1
∑

i=1

N
∑

j=2

(

zi
∑

a=1

zj
∑

b=1

mia,jbui,auj,b + fi)xw,i,j ≤ Tw, ∀w = 1, ...,W (4.4)

zi
∑

j=1

ui,j ≤ 1, ∀i = 1, ..., N (4.5)
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si + fi +

zi
∑

a=1

zj
∑

b=1

mia,jbui,auj,b − sj ≤ M(1− xw,i,j), ∀i, j = 1, ..., N, ∀w = 1, ...,W

(4.6)

Bi ≤ si, ∀i = 1, ..., N (4.7)

si + fi ≤ Ui, ∀i = 1, ..., N (4.8)

xw,i,j , ui,j ∈ {0, 1}. (4.9)
N−1
∑

i=1

N
∑

j=2

δixw,i,j ≤ gw, ∀w = 1, ...,W (4.10)

The objective function Eq. (4.1) is to maximize the benefit, which is defined as over-

all collected rewards minus overall travel costs. The constraints in Eq. (4.2) ensure that

all paths starts from query1 to queryN for each worker. The constraints in Eq. (4.3)

ensure that every feasible spot is visited once of the specific worker. The constraints in

Eq. (4.4) ensure that the total time of each path doesn’t exceed the deadline specified

by each worker. Eqs. (4.1)–(4.4) are slightly revised from Eqs. (3.1)–(3.4), and the con-

straints in Eqs. (4.5)–(4.9) are same to Eqs. (3.5)–(3.9). Eq. (4.10) prevents the worker

run out his/her battery.

4.2 Multi-users Detour Planning Algorithm: MDP

We apply a heuristic solution, named multi-users detour planning (MDP) algorithm,

in the MCS system, because the optimal solution (DP) is not designed to solve multi-users

detour planning problem. The objective of the MDP algorithmis to maximize the profits

and minimize the traveling cost of each worker. Therefore, we lethw,n be the utility of

the workerw to perform requestn:

hw,n =

pn +
∑N

k=1
k 6=n

pk
mw,n,k

mw,aw,n

(4.11)

We define inputiw =< o, d, g, T > of workerw, whereo is the source,d is the desti-

nation,g is the energy, andT is the deadline. Then the inputjn =< l, [B−U ], p, q, f, δ >

of requestn, wherel is the location,[B − U ] is the time-window,p is the reward,q is the

quality, f is the service time, andδ is the energy consumption. The algorithm receives

these input data and outputs detour pathX. Fig. 4.1 presents the pseudocode of our algo-

rithm. Lines 1–2 initialize the current locationrw and timeyw of each workerw, and the

returned pathsX. Line 4 computes all utility valueH = {hw,n}. Line 5–15 continuously

update the returned pathsX, which satisfy all constraints. Finally, it returns all detour

paths in line 16.
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Multiple Detour Planning (MDP) Algorithm

Input: I = {iw =< o, d, g, T >, ∀w = 1 toW}

J = {jn =< l, [B − U ], p, q, f, δ >, ∀n = 1 toN}

Output: X

1: rw = iw.o, yw = 0, ∀w = 1 to W

2: X = ∅

3: while J 6= ∅ andI 6= ∅ do

4: ComputeH, and then sort(H) order byhw,n decreasing

5: while H 6= ∅ do

6: hw,n = pop(H)

7: if jn.[B − U ], iw.g, andiw.T are satisfiedthen

8: X = X ∪ xw,aw,n

9: Updaterw, yw, andiw.g

10: if jn satisfy its qualitythen

11: Removejn from J

12: break

13: if X does not updatethen

14: X = X ∪ xw,aw,iw.d

15: Removeiw from I

16: ReturnX

Figure 4.1: Pseudocode of finding all feasible pathsX.

4.3 Evaluations

4.3.1 Setup

In the evaluation, we use the dataset, which is collected from the real-world. We collect

the dataset through a PTT, which is the most popular bulletinboard system in Taiwan.

PTT includes at least1.5 million registered users and more than20000 boards. On the

whole, PTT is one of the largest forums, and users post more than20000 articles every-

day. We gather the articles from the most popular board in PTT, and we totally collected

5700 articles in10 days from April11 to April 20, 2014. Then, we use the information

in the articles to be the input of requests and workers. For simulating spatial-temporal

requests, we extract IP addresses of the articles. The IP addresses are assumed to be the

requested locations, and the posted time is the start time ofthe time window of the re-

quest. We use triangulation [29,30] to approximate geo-locations from their IP addresses.

