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中中中文文文摘摘摘要要要

本篇我們著重在設計、實作並測量 H.264/SVC解碼器，將此解碼

器移植到多核心行動裝置上，並支援 HTTP影像串流功能。 我們實

作的解碼器使用多執行緒，充份發揮多核心的特性，除此之外，影像

串流伺服器及用戶端皆支援可動態調整的 HTTP影像串流。 我們為

了測量解碼器的效能，在 Android的平版電腦及智慧型手機上進行實

驗，播放 H.264/SVC影片來獲得數據。依照實驗結果顯示，在多核

心的 Android行動裝置上進行即時解碼是可行的。舉例來說，當播放

960x544的影片時，解碼器的畫面更新率（FPS，畫面數／秒）可以達

到20.72 FPS；當播放 480x272的影片時，畫面更新率可 42.03 FPS。除

了對解碼器進行測量外，我們另外做了影像串流的實驗，分別在WiFi

跟 3G網路下使用 HTTP影像串流。使用 HTTP影像串流時，我們的

解碼器最高可達到 42 FPS，以及短暫的初始延遲（約 2.5秒）。我們

進一步擴充我們的測試平台，支援MPEG-DASH標準以及導入 SDL函

式庫。 MPEG-DASH套用 SVC可帶來下列益處：(1)可以降低串流伺

服器的儲存需求；(2)跟伺服器要求的檔案可以重複使用達到減少伺服

器的負擔；以及 (3)可以更快速地回應調整影片畫質的請求。我們對

MPEG-DASH以及 SDL進行實驗。實驗結果顯示資料產出量每秒最高

可達到 15 Mbits，播放 360x180的影片，解碼器可達到至少 50 FPS。

最後，我們也將已建置的測試平台開放給研究社群使用。
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Abstract

We design, implement, and evaluate an H.264/SVC decoder andan HTTP
video streaming client on multi-core mobile devices. The decoder employs
multiple decoder threads to leverage multi-core CPUs, and the streaming
server/client support adaptive HTTP video streaming. To evaluate the de-
coder performance, we conduct experiments using real H.264/SVC videos
on a tablet and a smart phone running Android 4.0. Our experimental results
demonstrate that real-time H.264/SVC decoding is feasibleon multi-core mo-
bile devices. For example, for 960x544 and 480x272 videos, our decoder
achieves up to 20.72 and 42.03 Frame-Per-Second (FPS), respectively. We
also conduct extensive HTTP video streaming experiments over live WiFi and
3G cellular networks. Our system achieves high frame rate (up to∼42 FPS),
and short initial delay (as small as∼2.5 secs). We extend our testbed to sup-
port MPEG DASH (Dynamic Adaptive Streaming over HTTP) standard and
SDL (Simple DirectMedia Layer) library. The benefits of MPEG-DASH with
SVC are that (i) the storage space requirement is reduced, (ii) segments can
be reused to reduce server overhead, and (iii) switching events are performed
faster. Last, we conduct experiments using MPEG-DASH standard and SDL
library. The results show that the throughput of MPEG-DASH achieves up to
∼15 Mbits/s, and our decoder achieves at least 50 FPS for 360x180 videos.
We have made our testbed publicly available to the research communities.
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Chapter 1

Introduction

Mobile video streaming is getting increasingly popular. Video streaming will ac-

count for more than 70 percent of mobile data traffic in 2019 according to the Cisco’s

report [10]. The mobile data traffic will achieve 24.3 ExaBytes per month in 2019, which

is 10 times the traffic in 2014. It means a majority of users areusing their mobile device

to watch videos. It is important to provide better user experience for mobile streaming

services. The traditionalnonscalable video coders encode video into a stream, which can

only decode the video stream at one single quality. Nonscalable coders are less suitable

for mobile video streaming since they can not timely respondto heterogeneous mobile

devices and adapt to dynamic wireless network conditions. In contrast,scalable video

coders encode each video into one based layer and a number of enhancement layers. The

based layer provides the basic video quality, and the enhancement layers provide the in-

cremental quality enhancements. H.264/SVC [19] is the novel scalable coding standard,

but has not been widely used for mobile video streaming because there is no efficient

H.264/SVC decoder on resource-constrained mobile devices. For illustrations, we con-

sider five different types of H.264/SVC videos, which are encoded in multiple resolutions

at 24 FPS. Fig. 1.2 to 1.6 are the screenshots of the videos which are contents courtesy

of CBC/Radio-Canada. All of these videos are originally the full High-Definition (HD)

videos and we compute the Peak Signal-to-Noise Ratio (PSNR) inChapter 6. Table 1.2

lists the descriptions of these five videos. We plot theSpatial Information (SI) andTem-

poral Information (TI) [14] of each video in Fig. 1.7. The SI means the complexity of

frames. The frame with more components has higher complexity. We calculate the com-

plexity of each frame and set the maximum one as the SI. We alsocalculate the TI for all

videos. TI is the complexity of two continuous frames. The higher TI means the more

difference between two continuous frames. In Fig. 1.7, if the point is close to the top right,

it means that video has higher complexity. For example,sport has a lot of fast moves

so that it has the highest TI. Most frames of talk are the humanface and there are a few

1



Table 1.1: SVC Decoders are not real-time on a laptop.

Decoder doc jeux soap sport talk

JSVM 17.75 (FPS) 20.36 19.44 17.44 19.11

OpenSVC 18.79 27.03 20.79 18.71 24.26

Table 1.2: Videos Descriptions

Video Description

doc
a documentary video talking about a woman who

lost her house

jeux a live show video about the guessing games

soap an action style soap video

sport
a sports news video including volleyball,

basketball, swimming, etc.

talk a talk show video

fast moves in the video, which leads to the lowest SI and TI. Wedecode the videos using

two single-threaded decoders, JSVM and OpenSVC, on a laptop with an Intel i5 2.3 GHz

CPU running OS X. Table 1.1 presents the average FPS, which shows that the existing

H.264/SVC decoders may not run in real-time on laptops, let alone on mobile devices.

