Chapter 15
Classical Inter-Process Communication

Cheng-Hsin Hsu
National Tsing Hua University
Department of Computer Science

Parts of the course materials are courtesy of Prof. Chun-Ying Huang

CS5432 Advanced UNIX Programming 1

Introduction

 We have described the process control

primitives and seen how to invoke multiple
processes

* How does a process communicate with other
processes?

* The inter-process communication (IPC)

Common IPC Mechanisms

_—

e (Half-duplex) pipes

* FIFOs

* Message queues

* Semaphores

* Shared memory

* Sockets < not today...

Pipes

\

e

* The oldest form of UNIX System IPC

* Historically, they have been half duplex

— Some modern system has full duplex pipe, but for

program portability, it is not suggested to use full
duplex pipe.

* Pipes can be used only between processes that
have a common ancestor

— Normally, a pipe is created by a process
— The process then calls fork

— The pipe is then used between the parent and the
child

Classical IPC

Creating a Pipe

J— \

* Synopsis

user Pr()l't‘.\\‘

int pipe(int filedes[2]);

— Returns: 0 if OK, -1 on error

fd(0)

 Two descriptors are created
— filedes[0] is opened for reading

— filedes[1] is opened for writing

pipe

e

Classical IPC

kernel

Sharing a Pipe

* A pipein asingle process is useless
 Normally, the process that calls pipe then calls fork

— This creates an IPC channel from the parent to the child or vice versa

parent child

fork

£4 (0] £d4d (0] £d (1]

\>{/

plpe

kernel

Classical IPC

Sharing a Pipe (Cont’'d)

* Asthe pipe is half duplex, the following actions may apply
depending on the scenario
— If the pipe is used for a child to send data to its parent
* The parent closes fd[1] and the child closes fd[0]

— If the pipe is used for a parent to send data to its child
* The parent closes fd[0] and the child closes fd[1], see the figure

parent child

£d [1] £4 (0]

é pipe Q

kernel

Classical IPC 7

An Example of Creating a Pipe

int main(void) {

int n;

int fd[2];

pid t pid;

char line[MAXLINE];

if (pipe(fd) < 9)
err_sys("pipe error");

if ((pid = fork()) < 0) {
err_sys("fork error");

} else if (pid > 9) { /* parent */
close(fd[@]);
write(fd[1], "hello world\n", 12);

} else { /* child */
close(fd[1]);

n = read(fd[@], line, MAXLINE);
write(STDOUT_FILENO, line, n);
}
exit(9);
}

Classical IPC 8

Process Synchronization: Using a Pipe

— —_— -
* Recall: In Chapter 8

— Race Conditions between the Parent and the Child

int main(void) {
pid_t pid;
+ TELL_WAITQ);
if ((pid = fork()) < 0) {
err_sys("fork error");
} else if (pid == 0) {

- WAIT_PARENT(); /* parent goes first */
charatatime("output from child\n");
} else {
charatatime("output from parent\n");
+ TELL_CHILD(p'id) ;
}
exit(0);
}

Classical IPC 9

Process Synchronization: Using a Pipe (Cont’d)

e \

e

static int pfdi[2], pfd2[2];

void TELL WAIT(void) {
if (pipe(pfdl) < @ || pipe(pfd2) < @)
err_sys("pipe error");

} parent
pfdl[1]
void WAIT_PARENT(void) {
pfd2[0]
char c;

"p"

child

L

if (read(pfdi[@], &c, 1) != 1)
err_sys("read error");

if (c = "'p")
err_quit("WAIT_PARENT: incorrect data");

pfdl [0]

pfd2 [1]

Only part of the implementation...

void TELL CHILD(pid t pid) {
if (write(pfdi[1l], "p", 1) != 1)
err_sys("write error");

Classical IPC

10

popen and pclose Functions

* Execute a command and access its standard I/0O
— Read from its standard output, or
— Write to its standard input

— As we are using half-duplex pipe, we cannot read/
write at the same time

* Synopsis
— FILE *popen(const char *cmdstring, const char *type);
— Returns: file pointer if OK, NULL on error
— int pclose(FILE *fp);
— termination status of cmdstring, or -1 on error

popen and pclose Functions

e \

* QOperations

— create a pipe (pipe)

— fork a child (fork)

— close the unused ends of the
pipe (close)

— configure the descriptor
(dup2)

— execute a shell to run the
command (exec), and

— wait for the command to
terminate (wait)

Classical IPC

_/

* popen with a type of

parent

o
I

cmdstring (child)

stdou!

