Department of Computer Science National Tsing Hua University

CS 2336: Discrete Mathematics Chapter 12 Trees

Instructor: Cheng-Hsin Hsu

Outline

12.1 Definitions, Properties, and Examples

- **12.2 Rooted Trees**
- **12.3 Trees and Sorting**
- **12.4 Weighted Trees and Prefix Codes**

12.5 Biconnected Components and Articulation Points

Tree

- Consider a loop-free undirected graph G=(V,E). It is a tree if G is connected and contains no cycles
- We often refer to a tree as T instead of (more general) G
- Spanning tree: a spanning subgraph that is also a tree
- Spanning forest: a unconnected spanning subgraph

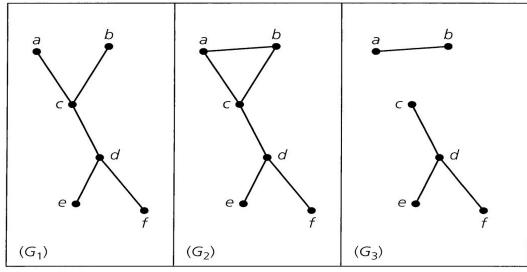


Figure 12.1

Properties of Trees

- Unique path: there exists a unique path between any two distinct vertices in T=(V,E)
 - Proof Sketch: T is connected, so there must be at least one path. Moreover, if there are two paths, connecting them gives us a cycle.
- If G=(V,E) is an undirected graph, G is connected iff G has a spanning tree
 - Proof Sketch: (←) by G is connected. (→) Build a spanning tree by iteratively removing an edge on any cycle.

Relation between |V| and |E|

Counts |V| and |E| in these trees

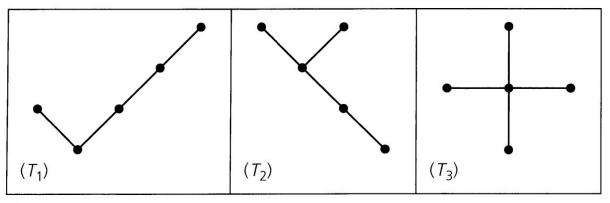
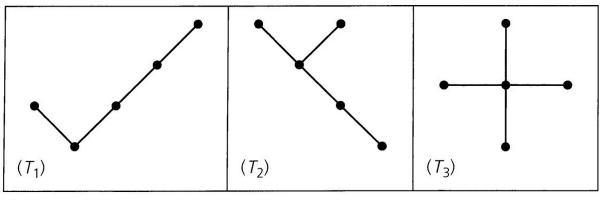


Figure 12.2

- In any tree T=(V,E), we have |V| = |E|+1
 - Proof Sketch: by mathematical induction

Pendant Vertices

Counts no. pendant vertices in these trees



- In any tree T=(V,E), where |V| >= 2, T has at least two pendant vertices
 - Proof Sketch: by the previous theorem and $2|E| = \sum deg(v)$

 $v \in V$

Examples

• Ex 12.1: Are the two trees isomorphic? Why?

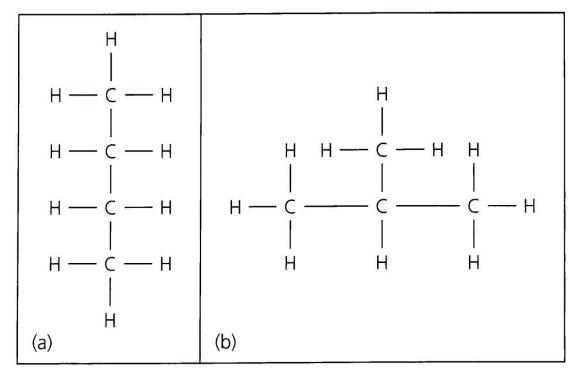


Figure 12.5

Examples

- Ex 12.2: If a saturated hydrocarbon (acyclic) has n carbon atoms, show that it has 2n+2 hydrogen atoms.
- Proof:
 - Let k denote the number of hydrogen atoms. The total degree of all atoms is 4n+k, which equals to 2|E|
 - We also know |E| = |V|-1, so the total degree=2|V|-1
 - This leads to k = 2n+2

When Can We Call a Graph Tree?

- The following statements are equivalent for a look-free undirected graph G=(V,E)
 - G is a tree
 - G is connected, but remove any edge from G turns G into two trees
 - G contains no cycles, and |V|=|E|+1
 - G is connected, and |V| = |E|+1
 - G contains no cycle and if {a,b} is not an edge of G, adding {a,b} to G results in exactly one cycle

A Sample Proof

- Prove if
 - G is a tree,
 - then G is connected, but remove any edge from G turns G into two trees
- Proof:
 - Let G'=G-{a,b}. Assume G' is still connected, which means there is a path between a and b. But this contradict to the fact that tree is acyclic. Hence, G' is not connected!
 - Then consider the two components in G', they must contain no cycles (otherwise G is not a tree). Then they are both trees.
 This yield our proof.
- See text and exercises for more proofs.