Recently, many multi-core mobile devices have been released, which may allow true

parallelism for real-time applications such as H.264/SVC decoders. In this work, we de-

velop an SVC decoder for multi-core mobile devices. Fig. 1.1gives a screenshot of our

streaming client, and the decoder running on an Android 4.0 mobile phone which is devel-

oped in our previous work [15]. To provide better event handler and larger display space,

we also design the new User Interface (UI) which is detailed in Sec. 5.3. We conduct

real experiments using HD videos with diverse characteristics on various mobile devices.

The experimental results are very encouraging. For example, our decoder achieves up to

20.72 FPS for 960x544 videos, and 42.03 FPS for 480x272 videos on commodity multi-

core mobile devices. When streaming scalable videos over HTTP to a quad-core Android

phone, we also achieve high frame rate, as high as∼42 FPS, and short initial delay, as

small as∼2.5 secs.

To the best of our knowledge, that software-based video decoders are inherently more

power-hungry than hardware-based solutions, as we have observed in our evaluations.

Unfortunately, there exists no massively-produced SVC decoder chip at the time of writ-

ing. We believe this is because the benefits of SVC have not been evaluated in the wild.

Our end-to-end scalable video streaming testbed can be usedby the mobile multimedia

community for setting up complete SVC-based testbeds. We firmly believe that this will

stimulate more research studies on SVC and the production ofSVC decoder chips. There

is a technology has similar idea to SVC, which is dividing the video into a lots of small

2



Figure 1.1: Our client and decoder running on an Android phone.

Figure 1.2: Screenshot ofdoc video.

Figure 1.3: Screenshot ofjeux video.

3



Figure 1.4: Screenshot ofsoap video.

Figure 1.5: Screenshot ofsport video.

Figure 1.6: Screenshot oftalk video.

4
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Figure 1.7: The SI and TI for each video.

chunks, called adaptation streaming.

In the recent years, the HTTP protocol streaming has become the most popular ap-

proach for delivering multimedia contents. In particular,adaptation HTTP streaming al-

lows clients to switch to different streams on the fly. In 2012, MPEG published the adap-

tation HTTP streaming standard, called MPEG-DASH standard. We extend our system to

support MPEG-DASH standard (see Sec. 5.2) and conduct the experiments in Chapter 6.
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Chapter 2

Related Work

Although there are commercial H.264/SVC decoders [4, 5], their implementations

are proprietary and thus are less suitable for research projects. There are two publicly

available H.264/SVC decoders: (i) Joint Scalable Video Model (JSVM), which is the

reference software of the H.264/SVC standard, and (ii) OpenSVC decoder [11], which is

an open-source project, but has not been ported to modern mobile OS’s. For this project,

we build a multi-core decoder on Android using the library offered by the OpenSVC

project.

Mueller and Timmerer propose a session mobility testbed streaming based on Dy-

namic Adaptive Streaming over HTTP (DASH) [17], which employs nonscalable videos.

In a more recent work, Mueller et al. conduct DASH streaming experiments [16] using

scalable videos. Their work focus on adaption processing and compares the performance

among the MPEG-DASH and proprietary solutions. The concerned metrics are average

bit-rate, number of quality switches, buffer level, and unsmooth seconds, between AVC

and SVC with MPEG-DASH. Their traces are recorded by cellular network by car drives

on three different highways. The results show that MPEG-DASH with H.264/SVC out-

performances than MPEG-DASH with AVC. Sieber et al. [20] proposed new adaption

algorithm compares with other three existing adaption algorithms on H.264/SVC MPEG-

DASH streaming. Their algorithm achieves high playback quality, high bandwidth uti-

lization, low switching frequency, low memory consumptioncompared with other three

algorithms. Sanchez et al. [13] work focus on proxy cache andcompares MPEG-DASH

with H.264/SVC and MPEG-DASH with H.264/AVC video streaming on VoD service.

The results show that the SVC streaming can reduced the server overhead, because of

SVC layered structure can fully utilize the proxy cache. SVCstreaming can provide more

number of clients than AVC streaming, because of proxy hit-rate is higher.

All of above works are focus on Networks performance, such ashow to increase

the Quality of Experiment (QoE) to provide highest quality,and how to reduce stalling

6



frequency. Our work is complementary to [16] in the sense that we develop a real-time

MPEG-DASH with H.264/SVC decoder on Android OS and build an end-to-end HTTP

streaming testbed. Our work not only evaluation the performance of Networks but also

evaluate the H.264/SVC decoder. Since we make our code publicly available [9] for

research community. We want to let more people to understandthe benefits of MPEG-

DASH with SVC and apply this system in the real world.

7



Chapter 3

Background

In this section, we will introduce the idea of H.264/SVC and MPEG-DASH standards.

3.1 H.264/SVC Standard

The traditional video coders are nonscalable which is not suitable for heterogeneous

mobile devices, such as H.264/AVC. When we encode the video, weneed to configure

encoding parameters, like frame-rate, resolution, and coder. For nonsacalable video cod-

ing, we encode one stream per configuration, therefore we need a lot of spaces to store

multiple versions of videos. The client needs to choose the proper version of video to

display. If the client chooses the wrong version, it will stall while playback or will spend

too much resources for decoding. The scalable video coding is a better solution to solve

this problem.

H.264/SVC standard [19] extends H.264/AVC standard [22] tosupport scalable video

coding. The idea of SVC is a layered structure which divides the video into multiple

layers. H.264/SVC provides three scalable features: temporal, spatial, and quality: (i)

T temporal layers, where each layer leads to a different framerate, (ii) S spatial lay-

ers, where each layer leads to a different resolution, and (iii) Q quality layers, where

each layer leads to a different fidelity level controlled mostly by quantization parameters.

When decoding an H.264/SVC stream, user selects a tuple<t, s, q> and decodes the cor-

responding sub-stream for the target representation of frame rate0 ≤ t < T , resolution

0 ≤ s < S, and fidelity level0 ≤ q < Q. These sub-streams allow multimedia sys-

tems to conserve resources by not, e.g., storing, transmitting, buffering, uncompressing,

or rendering some layers.