* popen with a type of “w”

parent

cmdstring (child)

o stdin

12

Implementation of popen and pclose

L —_— —
e See Figure 15.12 of the textbook
* popen

o0 o 14

— Make sure that type is “r” or “w
— Create a buffer for popen children PIDs
— Create a pipe and fork a child process

— For the child:

* Iftypeis “r”, close fd[0], otherwise close fd[1]

« execl("/bin/sh", "sh", "-c", cmdstring, (char *)0);
— For the parent

e Iftypeis “r’, close fd[1], otherwise close fd[0]

* Iftypeis “r”, FILE *fp = fdopen(fd[0], type)

e Otherwise, FILE *fp = fdopen(fd[1], type)

 Save child PID (indexed by pipe fd) and return fp

Classical IPC 13

Implementation of popen and pclose (Cont’d)
— —— —

* pclose
— Get descriptor number by fd = fileno(fp);
— Retrieve the pid (indexed by pipe fd)
— Reset the corresponding pid on the children’s pid buffer to zero
— fclose(fp)
— waitpid(pid, &stat, 0)
— return(stat)

Classical IPC 14

A popen Example: Filter

* Afilter that converts uppercases into lowercases

int main(void) {
int c;
while ((c = getchar()) != EOF) {
if (isupper(c))
c = tolower(c);
if (putchar(c) == EOF)
err_sys("output error");
if (c == '\n'")
fflush(stdout);

}
exit(9);

Classical IPC 15

popen Example: Filters (Cont’d

A program that run the filter using popen, and show the
filtered content

int main(void) {

char line[MAXLINE];

FILE *fpin;

if ((fpin = popen("./myuclc"”, "r")) == NULL)
err_sys("popen error");

for (5 ;5) {
fputs("prompt> ", stdout);
fflush(stdout);
if (fgets(line, MAXLINE, fpin) == NULL) /* read from pipe */

break;

if (fputs(line, stdout) == EOF) parent filter program

err_sys("fputs error to pipe"); .
} ’ I i s P1pe stdout

if (pclose('Fpin) == —1) stdout stdin

err_sys("pclose error");
putchar('\n');
exit(9);

}

Classical IPC 16

Coprocess

e Definition of an UNIX system filter
— A process that reads from standard input and writes to standard
output
* Coprocess

— An UNIX system filter becomes a coprocess if the filter’s input and
output are both associated with the same program

— We need two pipe() calls to setup the communication channel
between a program and its coprocess

parent child (coprocess)
fdl (1] pipel

= stdin

fd2 (0] |- - stdout
pipe2

Classical IPC 17

Coprocess, an Example

* Afilter that read from STDIN, adds two numbers, and write to
STDOUT

— Implemented using file I/O

int main(void) {

int n, intl, int2;

char line[MAXLINE];

while ((n = read(STDIN_FILENO, line, MAXLINE)) > @) {

line[n] = © /* null terminated */

if (sscanf(line, "%d%d", &intl, &int2) == 2) {
sprintf(line, "%d\n", intl + int2);
n = strlen(line);
if (write(STDOUT_FILENO, line, n) != n)
err_sys("write error");

} else {
if (write(STDOUT_FILENO, "invalid args\n", 13) != 13)
err_sys("write error");

}

}
exit(9);