Outline

12.1 Definitions, Properties, and Examples

- **12.2 Rooted Trees**
- **12.3 Trees and Sorting**
- **12.4 Weighted Trees and Prefix Codes**

12.5 Biconnected Components and Articulation Points

Directed and Rooted Trees

- If G is a directed graph, G is a directed tree if its associated undirected graph is a tree
- A directed tree is a rooted tree, if there is a unique vertex r with in-degree 0, id(r)=0, while all other vertex v has in-degree 1, id(v)=1. We call this v as the root.

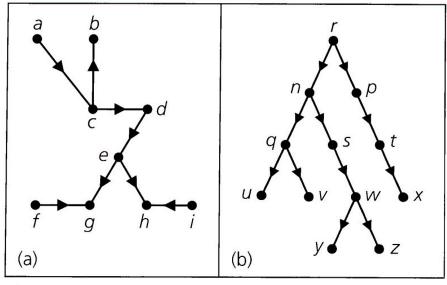


Figure 12.10

Conventions and Terminology

- Arrows are going downwards
- Vertices with zero out degree are call leaves (terminal vertices)
- All other leaves are called branch nodes (or internal vertices)
- Level is defined as the distance to the root
- Parent-child relation, Ancestors-descendants ,Siblings
- Subtree, induced by a vertex v, includes v and all its descendants

Vertex Ordering

Ex 12.3: Consider a book with 3-level structure. What is the nature order of its contents?

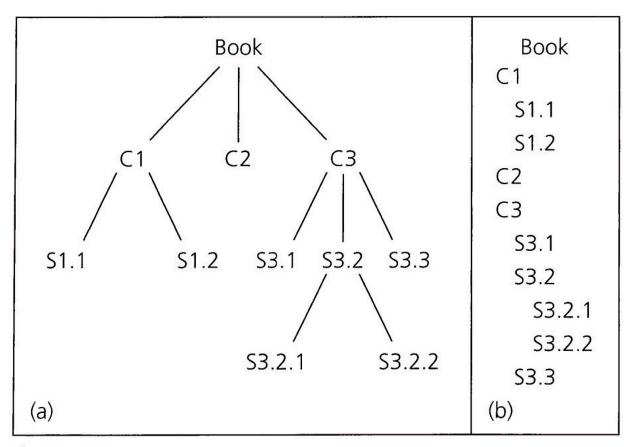
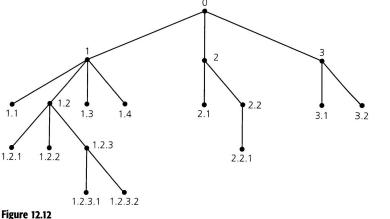


Figure 12.11

Ordered Rooted Tree

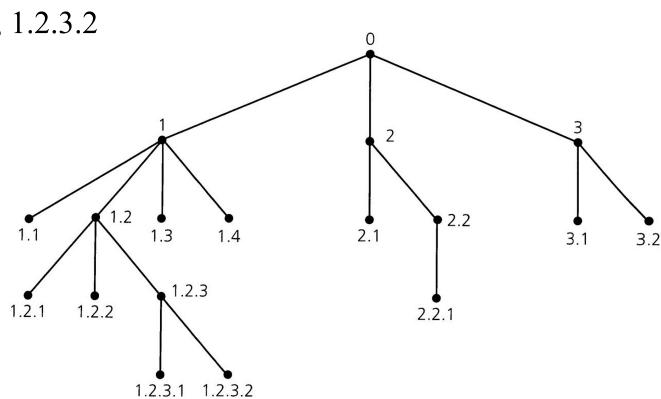
- Ex 12.4: If all edges leaving an internal vertex are ordered from left to tight, then T is called an ordered rooted tree.
- Ordering algorithm
 - Assign 0 to the root
 - Assign positive integer to vertices at level 1, from left to right
 - For an internal vertex v, suffix a positive integer to v's label, from left to right



15

Ordered Rooted Tree (cont.)

- This leads to the order:
 - 0, 1, 1.1
 - 1.2, 1.2.1, 1.2.2
 - 1.2.3, 1.2.3.1, 1.2.3.2
 - 1.3, 1.4, 2
 - 2.1, 2.2, 2.2.1
 - 3, 3.1, 3.2
- Lexicographic
 - order



16

Figure 12.12

Binary Rooted Tree

- Ex 12.5: Binary rooted tree: od(v)=0,1,2. Complete binary tree: od(v)=0,2
- They can represent binary operations

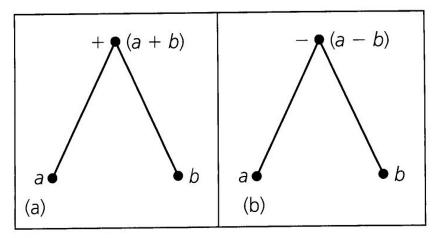


Figure 12.13

Binary Rooted Tree (cont.)