For each scalable feature, the layers are split into two types, based layer and enhance-

ment layer. There are only one based layer and one or more enhancement layers for SVC

video stream. Based layer contains necessary data for decoding. Client displays the worst

8
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quality video, if decoder only decodes based layer. The worst quality can be defined

by lowest frame-rate, smallest frame size, or worst fidelitylevel, according to encoding

configuration. Enhancement layers provide extra information for enhancing fidelity level,

frame-rate, or resolution. The SVC is a layer dependent structure. For instance, the higher

enhancement layer depends on the lower enhancement layer and the lowest enhancement

layer depends on the based layer. In other words, if the decoder is missing the based

layer, decoder cannot decode any frames. If decoder is missing enhancement layers, the

video stream can’t be enhanced any more. The following are description of examples for

scalable features.

• Temporal Scalability. Fig. 3.1 is an example of temporal scalability. Temporal

layer number is0 ≤ t < 3. Temporal layer 0 means based layer, temporal layer 1

means enhancement layer 1, and so on. The GOP size for this example is 9. This

figure shows that the based layer includes 3 frames. Enhancement layer 1 provides

4 more B frames for enhancing. There are total 7 frames when decoding based

layer and enhancement layer 1. We assume the frame-rate is 27when decoding all

temporal layers (t = 2). The frame-rate is decreased to 9 when decoding only based

layer. Therefore, more temporal layers leads to higher frame-rate.

• Spatial Scalability. The example of spatial scalability is shown in Fig. 3.2. There

are two layers, based layer and enhancement layer (0 ≤ s < 2). If number of spatial

layer is increasing, the resolution of decoded frames are higher. Each enhancement

layer frame references correspond to based layer frame data. The enhancement

layer reconstructs the higher resolution frame according to the based layer frame

data and its frame data. So, the enhancement layer data only store the difference

between higher and lower resolution data.

• Quality Scalability. Fig. 3.3 is an example of quality scalability. The reference

structure of quality scalability is like the combination oftemporal and spatial scal-

ability. The lower quality layer has a worse fidelity level. The enhancement layer

not only reference the lower layer data but also the previousframe data in the same

layer.

User can select the appropriate number of layers to decode while using scalable video

coding. We know that the android mobile devices are heterogeneous, such as different

screen size and computation power. If screen size of mobile device is 1280x720, the user

does not want to decode 4K video. Likewise, if computation power of android mobile

device is not powerful to decode the full-quality SVC stream, decoder can ignore some

enhancement layers to meet the device computation power. That is why scalable video

coding is more suitable for nonscalable video coders for heterogeneous devices.

10
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3.2 MPEG-DASH Standard

For recent years, HTTP protocol becomes a popular approach to delivery multimedia

contents. Traditional streaming protocol, likeReal-Time Streaming Protocol (RTSP), is

a stateful protocol. The drawback of stateful protocol is that server needs to maintain

the connection state after setting up the connection between client and server. Server

and client need to send and respond the messages to keep tracking the connection state.

The better approach to deliver multimedia content is using HTTP-based approach. HTTP

protocol is stateless protocol so that server does not need to maintain the connection. The

server responds to the media streams when it receives the HTTP request from client. It’s

easier to scale up number of streaming clients with slight cost. Other benefit of HTTP

protocol is that HTTP can reuse the infrastructure, like CDNs, proxies, and caches. To

compare with traditional streaming approach, HTTP protocol is easy to go through the

firewall and without NAT traversal issues.

11



For the past few years, progressive download is used for transferring the multimedia

contents over HTTP. By using progressive download, client requests byte range of mul-

timedia contents from server. If client stops to watch videowhile multimedia contents

are downloading, the downloaded media data becomes uselesswhich leads to waste the

network resources. Progressive download has another drawback which does not support

switching to other streams during the downloading. The adaptive HTTP streaming can

solve the drawbacks of progressive download.

The adaptive HTTP streaming consists of two components, manifest file and seg-

ments. There are some existing solutions of adaptive HTTP streaming, such as Apple

HTTP Live Streaming, Adobe HTTP Dynamic Streaming, and Microsoft Smooth Stream-

ing. But the mentioned solutions are the proprietary solutions. The problem of propri-

etary solutions is that they are incompatible to each other.Hence, MPEG published the

adaptive HTTP streaming standard with Third Generation Partnership Project (3GPP),

companies, and experts, and called it MPEG-DASH [2]. The idea of MPEG-DASH is

chopping the video into multiple segments with the same segment length. The segment

length is defined by display time. The MPEG-DASH segments aredivided into two types,

initial segment and media segment. The manifest file of MPEG-DASH is calledMedia

Presentation Description (MPD).

Fig. 3.4 is a simplified hierarchical structure of MPD which is written byeXtensible

Markup Language (XML). In this example, the outermost layer is called Periodand the

innermost layer is called Segment List. Each MPD includes a number of Period layers.

The Period defines the start time and period of time for partial video. Period can be

considered as a set of continuous segments. For each Period,it contains multiple Adap-

tation Sets. The Adaptation Set is a video or an audio track. If we have two different

language voice and three different videos, there are total 5Adaptation Sets inside the Pe-

riod. Each Adaptation Set includes multiple Representations. The Representation is one

version of stream. In other words, if we encode the video intofour different resolutions,

there are 4 Representations inside the Adaptation Set. Representation defines the aver-

age bit-rate, resolution for video stream, and sample rate for audio stream. Client side

switches to different Representations according to the measured information, like current

available bandwidth, state of buffer which is used for storing the downloaded segments,

or user preference. Client can only request the segments inside the selected Representa-

tion. Fig. 3.5 is the overview of MPEG-DASH with H.264/AVC. The Web Sever stores

the different versions of H.264/AVC media contents. The medium of figure is measured

bandwidth. The client side based on measured bandwidth to select the appropriate seg-

ment and requests it.

The MPD structure in Fig. 3.5 is nonscalabe video streaming.The difference between
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nonscalable and scalable streams are: (i) Representation isequal to specific layer for

SVC. For example, if video encoded into 5 layers, there are 5 Representations. (ii) Client

requests the segments from multiple Representations for SVCstreaming rather than from

one of Representations. If user want to display the lowest quality video stream, client

requests the based layer segments from the Representation. For the MPEG-DASH with

H.264/AVC, client focus on how to choose the most suitable stream to request. For the

nonscalable screams, how to obtain the sufficient accuracy for measured information to

choose the stream is the most important point. If measuring result is not precise enough,

the segment can’t be downloaded completely before deadline. In contrast, the point of

MPEG-DASH with SVC video streaming is to download as more enhancement layers

as possible for client. If bandwidth is decreasing rapidly while requesting the segment

of enhancement layer, client can cancel downloading segment and display video without

stalling.