We hired three servers to be the anchors to help us to acquire the geo-locations from each

IP address. In specific, the servers ping each IP address and analyze the round-trip time
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(RTT) to measure the distances between the target IPs and theservers. Then we estimate

the real location according to these distances. Furthermore, we divide Taiwan into grids,

and we determine the real location on grids of each IP address. We compute the mean

squared error between grids and estimated locations, and weset the estimated locations

to appropriate grids with minimal mean squared error. Besides, we randomly assign two

grids to be the source and destination of each worker. Moreover, we simulate the mobil-

ity of idle workers by random waypoint model. Because workerswon’t stay at specific

locations too long, we let workers change their moving ways in a pre-defined period. If

workers received requests, they stop following the random waypoint model. They follow

the assigned detour path, and they keep following the randomwaypoint model after they

finish whole requests.

We implement a traced-driven simulator in Java, and the simulator is driven by the

PTT dataset. Each request use the real posted time be the begin time of time window.

Then we randomly assume its fake posted time is uniformly early in [1, 5] hours and the

end time of time window is uniformly later in [1, 5] hours. The profit is distributed in [1,

40] U.S. dollars. The required quality of requests varies form1, 2, 3, 4, 5. The service

time is uniformly distributed in [1, 3] minutes. The request energy cost is in the work [10].

Each worker randomly chooses two locations from dataset to be his/her source and end

locations, and we let the larger posted time of the two locations to be the deadline of the

worker. The battery levels of workers are uniformly distributed in [20%, 80%]. In our

experiments, we considered100 workers and varied the number of queries in [50, 100,

200, 400, 800], and we also fixed the number of requests to800 and varied the number of

workers in [50, 100, 200, 400, 800].

In the following, we introduce the performance metrics for evaluating our solutions:

1) profit as the total reward of performed requests takes out the moving cost among the

locations of requests; 2)traveling costas total consumed energy (e.g. gasoline) of work-

ers in moving, and we represent the consumed energy by joule (J); 3)completed requests

ratio as the number of requests, which are completed with satisfiedqualities and per-

formed within time-windows, over the total number of requests. In our experiments, we

implement three algorithms: 1) multi-users detour planning algorithm (MDP), 2) detour

planning algorithm (DP), and 3) nearest algorithm (CROT). Wecompare MDP against

other two algorithms to evaluate the performance.

4.3.2 Results

Superior profits. Fig. 4.2 presents the average profit under varying the numbers of

requests. We observed that MDP is always better than DP and CROT. But MDP and
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Figure 4.2: Resulting profit with varying requests.

DP are achieve almost same profit when the number of request is50. The reason is that

the number of requests is relatively small than the100 workers,100 workers can perform

most requests in both solutions. When the number of request increases, MDP outperforms

DP and CROT. MDP achieves at most1.4 times profits of DP at the number of request is

800, and MDP earns at least1.9 times profits of CROT.

Efficient movement. Fig. 4.3 presents the average traveling cost under varying the

numbers of requests. The figure shows that CROT consumes less traveling cost than

MDP and DP. Because CROT assigns requests to nearest workers, workers consume less

traveling cost to arrive at locations of nearby requests. Even CROT saves more traveling

cost, CROT achieves less profits than MDP and DP (Fig. 4.2). We observed Fig. 4.3 and

Fig. 4.2 when the numbers of request are50 and800. Separately, MDP consumes1.1 and

1.2 times traveling cost of CROT, but MDP achieves1.9 and2.9 times profits of CROT.

When the number of requests is100, MDP saves51% traveling cost compared to DP ,

and achieves1.26 times profits of DP. Thus, MDP assigns workers more efficient than DP

and CROT while maximizing the profits.

Limited workload. Fig. 4.4 presents the completed requests ratio under varying the

numbers of requests. MDP achieves95% completed requests ratio at the number of re-

quests is50, and MDP finishes more requests than DP and CROT about14% and47%,

separately. However, the differences between the algorithms are gradually decreasing

when the number of requests is increasing. Because the numberof workers is fixed to100
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Figure 4.3: Resulting traveling cost with varying requests.
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Figure 4.4: Resulting completed requests ratio with varyingrequests.
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Figure 4.5: Resulting the running time with varying requests.

and many temporal constraints, they can’t perform a large number of requests. When the

number of requests is800, MDP still achieves more requests than DP and CROT about

20% and45%, respectively.

Real-time computation. Fig. 4.5 presents the running time under varying the num-

bers of requests. When the number of requests is smaller than400, we observed that MDP

is slower than CROT. Even MDP consumes a little bit more time than CROT, the compu-

tation of MDP is still in a real-time, which is less than3 seconds. Nevertheless, MDP is

faster than CROT when the number of requests is larger and equal than400. MDP spends

at most4.7 seconds when the number of requests is800, and MDP is5 seconds and2

seconds faster than DP and CROT, respectively.