A tree for ((7-a)/5)*((a+b)^3)

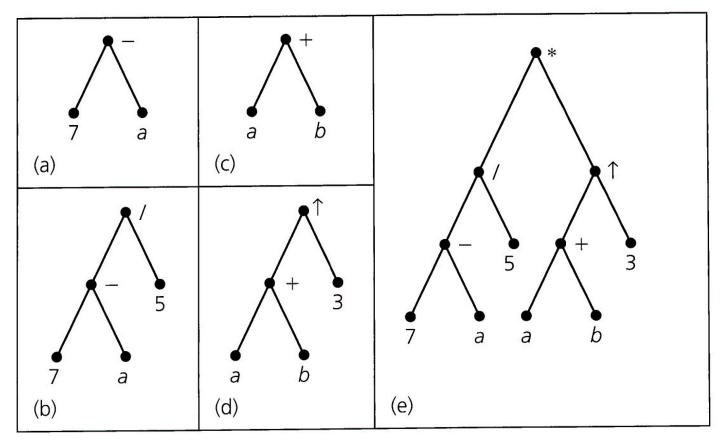


Figure 12.14

Binary Rooted Tree (cont.)

- How to represent: (i) (a-(3/b))+5 and (ii) a-(3/(b+5))
- Both of them can be stored as the same sequence
- Parenthesis are mandatory!

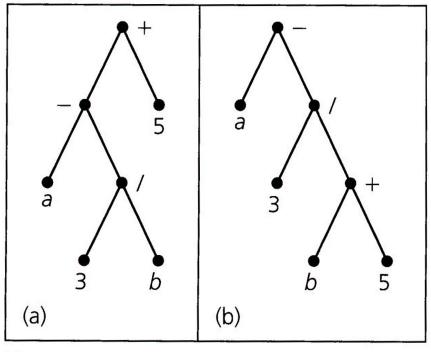


Figure 12.15

Polish Notation

Consider t+(uv)/(w+x-y^z), it can be expressed by

Figure 12.16

- The computer needs to know the calculation order \leftarrow But the computer needs to know the parenthesis
- Prefix notation: +t/*uv+w-x^yz
- Independent to parenthesis! Just calculate from right to left ← shows the importance of ordering

Polish Notation (cont.)

- Example:
 - + 4/*23+1-9<mark>^23</mark>
 - +4/*23+1**-98**
 - +4/*23+11
 - +4/*232
 - +4/62
 - +43
 - 7

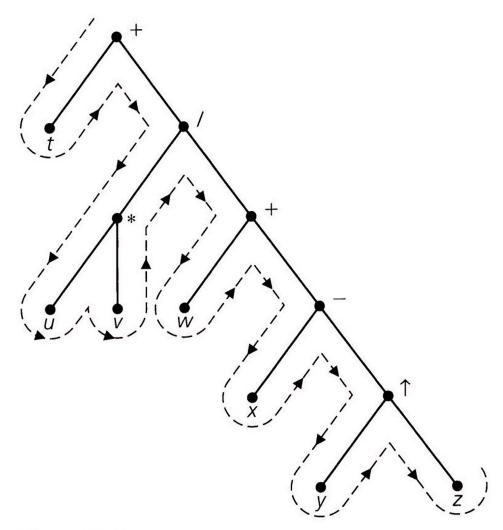
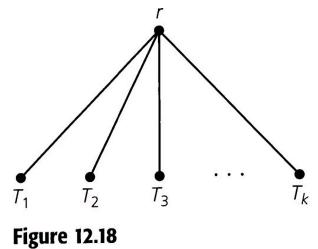


Figure 12.17

Post-/Pre-order Traversals

- Recursively defined
- Let T=(V,E) be a rooted tree with root r
 - If |V|=1, then r is both postorder and preorder traversal
 - Otherwise, preorder traversal first visits r and then traverse subtrees $T_1, T_2, ..., T_k$. Postorder traversal first visits subtrees, then r
 - Conventionally, subtrees are visited from left to right



Example

• Ex 12.6: What are the pre-/post-order traversals of this graph?