As we mentioned, we need to encode the multiple versions of videos for nonscalable

video coders. For scalable video coding, we only need to encode one version and provide

multiple features of videos. Hence, using SVC can reduce thespace requirement on the

streaming server side. For the SVC streaming, the requestedsegment can be used for all of

clients, like based layer. If some clients want to enhance the quality level, clients request

more enhancement layers. The segments are requested once and used for many times

so that reduce the overhead of the streaming server. For the traditional MPEG-DASH

streaming, client only can switch to the different streams at the boundary of segments.

If we use MPEG-DASH with SVC streaming, the client can switchthe layer number

not only at the boundary of segments but also switch the layernumber during playing the

segments. Using MPEG-DASH with SVC provides more flexible switch points than tradi-

tional MPEG-DAHS streaming. Therefore, MPEG-DASH with SVCstreaming provides

the better user experience than nonscalabe video streaming.
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Chapter 4

System Architecture

Fig. 4.1 is our system architecture which contains 9 components on both server side

and client side. The componentsMPD Generator andDASH Content are located at server

side, Web HTTP server. The other components, such asDASH Client, SVC Decoder, Ren-

derer, Switch Event Handler, andData Recorder, are on the android client. DASH Client

consists ofMPD Parser, Segment Requester, andExtractor. The following is simplified

step for each component.

1. Download the HD videos from [6], encode into H.264/SVC format, and generate

the segments and MPD.

2. Place the segments and MPD to somewhere that can be requested by client.

3. Download MPD and parse it to obtain video information.

4. Download corresponding video segments according to MPD information and se-

lected quality level.

5. Extract the non-decodable segments (i.e. different layer segments) and reconstruct

into a decodable segment for SVC Decoder.

6. Decode the SVC segment to obtain frames for rendering.

7. Display the decoded frames on the screen.

8. When switching event occurs, Segment Requester, Extractor, and SVC Decoder are

notified.

9. Data Recorder is recording the throughput, delay, and FPS while displaying.

Step 4 to step 7 is a loop, DASH Client keeps downloading and extracting, SVC Decoder

keeps decoding, and Renderer keeps rendering. The followingare the detailed description

of each component.
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Figure 4.1: System Architecture.

First, we describe the components on the server side. All components on the server

side are preprocess works. At the beginning, we download thefive HD videos,jeux,

doc, soap, sport, andtalk, which are available from [6]. The video contents are

courtesy of CBC/Radio-Canada. We encode these five HD videos into raw format (i.e.

yuv420p) videos with multiple resolutions by FFmpeg. The number of resolutions are the

same as the number of spatial layers of the SVC video. For example, if SVC video has 3

spatial layers, there are 3 different resolutions for raw videos. After getting raw videos,

we encode them into SVC format by JSVM. For each SVC video, there are one main con-

figuration file and multiple layer configuration files. The main configuration file defines

the location of output SVC video, number of layers, encodingframes, and locations of

each layer configuration files, etc. Each layer configurationfile defines encoding parame-

ter of its layer, such as location of raw video, resolution, frame-rate, and QP value, etc. If

this layer configuration file is an enhancement layer, there is one additional parameter to

indicate the dependent layer IDs.

Once the encoding process completes, MPD Generator uses GPAC [8] library to gen-

erate the MPD and to chop SVC video into one initial segment and multiple media seg-

ments. We divide the MPD Generator into three steps: (i) At first, GPAC tool parse

the SVC format video to acquire the number of layers, the resolution of each layer and

frames data. (ii) Second, GPAC imports the parsed SVC bit-stream into ISO Base Media

File Format (ISOBMFF). (iii) Last, GPAC chops the ISOBMFF file,which results from

GPAC importing, into one initial segment and multiple mediasegments. The chopped
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segments are also the ISOBMFF files. For the last step of MPD Generator, we only set

one parameter which is segment length, and others remain default. We place chopped seg-

ments and MPD files into DASH Content component which can be requested by clients.

In other words, these segments and MPD files can be addressed by accessible URL. So

far, the server side is ready for streaming.

On the client side, user selects one video at first for streaming. The DASH Client

starts to parse the corresponding MPD file and stores the information. The information in

MPD we’re concerned about includes the URL addresses of segment, number of layers,

layer dependency ID, and resolution for each layer. The mostimportant information is the

URL address, because other information is also stored insidethe segments. But we can-

not obtain the information from the segment until the segment is extracted by Extractor.

Based on the situation, we decide which component to use its information. The Segment

Requester operates on the basis of the selected quality level(i.e. download how many lay-

ers) and addresses of segments. Our quality selection is based on the user preference, and

this also can be decided by the algorithms. The Segment Requester keeps requesting the

new segment until the free space of buffer is not enough to store the segment. As we men-

tioned, the segment is ISOBMFF which means we cannot decode this segment directly.

To solve this problem, we implement the Extractor (more detail in Sec. 5.2.3). Once the

Extractor receives one segment, it starts to parse the ISOBMFF format. The ISOBMFF

format can be considered as a lot of different types of boxes.Each box contains two piece

of information: box header which includes box type and box size, and payload. Different

box types have different box structures and different payloads. Extractor parses the boxes

and acquires the media data from mdat box. If Extractor receives the dependency seg-

ments, it begins to reconstruct the media data into compatible format for SVC Decoder.

Once SVC Decoder gets the media data from Extractor, SVC Decoder starts to decode

(decoder implementation in Sec. 5.1). After SVC Decoder completely decodes one GOP,

the decoded frames are sent to Renderer and the Renderer shows the decoded frames on

the screen. The SVC Decoder and Renderer are the most important components in this

work. The steps from DASH Client to Renderer will keep going until player is stopped.

