
ptg10805159

422 Threads Chapter 11

11.7 Summary

In this chapter, we introduced the concept of threads and discussed the POSIX.1
primitives available to create and destroy them. We also introduced the problem of
thread synchronization. We discussed five fundamental synchronization
mechanisms — mutexes, reader–writer locks, condition variables, spin locks, and
barriers — and we saw how to use them to protect shared resources.

Exercises
11.1 Modify the example code shown in Figure 11.4 to pass the structure between the threads

properly.

11.2 In the example code shown in Figure 11.14, what additional synchronization (if any) is
necessary to allow the master thread to change the thread ID associated with a pending
job? How would this affect the job_remove function?

11.3 Apply the techniques shown in Figure 11.15 to the worker thread example (Figures 11.1
and 11.14) to implement the worker thread function. Don’t forget to update the
queue_init function to initialize the condition variable and change the job_insert and
job_append functions to signal the worker threads. What difficulties arise?

11.4 Which sequence of steps is correct?

1. Lock a mutex (pthread_mutex_lock).

2. Change the condition protected by the mutex.

3. Signal threads waiting on the condition (pthread_cond_broadcast).

4. Unlock the mutex (pthread_mutex_unlock).
or

1. Lock a mutex (pthread_mutex_lock).

2. Change the condition protected by the mutex.

3. Unlock the mutex (pthread_mutex_unlock).

4. Signal threads waiting on the condition (pthread_cond_broadcast).

11.5 What synchronization primitives would you need to implement a barrier? Provide an
implementation of the pthread_barrier_wait function.