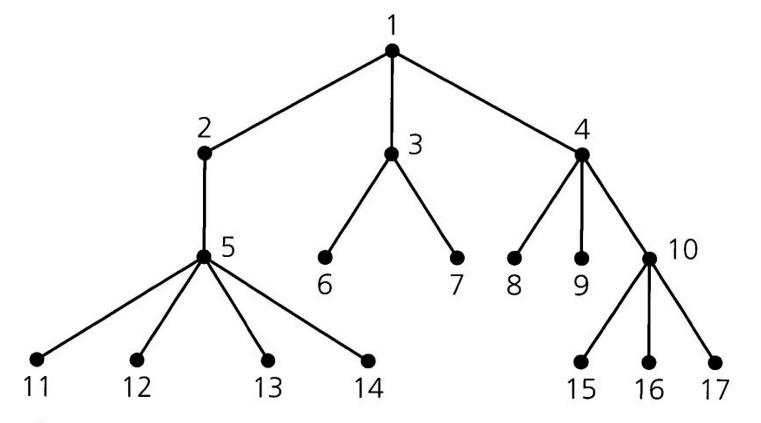


Figure 12.19

In-order Traversal

- For binary rooted tree, we also have in-order traversal
- Let T=(V,E) be a binary rooted tree with root r
 - If |V|=1, then r is the inorder traversal
 - Otherwise, let TL and TR be the left and right subtrees. The inorder traversal first traverses TL, then visits r, and then traverses TR.

Different Ordering

- Ex 12.7:
 - The following two ordered trees are different
 - What are their inorder traversals?
 - What are their preorder and postorder traversals?

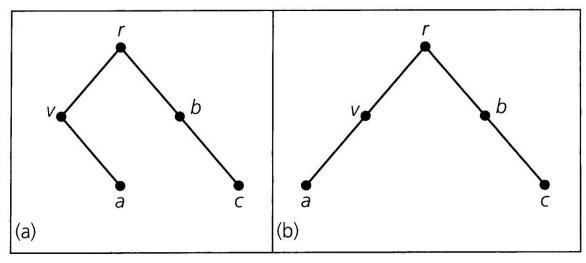
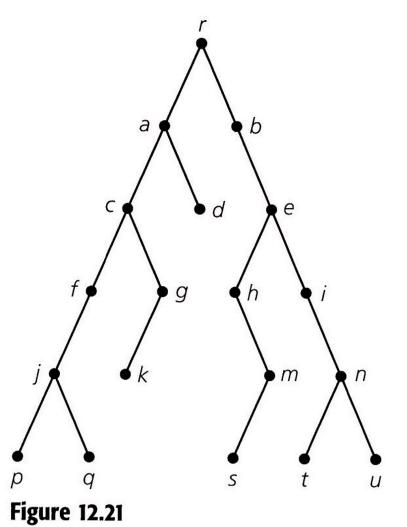


Figure 12.20

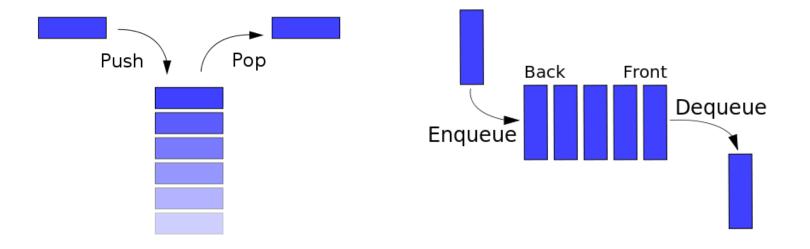
Another Inorder Example

• What is the in order traversal?



Spanning Trees

- Generally two algorithms to generate a spanning trees in a graphs
- Depth-First Search (DFS): based on a stack
- Breadth-First Search (BFS): based on a (FIFO) queue

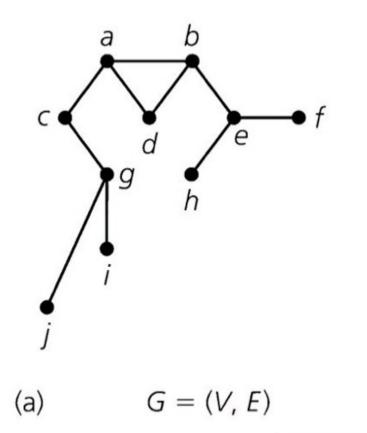


DFS Algorithm

- Let v=v₁ as the root of tree T
- If G has only one vertex, terminates and return T
- Select the smallest subscript i, so that {v,v_i} is an edge of G and v_i hasn't been visited
- If an i exists: (i) add {v,v_i} to T, (ii) visit subtree induced by v_i, (iii) let v=v_i, go back to the step 3
- If there is no v_i, then backtrack from v to its parent u. Let v = u, and go back to step3
- Once all vertices are visited, return T

Example of DFS

- Ex 12.10: Plot the DFS trees of graph G
 - Assuming the vertex order is: a,b,c,d,e,f,g,h,i,j
 - Assuming the order is: j,i,h,g,f,e,d,c,b,a