Classica}IPC 18

The sig_pipe function
just print a message and

Coprocess, an Example (Coiit uj

P \ — _ —

int main(void) {

int n, fd1[2], fd2[2];

pid_t pid;

char 1line[MAXLINE];

if (signal(SIGPIPE, sig pipe) == SIG_ERR)
err_sys("signal error");

if (pipe(fdl) < @ || pipe(fd2) < @)
err_sys("pipe error");

if ((pid = fork()) < @) err_sys("fork error");

else if (pid > @) { /* parent */
close(fd1[9]);
close(fd2[1]);

while (fgets(line, MAXLINE, stdin) != NULL) {

n = strlen(line);

if (write(fdi[1], line, n) != n)
err_sys("write error to pipe");

if ((n = read(fd2[@], line, MAXLINE)) < 0)
err_sys("read error from pipe");

if (n == 0) {
err_msg("child closed pipe");
break;
}
line[n] = ©O; /* null terminate */

if (fputs(line, stdout) == EOF)
err_sys("fputs error");

}Classical IPC

if (ferror(stdin))
err_sys("fgets error on stdin");
exit(0);
} else { /* child */
close(fdi[1]);
close(fd2[0]);
if (fd1[@] != STDIN_FILENO) {
if (dup2(fdi[@], STDIN FILENO) != STDIN_FILENO)
err_sys("dup2 error to stdin");
close(fd1[0]);
}
if (fd2[1] != STDOUT_FILENO) {
if (dup2(fd2[1], STDOUT_FILENO) !=
STDOUT_FILENO)
err_sys("dup2 error to stdout");
close(fd2[1]);
}
if (execl("./add2", "add2", (char *)@) < 9)
err_sys("execl error");

}

return 9;

}

19

Coprocess and Standard 1/0O

 What happens if the coprocess is
implemented using standard 1/0?

— The filter no longer works!

* |t is because the I/O buffering mode

— When standard input/output are not terminal
devices, they are fully buffered

— Solution: We need pseudo-terminals devices to
emulate the line buffer or unbuffered channel
(not discussed in this Chapter)

FIFOs

/

e Firstin, first out
* FIFOs are sometimes called named pipes

* Pipes can be only used between processes of a common
ancestor

 With FIFOs, unrelated processes can exchange data
* Creating a FIFO, synopsis
— int mkfifo(const char *pathname, mode_t mode);

— Returns: 0 if OK, -1 on error

* Once we have used mkfifo to create a FIFO, we open it using
open

Classical IPC 21

Open an FIFO

e

e

* When we open a FIFO, the non-blocking flag (O_NONBLOCK)
affects what happens
* In the normal case (O_NONBLOCK not specified)
— An open for read-only blocks until another process opens the FIFO for
writing
— Similarly, an open for write-only blocks until some other process
opens the FIFO for reading

* |f O NONBLOCK is specified

— An open for read-only returns immediately

— But an open for write-only returns -1 with errno set to ENXIO if no
process has the FIFO open for reading

Classical IPC 22

Share an FIFO

* |tis common to have multiple writers for a
given FIFO

 We have to worry about atomic writes if we
don't want the writes from multiple processes
to be interleaved

Classical IPC 23

Applications of FIFOs

/ \

* Data passing

— Pass data without creating intermediate
temporary files

* Client-server communication

— Used as rendezvous points in client-server
applications

Classical IPC

24

FIFO Applications — Data Passin

* Scenario
— Process a filtered input stream twice

prog3

mput

file ——» progl

prog2

Classical IPC 25

FIFO Applications — Data Passing (Cont’d)

S \ —

 Solutions with FIFO

— $ mkfifo fifol
$ prog3 < fifol &
$ progl < infile | tee fifol | prog2

FIFO +— prog3l

mput

- “0gl tee
file progt /™" tef

pProg2

Classical IPC 26

FIFO Applications — Client-Server
nmunication

e \

* Scenario #1: One way communication
— Clients send requests to a server

server

read |requests

well-known

FIFO

client “e client

Classical IPC

FIFO Applications — Client-Server

Communication (Cont’d) |
- mmunication {Lc S

* Scenario #2: Two-way communications

— Client-server communication using FIFOs

server

read requests

client-specific well-known client-specific
FIFO FIFO FIFO

read replies read replies

client .o client

Classical IPC 28

XSI (SysV) IPC

e \

e XSl —X/Open System Interface

* Three types of XSI IPC

— Message queue
— Semaphore
— Shared memory

e Common user commands
— ipcs — list IPC objects
— ipcrm — remove |IPC objects

29

XSI (SysV) IPC (Cont’d)

e

 |PCidentifiers

— Each IPC structure in the kernel is referred to by a non-negative
integer identifier