Raising overall profits. Fig. 4.6 presents the average profit under varying the numbers

of workers. We observed that three algorithms rapidly increase the average profit at the

number of workers from50 to 200. Because the number of requests is800, the50 to 200

workers could easily perform some requests of them. MDP stably increases until there

are800 workers, but the overall profit still increases. When the number of workers is

800, MDP achieves2.64 times profits of CROT. When the number of workers is50, MDP

achieves1.6 times profits of DP. Even the achieved profits are close between MDP and

DP while increasing number of workers, MDP outperforms DP all the time.

Assigning workers well. Fig. 4.7 presents the average traveling cost under varying

the numbers of workers. We noticed that MDP consumes less traveling costs than others
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Figure 4.7: Resulting traveling cost with varying workers.
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Figure 4.8: Resulting completed requests ratio with varyingworkers.

when the number of workers is larger and equal than200. It reveals that MDP makes good

assignments when large numbers of workers are in the system,and MDP only consumes

at most1.35 times traveling cost than CROT when smaller numbers of workers are in the

system. But achieved profits from MDP are10 and3 times against CROT when numbers

of workers are50 and100. Moreover, MDP saves up to83% traveling cost compared to

DP when the number of workers is800.

Fine completed ratio. Fig. 4.8 presents the completed requests ratio under varying

the numbers of workers. We found that MDP and DP achieves nearnearly100% and

83% completed requests ratio when the number of workers is400. There are two reasons.

1) MDP assigns as many workers as possible to achieve the required quality, which is

evaluated from the accuracy model. 2) MDP assigns a worker toa location of a request,

which closes to some requests, and the worker may perform them to reach required quality

and earn more profit. Otherwise, we think that DP assigns workers to achieve their optimal

profit, but the assignment from DP may be not appropriate under some cases, such as a

worker receives a request which is closer to other workers.

Scalability. Fig. 4.9 presents the running time under varying the numbersof workers.

We observed that MDP is faster than DP and CROT in each case, andMDP achieves3.4X

and2.3X speed up compared to DP and CROT when the number of workers is800.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

• In this thesis, we propose a mobile crowdsensing (MCS) system, and we discuss

the detour planning problem and the extended multi-users detour planning prob-

lem. The difference between the orienteering problem with time windows and the

proposed problems is the more consideration about feasiblespots, traveling cost,

energy consumption, and the accuracy of sensory data.

• In MCS system, workers aim for maximal profit and perform everyrequest within

its time and energy constraints. Moreover, workers must arrive at their destination at

the planned time. We mathematically formulate the single-user and multi-users de-

tour planning problems, and we address detour planning algorithm (DP) and multi-

user detour planning algorithm (MDP) to solve the two problems, respectively.

• Furthermore, we implemented traced-driven simulators to simulate the MCS sys-

tem, and we use a real dataset, which is collected in10 days from PTT, the most

popular bulletin board system in Taiwan. The simulation results of DP show that

our algorithm: (i) outperforms the other algorithms by up to100% improvement,

(ii) runs efficiently and always terminates within82 ms, and (iii) is able to scale

to larger problems. The simulation results of MDP show that MDP: (i) achieves at

most1.4 times the profit of DP and2.9 times the profit of the baseline, (ii) saves

up to51% energy compared to DP, (iii) achieves almost100% completed requests

ratio if workers are sufficient, and (iv) runs in the real-time (< 21s).

33



5.2 Future work

• We plan to improve the mechanism of submitting the results. How to efficiently

upload the results to the crowdsensing system with correct timestamps and GPS

data is important. Workers have diverse network conditionsand different sizes of

results. We need to decide which results should be uploaded in different network

conditions. The mechanism of uploading results also influences the performance

of the system. Workers may perform the task in correct time, but they upload them

later due to the worse network condition. We have to distinguish whether the results

are feasible or not. Furthermore, we could also find malicious workers who upload

results in wrong timestamps and GPS data. Since there are privacy issues, workers

may not agree to provide their tracks.

• We think that our MCS system is possible to attract many workers to participate

into the system, so the MCS system is appropriate for urban computing by utilizing

these workers. The city planners can submit specific requests to detect the environ-

ment of the city and track the mobility of workers to analyze the traffic condition

or the usage of land. Thus, workers can help the city plannersto plan the future

constructions.

• Due to the difficulties of deciding rewards, we plan to gamifyour crowdsensing

system, which workers must pay for playing games. We transfer profits/rewards to

scores of games, and we use the augmented reality technique to trigger games. The

challenges are to unify games to the system and players play games smoothly.

• We plan to implement a working prototype on Android smartphones. Thus, we can

design the experiments for real workers, and we may deploy a practical system.
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