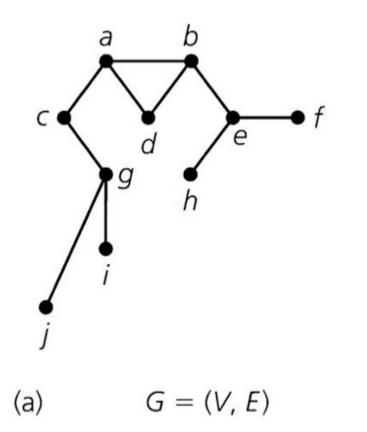


BFS Algorithm

- Enqueue v_1 , and let T be the tree with v_1 , visit v_1
- Let v=dequeue(). Sequentially check all vertices next to v that haven't been visited
- For each unvisited vertex v_i: (i) enqueue v_i, (ii) add {v, v_i} to T, and (iii) visit v_i
- If queue is not empty go to step 2
- Now queue is empty, return T

Example of BFS

- Ex 12.11: Plot the BFS trees of graph G
 - Assuming the vertex order is: a,b,c,d,e,f,g,h,i,j
 - Assuming the order is: j,i,h,g,f,e,d,c,b,a



Adjacent Matrix to BFS/DFS Trees

• Ex 12.12 Determine the BFS and DFS tress from the adjacent matrix without plotting the graph

$$A(G) = \begin{array}{c} v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & v_7 \\ v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & v_7 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \end{array}$$

M-ary Tree

- Let T=(V,E) be a rooted tree, and m is a positive integer.
 T is called an m-ary tree if od(v)<=m for all v
- When m=2, it is called a binary tree
- If od(v)=0 or m, for all v, then T is called a complete mary tree.
 - Each internal vertex has m children
- When m=2, it is called a complete binary tree.

Property of a Complete m-ary Tree

- Let T=(V,E) be a complete m-ary tree with |V|=n. If T has *l* leaves and *i* internal vertices then
 - $n=mi+1 \leftarrow$ each internal node leads to m children, plus root
 - $l=(m-1)i+1 \leftarrow$ based on equation 1 and n=l+i
 - $i=(l-1)/(m-1)=(n-1)/m \leftarrow base don equations 1 and 2$

Number of Matches

- Ex 12.13: In a single-elimination tournament. If there are 27 players, how many matches must be played to determine the champion?
 - 27 players, so 27 leaves (l=27), also m=2. Therefore, we have i=(l-1)/(m-1)=(27-1)/(2-1)=26

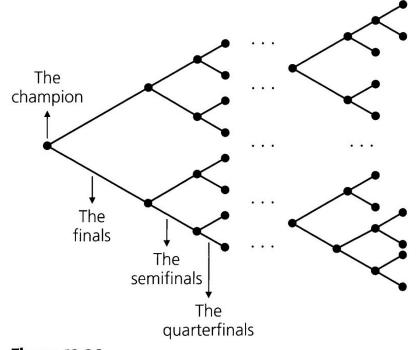
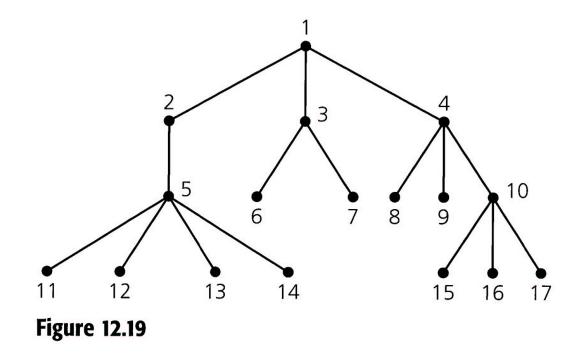


Figure 12.26

Height and Balanced Trees

- Let T=(V,E) be a rooted tree, and h be the largest level number by a leaf of T. We say T has a height of h.
- A rooted tree T of height h is balanced if the level number of every leaf is either h or h-1.



Height of m-ary Tree

- Let T=(V,E) be a complete m-ary tree with height *h* and *l* leaves. We have $l \le m^h$ and $h \ge \lceil \log_m l \rceil$
 - Proved by induction

Let T be a balanced complete m-ary tree with *l* leaves.
 The height of T is [log_m l]

Decision Tree

- There are 8 coins and a pan balance. One of the coin is counterfeit and heavier than others. Find that coin.
- Binary decision tree $h \ge \lceil \log_2 8 \rceil$
- Ternary decision tree $h \ge \lceil \log_3 8 \rceil$

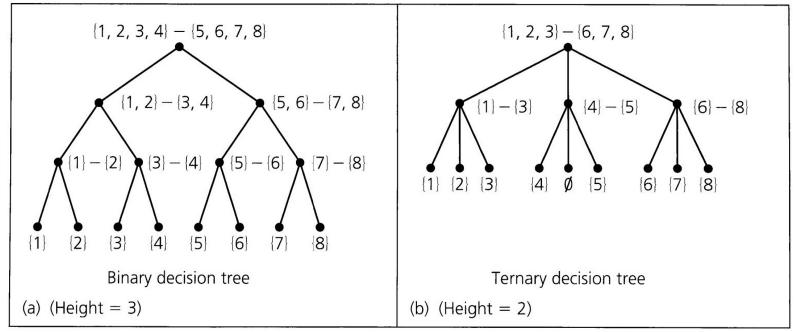


Figure 12.27

Outline

12.1 Definitions, Properties, and Examples

- **12.2 Rooted Trees**
- **12.3 Trees and Sorting**
- **12.4 Weighted Trees and Prefix Codes**