— We need to know the identifier to access the IPC object
 However, the identifier is an internal name for an IPC object

— We need a naming scheme to refer the same IPC object — the IPC
keys

* |PC keys

— Whenever an IPC structure is being created , a key must be specified
— Keys are of data type key_t

— Then, the identifier of the referred IPC object is returned

Classical IPC

30

Sharing of IPC Objects

e

/

* Aserver can create an IPC object with a key of IPC_PRIVATE

— The identifier of the created IPC object can be passed by storing
in a file, or

— Fork a child, which inherits the identifier directly

 Aserver and a client can agree on a key by defining the key
in a common header

 Aserver and a client can agree on a pathname and a
project ID
— The key can be generated by the ftok function
— key_t ftok(const char *path, int id);
— path must be an existing file, and

— id is a 8-bit non-zero number (you can not use more than 8
bits!)

Classical IPC 31

XSI IPC — Advantages and
| -Disadvantages *
* Advantages
— Reliable
— Supports flow control

— Record based
— Can be processed in other than first-in, first-out order

* Disadvantages
— |PC data may left in the system even if no one refers to it

— They are different from file system objects, i.e. no
descriptors

— Therefore, we need a different set of system calls to
manipulate them

Message Queues

e

e

* A message queue is a linked list of messages stored within the
kernel

 Each queue has a message queue identifier

* Creating or opening a message queue
— int msgget(key _t key, int flag);
— Returns: 0 if OK, -1 on error

— Upon creating, the least significant 9 bits of flag define the
permissions for the message queue

— flag can be OR’ed with IPC_CREAT and/or IPC_EXCL

Classical IPC 33

Message Queue — System Limitations

e

/,

* The limitations may vary on different platforms

— “ipcs -I” command on Linux
— “ipcs -Q” on BSD and Mac OS X

$ ipcs -1

------ Messages Limits --------

max queues system wide = 32768

max size of message (bytes) = 8192
default max size of queue (bytes) = 16384

Classical IPC 34

Controlling a Message Queue

e

struct msqgid_ds {

e

e The internal data structure associated with a
message queue

struct ipc_perm msg_perm;

time_t

time_t

time_t
unsigned long
msgqnum_t
msglen_t
pid_t

pid_t

Classical IPC

msg_stime;
msg_rtime;
msg_ctime;
__msg_cbhytes;
msg_qgnum;
msg_qbytes;
msg_1lspid;
msg_1lrpid;

/* Ownership and permissions */

/* Time of last msgsnd(2) */

/* Time of last msgrcev(2) */

/* Time of last change */

/* Current number of bytes in queue (non-standard) */
/* Current number of messages in queue */

/* Maximum number of bytes allowed in queue */

/* PID of last msgsnd(2) */

/* PID of last msgrcv(2) */

35

Controlling a Message Queue (Cont’d)

—

/,

* Synopsis
— int msgctl(int msqid, int cmd, struct msqid _ds *buf);
— Returns: 0 if OK, -1 on error

e The cmd can be

— |PC_STAT: Retrieve the internal msqgid_ds data
structure
— |PC_SET: Set the msqid_ds

* msg_perm.uid, msg_perm.gid, msg_perm.mode, and
msg_qgbytes

* Only superuser is able to increase msg_qbytes
— IPC_RMID: Remove the queue (immediately)

Send a Message into Queue

* Synopsis
— int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag);
 The message, which is pointed to by ptr
— It must be started with an long integer (the type of the message)
— A nbytes message follows the long integer
struct msgbuf {
long type; /* message type, must be > 0 */
char mtext[1]; /* message data */

}s

— The flag
 |[IPC_NOWAIT: non-blocking access to the queue

e If the queue is full and IPC_NOWAIT is specified
— It returns a error with errno set to EAGAIN

Classical IPC 37

Receive a Message from Queue

e

e

* Synopsis
— ssize_t msgrev(int msqid, void *ptr, size_t nbytes, long type, int flag);