The last two components, Switch Event Handler and Data Recorder, are the auxil-

iary components. The Switch Event Handler can be triggered by algorithms or user itself

(implementation in Sec. 5.3). Once the Switch Event Handleris triggered, Switch Event

Handler sends the switching signal to DASH Client and SVC Decoder. For DASH Client,

Segment Requester needs to change the number of layers for requesting, and Extrac-

tor cancels the segments if layer number exceeds the selected layer number. For SVC

Decoder, decoder needs to change the decoding parameters and update the display size

according to resolution of displaying frame. During the display, the Data Recorder keeps
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measuring the information, like throughput, FPS, delay, etc. The recorded information

can be used by switching algorithms or performance analysis. The above are the de-

scriptions of our system, the next section talks about the implementation detail of SVC

Decoder, DASH Client, and Switch Event Handler.
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Chapter 5

Implementations

5.1 Multi-Core Decoder on Android Devices

5.1.1 Limitations of Single-Threaded Decoder

We first implement and evaluate a single-threaded SVC decoder on Android using

OpenSVC library [11]. Since OpenSVC decoder is implementedin C/C++, it cannot be

compiled as an Android application directly. Hence, we adopt Android Native Devel-

opment Kit (NDK) to embed the OpenSVC library as native functions, and we develop

a Java application, which interacts with these native functions via Java Native Interface

(JNI). We evaluate our single-threaded SVC decoder using two Android 4.0 devices, with

1.2 and 1.4 GHZ CPUs, respectively. We decode five 375-secs videos coded at 960x544

and 24 FPS , and we found that the achieved frame rates are always less than 50% of the

coded frame rates. Hence, we develop a multi-core H.264/SVCdecoder in the following.

5.1.2 Software Architecture of Our Multi-Core Decoder

Fig. 5.1 shows the software architecture of our multi-core decoder which is proposed

from our previous work [15]. It consists of two major components: (i) a Java front-end

and (ii) a native decoder. The native decoder is implementedusing Android NDK, and

is interfaced with the Java front-end using JNI. The Java front-end also interacts with

Android’s Java Framework offered by Android SDK. The nativedecoder consists of a

Coded Frame Buffer (CFB),H decoder threads, and a Decoded Frame Buffer (DFB). The

CFB holds the H.264/SVC video packets read from video files or networks. The decoder

threads concurrently reconstruct the raw frames from the video packets, and store the

resulting frames in the DFB.

Our SVC decoder works as follows. First, the Java front-end passes the initial argu-

ments to the native decoder, and asks it todecode. Once the decoded frames are stored
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Figure 5.1: Decoder architecture.

in the DFB of the native decoder, the Java front-endretrieves the frames. Last, the Java

front-end uses Android API todisplay frames in its DFB.

Our decoder threads employ the OpenSVC library [11] to decode the videos. Al-

though this seems to be straightforward at first glance, using OpenSVC library in multi-

threaded applications turns out to be fairly challenging because it is not designed to be

multi-thread safe. We had to pay extra attentions to avoid race conditions while invoking

functions in OpenSVC library. We make our decoder availableto the research commu-

nity [9].

5.1.3 Parallelism Strategy

Our decoder employs multiple decoder threads, where each thread works on agroup

of video packets at each moment. The groups are determined bya parallelism strategy.

Several parallelism strategies have been proposed, e.g., at macro-block (MB), frame, and

GOP levels [12, 18]. There are data dependencies among groups of video packets. That

is, before decoding the next group of video packets, the thread must check its depen-

dency. Each strategy has its advantages and disadvantages.For example, MB-level par-

allelism realizes finer-grained groups at the expense of complex group inter-dependency.

GOP-level parallelism minimizes the interdependency among groups but demands more

memory due to larger DFBs. GOP-level parallelism leads to thehighest possible FPS,

and hence we implement GOP-level parallelism in our decoder. In particular, we em-

ploy pthread to implement GOP-level parallelism. Other strategies are also possible by
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redefining the groups, which is one of our future tasks.

5.1.4 Porting SDL Library as Renderer to Decoder

The SDL library is a popular cross-platform library to handle video and audio, and to

access user inputs, like screen touch event and keyboard event. We found that the step 2

in our decoder architecture (Fig. 5.1) copies the data from native side to Java front-end

by JNI. Every time for displaying, decoder movies large datafrom DFB from native side

to Java. Because of decoder uses Android API to render the frames. If decoder uses the

renderer in the native library, the step 2 can be removed fromour decoder architecture.

Hence, we port the SDL library to render the frame in native side rather than Android

API. Fig. 5.2 is our new decoder architecture with SDL library. After porting the SDL

library into our decoder, decoder can render the frames by SDL library directly. We know

that there is an event queue inside the SDL library. Each event, including SDL predefined

events and costumed events, will be put into event queue. If decoder, which without SDL,

handles input events, it possible can not get the user eventswhen rendering thread is

displaying on Java front-end. The reason is that Android main thread is charging of all UI

events, like rendering and screen touch event. When main thread is displaying, the screen

touch event can not be captured at the same time. Porting SDL library which enables to

use the frame buffer in the native side directly and to handleUI events easier.
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5.2 MPEG-DASH Client with SVC Decoder on Android

Devices
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Figure 5.3: libdash architecture.
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Figure 5.4: Our DASH client archi-

tecture.

5.2.1 Architecture of DASH Client

OurDASH Client is based on libdash library and we will describe our DASH Client in

this section. The libdash is open source library available from [7] and Fig. 5.3 is libdash

architecture. This library is implemented by c++ and has QT based simple player. The

QT based simple player contains QT UI, MPD Parser, DASH Framework, Requester,

Decoder, and QT Renderer.

The first component in libdash isMPD Parser. The MPD Parser is based on libxml

library and MPD file is written by XML. After parsing the MPD, the data will be stored

into DASH Framework component, such as number of layers, frame-rate, resolutions,

address of segments and dependency layer ID. The Requester component is based on

libcurl library. This Requester in charge of all TCP connections. Requester requests

the segments from DASH server according to the parsed information which are stored

inside DASH Framework. TheDecoder in libdash uses libav as decoding library, and it
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is locked until receives the segment from Requester. After decoding, the decoded frames

are rendered by QT Renderer.

We reference libdash architecture and modify some components to support SVC stream-

ing. Fig. 5.4 is our DASH Client architecture. We modify the DASH Framework and Re-

quester to support SVC streaming and insert new component called Extractor (Sec. 5.2.3)

to our DASH client. We also switch the UI from QT to Android, design interfaces for

DASH Client, and integrate with our SVC Decoder.