12.5 Biconnected Components and Articulation Points

Bubble Sort

- Simplest sorting algorithm
- High complexity: O(n²)

```
procedure BubbleSort(n: positive integer; x_1, x_2, x_3, \ldots, x_n: real numbers)
begin
for i := 1 to n - 1 do
for j := n downto i + 1 do
if x_j < x_{j-1} then
begin {interchange}
    temp := x_{j-1}
    x_{j-1} := x_j
    x_j := temp
end
end
```

Bubble Sort (cont.)

• Example:

i = 1	<i>x</i> ₁	7	7	7	$7_{ji} = 2$	2
	x ₂	9	9	⁹)j = 3	2 ¹] = 2 9	7
	<i>x</i> ₃	2	$\begin{cases} 2\\5 \end{bmatrix} j = 4\\8 \end{cases}$	2 ⁴] - 5 5	9	9
	<i>x</i> ₄	$\binom{5}{8} j = 5$	$5^{\int_{1}^{1} - 4}$	5	5	5
	<i>x</i> ₅	8∫ []] = 5	8	8	8	8
Four comparisons and two interchanges.						
i = 2	<i>x</i> ₁	2	2	2	2	
	<i>x</i> ₂	7	7	⁷)j = 3	5	
	<i>x</i> ₃	9	⁹)j = 4) j = 3 5 9	7	
	<i>x</i> ₄	$\binom{5}{j} = 5$	$\binom{9}{5}j = 4$	9	9	
	<i>x</i> ₅	8	8	8	8	
Three comparisons and two interchanges.						
i = 3	<i>x</i> ₁	2	2	2		
	<i>x</i> ₂	5	5	5		
	<i>x</i> ₃	7	7	7		
	<i>x</i> ₄	⁹)i = 5	8∫J = 4	8		
	<i>x</i> ₅	8	9	9		
Two comparisons and one interchange.						
i = 4	<i>x</i> ₁	2				
	<i>x</i> ₂	5				
	<i>x</i> ₃	7				
	<i>x</i> ₄	$\binom{8}{j} = 5$				
	<i>x</i> ₅	9∫ ^{, _} 5				
One comparison but no interchanges.						

Figure 10.3

Idea of Merge Sort

Ex 12.16: Sort 6,2,7,3,4,9,5,1,8 by dividing them into equal size sublists, and merge them backwards

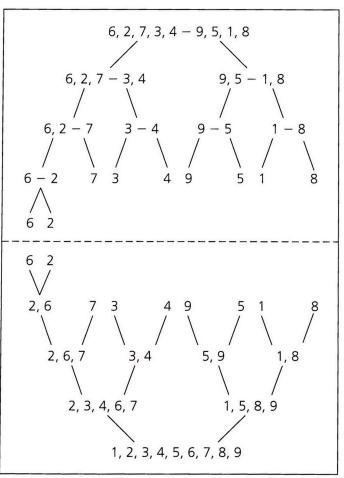


Figure 12.33

Each Merge Operation

- Before we quantify the complexity, first calculate the complexity of each merge
- Let L₁ and L₂ be the two sorted number, where L₁ has n₁ elements and L₂ has n₂. Merging L₁ and L₂ into another list consumes at most n₁+n₂-1 comparisons ← O(n)
- $L=Merge(L_1, L_2)$
 - 1: Let L be empty set
 - 2: Compare the first elements of L_1 and L_2 , remote the smaller one and put it at the end of L
 - 3: If one of L₁ and L₂ is empty, append the other one to L.
 Otherwise go back to 2

Merge Sort

- 1: Divide the input array into two sublists L_1 and L_2 , each has $\lfloor \frac{n}{2} \rfloor$ elements
- 2: Call MergeSort with L₁ and L₂
- 3. Merge(L_1, L_2)

• At most \log_n levels, so the total complexity is $O(n \log_n)$

Outline

12.1 Definitions, Properties, and Examples

- **12.2 Rooted Trees**
- **12.3 Trees and Sorting**
- **12.4 Weighted Trees and Prefix Codes**

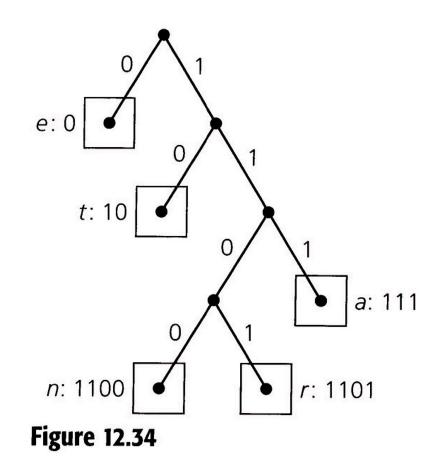
12.5 Biconnected Components and Articulation Points

Codes

- Fixed-length versus variable-length codes
- Why do we need variable-length codes?
 - (English) letters appears in different frequencies → Assigning shorter code to more frequent letter results in shorter coded words
- For example, consider a set S={a,e,n,r,t} and code a:01, e:0, n:101, r:10, r:1, what is the coded word of "ata"?
 - Problem, this coded words also means "eta", "atet", and "an"
 - Why?