— Returns: size of data portion of message if OK, -1 on error

* The message type
— If type == 0, the first message on the queue is returned
— If type > 0, the first message on the queue whose message type
equals type is returned

— If type < 0, the first message on the queue whose message type is the
lowest value less than or equal to the absolute value of type is

returned

Classical IPC 38

Receive a Message from Queue
* The flags

— IPC_NOWAIT: non-blocking access to the queue
— MSG_EXCEPT

* If type > 0, the first message on the queue whose
message type has a non-equal type is returned

— MSG_NOERROR

* |f the received message has a longer size than nbytes, it
is truncated and then returned

Classical IPC 39

Message Queue: Hello, World!

—FExample -

struct msgbuf {

long mtype; /* message type, must be > @ */
char mtext[0]; /* message data */
}s
int main() {
int gqid = -1, rlen, wlen;
char buf[1024];
pid t pid;
struct msgbuf *msg = (struct msgbuf*) buf;
//

if((gqid = msgget(IPC_PRIVATE, IPC_CREAT|IPC_EXCL|0660)) < @)
err_sys("msgget");

if((pid = fork()) < 0)
err_sys("fork");

Classical IPC 40

Message Queue: Hello, World!

Example (Cont’d, +

if(pid == @) { /* child */
msg->mtype = 0;
if((rlen = msgrcv(qid, msg, sizeof(buf)-sizeof(*msg), O, 0)) < 0)
err_sys("msgrcv");
printf("[%1d] %s (%u bytes)\n", msg->mtype, msg->mtext, rlen);
} else { /* parent */
msg->mtype = 1024;
wlen = snprintf(msg->mtext, sizeof(buf)-sizeof(*msg),
"%s", MESSAGE);
if(msgsnd(qid, msg, wlen+l, 9) < 0)
perror("msgsnd");
else if(wait(&wlen) < 1)
perror("wait");
if(qid >= @)
if(msgctl(qid, IPC _RMID, NULL) < O)
err_sys("msgctl(RMID)");

}

return 0;

}

Classical IPC 41

Semaphore (1/3)

* Asemaphore is a shared counter

* Itis used to provide access to a shared data object for
multiple processes

* Procedures for a process to obtain a shared resource
— Test the semaphore that controls the resource

— If the value of the semaphore is positive, the process can use the
resource

* The process decrements the semaphore value by 1
— If the value of the semaphore is O

* The process goes to sleep until the semaphore value is greater than 0

Classical IPC 4?2

Semaphore (2/3)

* Features

— A semaphore is a set of one or more semaphore values
* Itis not simply a single non-negative value

— Semaphore creation (semget) and initialization (semctl) are
independent

* It may be a problem as we cannot atomically create a new semaphore
set and initialize all the values in the set

— Al XSI IPC objects are not released automatically
* They remain in existence even when no process is using them

* We have to worry about a program’s termination without releasing
semaphores

* This can be solved by the semaphore UNDO feature

Classical IPC 43

Semaphore (3/3)

* Creating or opening a set of semaphore
— int semget(key_t key, int nsems, int semflg);
— Returns: semaphore ID if OK, -1 on error
— Creates a new set of nsems semaphores
* |f opening an existing semaphores, this value can be 0O

— Upon creating, the least significant 9 bits of
semflg define the permissions for the semaphore
set

— semflg can be OR’ed with IPC_CREAT and/or
IPC_EXCL

Semaphore — System Limitations

— \ —_—

* The limitations may vary on different platforms

|”

— “ipcs -I” command on Linux
— “ipcs -S” on BSD and Mac OS X

$ ipcs -1

------ Semaphore Limits --------
max number of arrays = 128

max semaphores per array = 250

max semaphores system wide = 32000
max ops per semop call = 32
semaphore max value = 32767

Classical IPC 45

Controlling Semaphores (1/3)

 The internal data structure associated with a semaphore set

struct semid_ds {
struct ipc_perm sem_perm; /* Ownership and permissions */
time_t sem_otime; /* Last semop time */
time_t sem_ctime; /* Last change time */
unsigned short sem_nsems; /* No. of semaphores in set */

s
 Each member of the semaphore set has at least these attributes

maintained by the kernel:
— semval: semaphore value, always >=0
— sempid: pid for last operation
— semncnt: # of processes waiting for the semval to increase
— semzcnt: # of processes waiting for the semval to be zero