5.2.2 Supporting H.264/SVC MPD Format

The general MPD file does not support SVC streaming. The structure of MPD for

non-scalable video streaming is not the same as the structure of MPD for scalable video

streaming, such as attributes and location of elements. Forinstance, each Representation

contains one initial segment in general MPD, but there is only one initial segment for SVC

format MPD. The initial information is located in Representation section for non-scalable

streaming. For SVC streaming, initial information is located in Initialization section.

The MPD Parser checks Representation section first, if initial segment is not found, then

checks Initialization section. For non-scalable streaming, Requester requests one initial

segment followed by one media segment. The number of requested initial segments is the

same as media segments. For the SVC streaming, Requester requests the initial segment

at beginning and remainder segments are media segment. But the SVC segment cannot be

decoded by SVC decoder directly, we need an Extractor to dealwith SVC media segment.

5.2.3 SVC Segment Extractor

The SVC decoder unable to decode segments directly. The reason is that segments are

ISOBMFF format. Each SVC segment contains a lot of boxes , so segments cannot be de-

coded by SVC decoder. In order to solve this problem, we implement the Extractor. The

purposes of Extractor are parsing boxes to get information and obtaining media data from

segments. Once Extractor receives the segment, Extractor starts to parse the boxes.The in-

formation we concerned are layer ID, segment length, numberof frames from downloaded

segment and media data. If Extractor receives based layer segment, Extractor reconstructs

the media data frame by frame. If Extractor receives the layer-dependency segments, Ex-

tractor reconstructs the media data into decodable form forSVC decoder. The approach

of reconstruction for multiple layers is interleaving. Foreach iteration, Extractor inserts

the NAL header followed by the corresponding frame data fromlowest layers segment to

highest layer segment and combines into one decodable framedata. After reconstructing,

SVC decoder is able to decode this kind of data.
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5.3 Switching Event Handler

This section describes the user interface of switching events which include switch to

higher or lower resolution and frame-rate. At first, we design menu as our user interface

to trigger switching events (Fig. 1.1) which is designed in our previous work [15]. As our

knowledge, android API provides few kinds of menu, Option Menu and Context Menu.

For Option Menu, user clicks the menu button to show the switch options and selects one

switching event. For Context Menu, user presses on the screenfor 1 second and options

are showed on the screen, then selects switching event option. This approach, using menu

to show options for user selection, needs at least two operations, showing option list and

selection.

For reducing the number of operations, we design the gestureas our new interface

for switching. We also increase the display size by removingthe title and menu bar.

Gesture only has one operation which is sliding. We define four directions for different

switching events, like Fig. 5.5. Sliding up and sliding downmean switch to higher and

lower resolutions, respectively. Sliding left and slidingright mean switch to lower and

higher frame-rate, respectively. Once user selects a switching event, the switching signal

is sent to MPEG-DASH Client and SVC Decoder. MPEG-DASH Client according to

switching signal to request proper number of segments, and SVC Decoder according to

spatial ID and temporal ID to decode the video frames.

The scope of this work is focus on the real implementation of MPEG-DASH with SVC

streaming system. So far, the switching events of our SVC client are triggered by the user.
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The SVC client can use the algorithms to trigger the switching events. Algorithms have

two strategies for requesting segments: enhance the current segment quality or download

the segments for future time slots. The decision of algorithms are based on available

bandwidth, client buffer state, etc. Using algorithms to download the proper segment is

our future work.
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Chapter 6

Experiments

6.1 Multi-core SVC Decoder

6.1.1 Videos and Setup

We consider five HD videos:doc, jeux, soap, sport, andtalk, which are avail-

able online [6]. The videos are provided by a leading broadcast company in Canada, and

each of them lasts for 6 mins 15 secs, at 24 FPS. We encode each video using JSVM into

three spatial layers (S = 3): 960x544, 480x272, and 240x144, and each GOP contains 16

frames, which leads to five temporal layers (T = 5). We fix the quantization parameter

at 32; there is a single fidelity layer (Q = 1). The average video quality of the complete

streams across all videos is 44.16 dB in PSNR, and more detailsare summarized in Ta-

ble 6.1. We conduct the experiments on: (i) a dual-core tablet with a 1.4 GHz CPU, 1

GB memory, and a 1280x800 screen and (ii) a quad-core smart phone with a 1.5 GHz

CPU, 1 GB memory, and a 1280x720 screen. We decode each video with different tuples

<t, s, q> andH, and we report the average FPS (frame rate) over each video. We also

report the memory and energy overhead of our decoder.

6.1.2 Evaluation Results of SVC Decoder

We present sample results withq = 0 andt = 5.

Performance gains. We first report the performance improvement by usingH de-

coder threads. Figs. 6.1 and 6.2 present the FPS values at 960x544 resolution (s = 2)

on the tablet and the smart phone, respectively. We observe clear FPS increases for most

videos whenH increases from 1 to 3. For example, playingjeux on the smart phone

with H = 1 achieves an FPS of 12.08, while doing so withH = 3 leads to an FPS of

19.39, a 60% gain. However, the performance gain saturates at H = 4, and the FPS

gradually decreases whenH goes beyond 4. This can be attributed to the thread synchro-
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Figure 6.1: FPS, 960x544 videos on a tablet.
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Figure 6.2: FPS, 960x544 videos on a smart phone.
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Figure 6.3: FPS, 480x272 videos on a tablet.
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nization overhead, and the competition among our decoder threads and other Android

processes. We suggest settingH = 3 for 960x544 videos.

Fig. 6.3 presents the FPS values at 480x272 (s = 1) on the tablet. This figure shows

a smaller performance gain, compared to Fig. 6.1. However, note that the achieved FPS

values in Fig. 6.3 are as high as 42.03, much higher than the coded FPS of 24. In other

words, decoding 480x272 videos incurs lower computationalcomplexity and thus leaves

smaller rooms for performance improvement. Indeed, the performance drops onceH > 2.

We suggest settingH = 2 for 480x272 videos.

Tradeoff between resolutions and frame rates. Fig. 6.4 compares the FPS at dif-

ferent resolutions on the smart phone. It is clear that decoding 480x272 videos is at least

two times faster than decoding 960x544 videos. This revealsan important tradeoff: for

real-time decoding at 960x544, wemust reduce the frame rate to 12 FPS (t = 3). This

indicates that a user may choose high resolution or high frame rate, butnot both. Similar

observations can be drawn from the results obtained from thetablet.