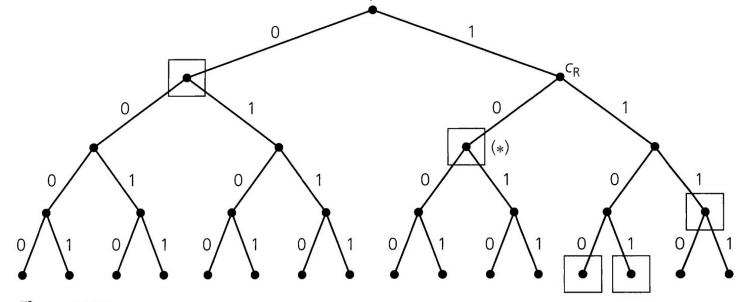
Unambiguous Codes

- Consider a different code a:01, e:0, n:101, r:10, r:1, what is the coded word of "ata"?
 - No ambiguity



Prefix Code

- A set P of binary sequences is called a prefix code if no sequence in P is the prefix of any other sequence in P
- How to determine whether P is a prefix code?
- T is a full binary tree of height h if all the leaves are at level h



Efficient Code

- Lemma: If T is an optimal tree for w₁<=w₂<=...<=w_n, there exists an optimal tree T', in which w₁ and w₂ are siblings at the maximal level of T'
 - Pushing w1 and w2 to the bottom couldn't be worse

- Theorem: Let T be an optimal tree with weight w₁+w₂, w₃, ..., w_n, where w₁<=w₂<=...<=w_n. Dividing the leaf w₁+w₂ into two leavesw₁, w₂ results in a new optimal tree T'
 - Proved by the fact that there are only finite number of complete binary trees

Huffman Code

- A systematic way to create an efficient code
 - Create n active vertices each with a weight
 - Repeatedly find the two smallest active vertices with weights w_i and w_j , make them inactive, create a new active internal vertex to be their parent, and assign weight w_i+w_j .
 - Stop until there is only one active vertex
- Get the Huffman code by traversing from root to each leaf
- Ex 12.18: Construct a Huffman code for the symbols a,o,q,u,y,z with frequencies 20,28,4,17,12,7. Find a Humffman code for them.

Outline

12.1 Definitions, Properties, and Examples

- **12.2 Rooted Trees**
- **12.3 Trees and Sorting**
- **12.4 Weighted Trees and Prefix Codes**

12.5 Biconnected Components and Articulation Points

Articulation Point

- A vertex v in a loop-free undirected graph G=(V,E) is called an articulation point if κ(G v) > κ(G); i.e., G-v has more components than G
- A graph with no articulation points is called **biconnected**
- A maximal biconnected subgraph is called a biconnected component
 - A subgraph that is not contained in a larger subgraph

Example

Articulation points: c,f, and four biconnected components

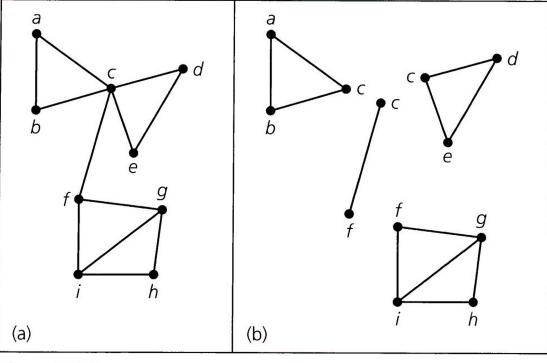


Figure 12.39

• How to systematically find the articulation points?

First Lemma

A vertex z in G=(V,E) is an articulation point iff for any two vertices x,y where x, y, and z are not mutually equal, every path between x and y must go through z

Second Lemma

- Let G=(V,E) be a loop-free connected undirected graph, with a depth-first spanning tree T=(V,E'). If {a,b} is in E but is not in E', then a is either an ancestor or a descendant of b in tree T
- Proof Sketch: this is tree other wise {a,b} would be picked by the DFS algorithm (and thus is in E') _{Root}
- Edges like {a,b} is called
 back-edge. So any edge
 in G is either: (i) an edge
 in T or an back-edge in it

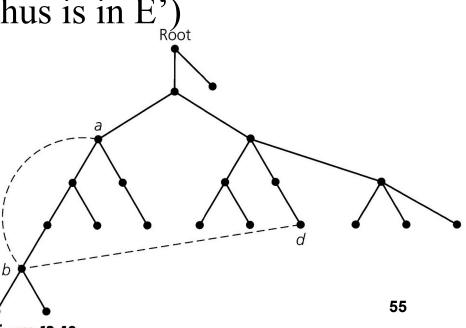


Figure 12.40

Third Lemma

- Let G=(V,E) be a loop-free connected undirected graph, with a depth-first spanning tree T=(V,E'). If r is the root of T, then r is an articulation point of G iff r has at least two children in T.
- Proof Sketch: If r has two children x₁ and x₂, and {x₁,x₂} is not in E, then {x₁,x₂} will be picked by the DFS algorithm

Fourth Lemma

 Let G=(V,E) be a loop-free connected undirected graph, with a depth-first spanning tree T=(V,E'). If v is a non-root vertex in T. v is an articulation point of G iff there exists a child c of v with no back-edge from a vertex z in the subtree rooted at c to a, which is an ancestor of v

Some Notations

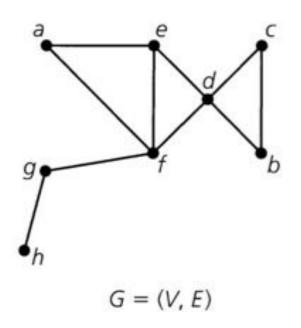
- We let dfi(x) be the depth-first index of x in preorder
 - If y is a descendant of x, then $dfi(x) \leq dfi(y)$
- We define low(x)=min{dfi(y)|y is adjacent to either x or a descendant of x in G} ← how to do this efficiently?
- If z is the parent of x (in T), compare low(x) and dfi(z)
 - low(x)=dfi(z): there is no vertex adjacent to an ancestor of z (via back-edge), so z is an articulation point
 - Low(x)<dfi(z): there is a (some) descendant of z that is joined to an ancestor of z via a back-edge, so z is not an articulation point

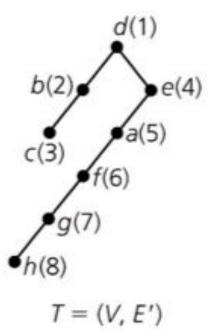
Algorithm

- 1: Let x₁, x₂, ..., x_n be the vertices ordered by tree T
- 2: For $j=x_n, x_{n-1}, \dots, x_1$, compute low (x_j) as follows
 - Low'(x_i)=min(dfi(z)|z is adjacent to x in G}
 - Let c₁,c₂,...,c_m are the children of x_j, low(x_j)=min(low'(x_j),low(c₁), ...,low(c_m)}
- 3: For w_j, the parent of x_j, if low(x_j)=dfi(w_j), then w_j is an articulation point of G unless w_j is the root and w_j has only one child (which is x_j).
 - The subtree rooted at x_j with $\{w_j, x_j\}$ is a biconnected component of G

A Complete Example

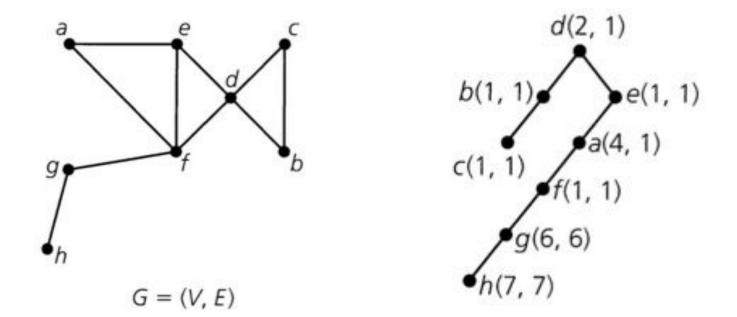
- Ex 12.20: Find the articulation points of G
- Step 1: First create a DFS tree, numbers in parentheses represent the dfi





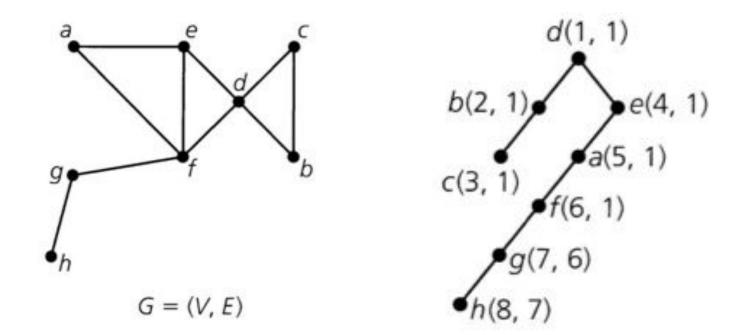
A Complete Example (cont.)

Step 2: Compute (low'(x), low(x)), from bottom to up



A Complete Example (cont.)

Step 3: Compare (dfi(x), low(x))



A Complete Example (cont.)

 Last, we get the articulation points: g, f, d and four biconnected components