Memory consumption. We report the memory consumption of decoding 960x544

videos in Fig. 6.5, which shows that our decoder consumes more memory whenH in-

creases. Nonetheless, the total memory consumption at most∼1 GB, which is the com-

mon specification of medium- to high-end mobile devices at the time of writing.

Power consumption. We use Agilent 66321D mobile communications DC source [1]

to measure the power consumption of our SVC decoder. We also measure the power con-

sumption of mplayer-android [3] and the default hardware decoder for comparisons; these

two players only support H.264/AVC videos. For fair comparisons, we encode the videos

in AVC videos with the same quantization parameters. We report the device-level power

consumption with display brightness set to 50%. Fig. 6.6 presents the measured currents

on the smart phone. This figure shows that although decoding SVC videos is much more

complex, our SVC decoder only incurs small power overhead, as low as 7% during some

time periods, compared to mplayer-android. We present the average power consumption

in Table 6.2. This table shows that our SVC decoder consumes∼26% (smart phone) and

∼31% (tablet) more power than software-based mplayer, and mplayer consumes∼94%

(smart phone) and∼26% (tablet) more power than the hardware decoder.

6.2 Scalable Video Streaming over HTTP

6.2.1 Setup

We have also implemented an end-to-end H.264/SVC streamingtestbed over HTTP.

The testbed has a Linux server and an Android client using ourmulti-core H.264/SVC
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Table 6.1: Bitrate and PSNR of Videos

Resolution doc jeux soap sport talk

Bitrate (kbps)

240x144 450.60 282.77 376.46 619.60 254.19

480x272 1425.71 809.41 1018.51 1760.64 909.11

960x544 4637.29 2446.46 3133.69 5228.77 3304.90

PSNR (dB)

240x144 41.72 45.22 43.36 42.02 42.65

480x272 42.21 45.98 44.48 42.74 42.47

960x544 42.98 46.04 45.37 43.67 42.70

Table 6.2: Average Power Consumption (in Watts)

Decoder doc jeux soap sport talk

Smart Phone

Our Decoder 2.13 2.06 2.09 2.15 2.03

Mplayer (AVC) 1.68 1.60 1.67 1.69 1.65

Hardware (AVC) 0.86 0.88 0.81 0.88 0.83

Tablet

Our Decoder 7.94 7.84 7.87 7.96 7.89

Mplayer (AVC) 6.22 6.37 6.20 6.27 6.32

Hardware (AVC) 5.26 5.79 5.21 5.33 5.22
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Figure 6.7: Sample FPS of three resolutions, results

from jeux.
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Figure 6.8: Mean FPS of all videos with different res-

olutions.
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Figure 6.9: Sample throughput of three resolutions,

results fromjeux over 3G.
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Figure 6.10: Mean throughput of all videos with dif-

ferent resolutions over 3G.
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Figure 6.11: Mean transfer delay of all videos with

different resolutions.
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decoder. We configure each segment withg = 8 GOPs, number of decoder threads

H = 3, the circular buffer thresholdsl = 1.5 and b = 15 MB. We encode the five

HD videos into three resolutions: 300x158, 598x314, and 1196x628, which better fit

the screen resolution of our quad-core 1.5 GHz Android phones. We stream each video

over the WiFi and 3G cellular networks, with different resolutions, in our lab. We repeat

each experiment five times, and report average, minimum, andmaximum performance

whenever appropriate. The considered performance metricsare: (i) FPS, (ii) throughput,

and (iii) initial delay. The initial delay is further divided into two parts: transfer delay,

which refers to the time to fill up the circular buffer withl bytes, and decoder delay, which

is the time to render the first frame. We currently use a conservative heuristic to determine

the pre-buffering time, which leads to higher initial delayfor some videos. It is our future

work to address this issue.

6.2.2 Evaluation Results of HTTP streaming

Frame rate. We plot the instantaneous FPS of a sample run of streamingjeux over

a WiFi network in Fig. 6.7. This figure reveals that our HTTP scalable video streaming

client achieves 41+, 32+, and 20+ FPS with different resolutions, which are fairly accept-

able for mobile video streaming. Fig. 6.8 reports the mean FPS of five runs for all videos,

and the errorbars indicate the minimum and maximum FPS. Thisfigure is consistent with

the results in Fig. 6.7.

Network throughput. We plot the achieved network throughput when streaming

scalable videos at different resolutions. Figs. 6.9 and 6.10 present the throughput over 3G

from jeux and the mean throughput over 3G from all videos, respectively. These fig-

ures show that our HTTP scalable streaming client fully utilizes the available bandwidth:

generally, higher resolution leads to higher network throughput.

Initial delay. We present the initial delay, which is divided into the transfer and de-

coder delay. We plot these two delays in Figs. 6.11 and 6.12. These two figures reveal

that lower resolution leads to shorter delay. One way to leverage this property for mini-

mizing initial delay is to first play a video with the lowest resolution, and then switch to

the desired resolution once the buffer is filled. In particular, by doing so, the total delay is

between∼2.5 and∼4.0 secs as illustrated in Figs. 6.11 and 6.12.
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Figure 6.13: Streaming setup of MPEG-DASH.

6.3 Evaluation of MPEG-DASH Client

6.3.1 Setup

We port the MPEG-DASH standard into our H.264/SVC streamingtestbed. Fig. 6.13

is an architecture of our testbed with MPEG-DASH standard. Our testbed consists of

Linux web server and an Android client with our multi-threadSVC decoder and MPEG-

DASH Client module. In our Linux web server, we encode five HD videos into three

resolutions (S = 3): 320x180, 640x360, and 1280x720. We also generate corresponding

MPD and chop each video into multiple segments. We set the segment length to 5.12

seconds, the GOP size is 16 frames, and each segment containsg = 8 GOPs. In our

android client, we set circular buffer thresholds tol = 1.5 andb = 15 MB. We conduct

the experiment on quad-core 1.5 GHz Android phones with 1 GB memory and 1280x720

screen size.

6.3.2 Evaluation Results of MPEG-DASH Client

We show the average throughput of five videos with different resolutions for MPEG-

DASH streaming in Fig. 6.14. This figure reveals that the average throughput of MPEG-

DASH Client achieves up to 15 Mbits per second for 1280x720 video streams. For

320x180 video streams, the average throughput of MPEG-DASHClient achieves at least

2.5 Mbits per second. We observe the trend of average throughput is the same among this
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5 different types of videos. In other words, the higher resolution streaming has higher

throughput. It means the utilization of the available bandwidth is high in our MPEG-

DASH Client.

Fig. 6.15 is the instantaneous FPS of sample run result from streamingjeux. The

result of this figures is the same as our expectation. While streaming higher resolution

videos, MPEG-DASH achieves higher throughput For some sample points, the throughput

of higher resolution is less than the throughput of lower resolution. As we know, the

reasons are: (i) Bandwidth condition is changing while downloading so the throughput

is decreased. (ii) The free space of circular buffer is not enough for new segments, so

the requester threads are stopped. The network condition isvaried over time, therefore, a

more efficient buffering strategy and scheduling algorithmis necessary. This will be our

future work to further improve the system.

6.4 Effective SDL Rendering

6.4.1 Setup

We use the same testbed architecture as Fig. 6.13 in Sec. 6.3 and replace the Android

Renderer API with SDL library in our H.264/SVC decoder. In this experiment we encode

the five HD videos into three spatial layers (S = 3): 320x180, 640x360, and 1280x720

with 24 frame per second. We generate MPD and chop segments onthe Linux server. We

stream each video over WiFi in our lab and repeat 5 times. We use quad-core 1.5 GHz

Android phones with 1 GB memory and 1280x720 screen as our experimental streaming

client. We report the FPS for each video with varied resolutions and number of decoder

threads on Android smart phone.

6.4.2 Evaluation Results of SDL Rendering

Fig. 6.16 shows average FPS of the five videos with different number of decoder

threads. The FPS is enhanced by increasing the decoder threads toH = 2 on multi-core

device. When number of decoder thread is set to 2, the FPS is increased at least 1.5 time

than using only one decoder thread. The performance of FPS isdecreased for most videos

when number of decoder thread is≥ 3. The reasons are the overhead of multi-threading

synchronization and the resources competition among the processes, which includes our

SVC decoder and other Android applications. This result is not consistent with Sec. 6.2,

because the system architectures are not the same.

Fig. 6.17 shows the instantaneous sample points of FPS result fromsport. Our SVC

decoder achieves∼60 FPS and∼40 FPS for 320x180 and 640x360 video, respectively.
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For 1280x720 video stream, our SVC decoder achieves∼20 FPS. Fig. 6.18 is the aver-

age FPS of the five videos under different resolution. This figure reveals that our SVC

decoder achieves at least 50 average FPS and 30 average FPS for 320x180 and 640x360

video streams, respectively. For the highest resolution 1280x720 video stream, our de-

coder achieves∼15 average FPS. The results show that our SVC decoder can serve real-

time streaming for 320x180 and 640x360 videos. Our SVC decoder still can be further

improved, since it cannot achieve 24 FPS for 1280x720 videos. We will give directions

in Sec. 7.2.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have developed an end-to-end scalable streaming testbed, consisting

of a multi-threaded SVC decoder and HTTP streaming server/client. Our experimental

results show that our SVC decoder can decode 480x272 videos in real-time, and does

not incur too much memory and power overhead. While our SVC decoder is not a re-

placement of a hardware-based solution, we believe that ourdecoder will stimulate more

research on SVC-related systems, and encourage manufacturers to massively produce

SVC decoder chips. We have also evaluated the proposed HTTP streaming server/client.

Via extensive experiments, we show the practicality and efficiency of our proposed end-

to-end scalable streaming testbed over HTTP for mobile devices. For example, streaming

scalable videos over live 3G and cellular networks lead to high frame rate,∼42 FPS, and

short initial delay,∼2.5 secs.

We further extend our testbed to support MPEG-DASH standardand implement the

MPEG-DASH client in our SVC decoder. In order to handle segments for SVC decoder,

we implement the extractor in the MPEG-DASH client. Our experimental results show

that the throughput of our testbed with MPEG-DASH standard achieves at least 15 Mbits

per second for 1280x720 videos. We replace the Android Renderer API with SDL library.

SDL library and our SVC decoder are written in native-code (i.e. C/C++), which can

render the decoded frame in native side without copying the frame data to Java front-end.

We design a new switching event handler based on the SDL eventqueue, which uses

gestures to switch the spatial and temporal layers, in our client. The experimental results

of our decoder with SDL library show that our decoder achieves at least 50 FPS when

streaming 320x180 videos.
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7.2 Future Work

Our experimental results reveal an important trade-off between resolutions and frame

rates. Due to resource constraints of mobile devices, a usermay only pick either high

resolution or high frame rate. The user’s decision depends on the video genres, device

types, and even user preferences. There are active projects, such as Song et al. [21], which

conducts user studies and tries to model the Quality-of-Experience (QoE) of mobile video

streaming. These user studies do not leverage scalable videos and only consider very

few resolutions and frame rates for each video. Our end-to-end mobile scalable video

streaming testbed allows us to conduct large-scale user studies using H.264/SVC videos

on commodity Android devices. This enables us to derive a more flexible QoE model.

In this work, user triggers the switching events based on itspreferences. The switch-

ing events can also be triggered by scheduling algorithms according to the available band-

width, state of buffer, and so on to decide either to enhance the quality level or download

more segments for later usage. Employing such scheduling algorithms in our client and

obtaining a more flexible QoE model are among our future tasks.

The performance of our SVC decoder still has room to improve when rendering

1280x720 video. We found that the bottlenecks of our client are decoding and render-

ing. It is important to eliminate the bottlenecks and improve the performance of our SVC

decoder. There are some possible approaches to improve the performance, such as design-

ing more efficiency multi-threading structures, and using NEON instructions set to speed

up the decoding and color space conversion. There is a more recent, emerging, scalable

video coding standard, called H.265/SHVC, which is an extension of H.265/HEVC. We

may use H.265/SHVC as our scalable video coder and evaluate the performance once the

standard is finalized.
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