Classical IPC 46

Controlling Semaphores (2/3)

* Synopsis
— int semctl(int semid, int semnum, int cmd, /* union semun arg */);

— Returns: it depends on commands
— This function may be called with 3 or 4 arguments, depends on cmd

— The 4t argument

union semun {

int val; /* Value for SETVAL */
struct semid_ds *buf; /* Buffer for IPC_STAT, IPC SET */
unsigned short *array; /*Array for GETALL, SETALL */

}s

Classical IPC 47

Controlling Semaphores (3/3)

 Available cmds

cmds Description

IPC_STAT Retrieve the internal semid_ds data structure and stores in arg.buf

IPC_SET Set the internal semid_ds data structure by arg.buf
m sem_perm.uid, sem_perm.gid, and sem_perm.mode

IPC_RMID Remove the semaphore (immediately)

GETVAL Return the value of semnum-th member

SETVAL Set the value of semnum-th member by arg.val

GETPID Return the value of sempid for the semnum-th member
GETNCNT Return the value of semncnt for the semnum-th member
GETZCNT Return the value of semzcnt for the semnum-th member

GETALL Retrieve all semaphore values, returned by arg.array

SETALL Set all semaphore values by arg.array

Classical IPC 48

Semaphore Operations

* Synopsis
— int semop(int semid, struct sembuf semoparrayl], size_t nops);

— Returns: 0 if OK, -1 on error

— The semoparray argument is a pointer to an array of semaphore
operations

— Please see the next slide for the details of operations

struct sembuf {

unsigned short sem_num; /* member # in set (0, 1, ..., nsems-1) */
short sem_op; /* operation (negative, 0, or positive) */
short sem_flg; /* IPC_NOWAIT, SEM_UNDO */

}s

Classical IPC

49

Semaphore Operations — Return Resources

— \ —_—

* sem _op is positive: sem _op is added to the
semaphore's value

e |f SEM UNDOQO is specified, sem op is
subtracted from the semaphore's adjustment
value for this process

50

Semaphore Operations — Obtain Resources

— \ —
* sem _op is negative

* |f resources are available (|sem _op| >=sem _val)
— |sem_op| is substracted from the semaphore's value

— If SEM_UNDO is specified, |sem _op| is added to the semaphore’s
adjustment value for this process

If resources are not available (|sem _op| < sem val)
— If IPC_NOWAIT is specified, semop returns an error of EAGAIN
— If IPC_NOWAIT is not specified

* The semncnt value for this semaphore is increased

* The process is suspended until ...

— The semaphore's value becomes greater than or equal to the |sem op],
the semncnt should be increased

— The semaphore is removed from the system: semop returns an error of
EIDRM

— Itis interrupted by a signal: semop returns an error of EINTR

Classical IPC 51

Semaphore Operations — Wait until Zero

e

e

* sem _opis zero

* The calling process wants to wait until the semaphore's value
becomes O

* If the semaphore's value is currently O, the function returns
immediately

 Otherwise,

— If IPC_NOWAIT is specified, return is made with an error of EAGAIN
— If IPC_NOWAIT is not specified

* The semzcnt value for this semaphore is incremented
* The calling process is suspended until ...

— The semaphore's value becomes 0, the semzcnt should be increased

— The semaphore is removed from the system: semop returns an error of
EIDRM

— Itis interrupted by a signal: semop returns an error of EINTR

Classical IPC 52

Semaphore Adjustment on

* We have mentioned the problem

— A program’s termination without releasing semaphores may block future
access to the resource

 The problem can be solved by the UNDO feature
— When we specify the SEM_UNDO flag for a semaphore operation

— The kernel remembers how many resources we allocated from that
particular semaphore

— When the process terminates, the kernel checks whether the process
has any outstanding semaphore adjustments, i.e., the value is >0

— If so, applies the adjustment to the corresponding semaphore

* semval is increased by the adjustments

Shared Memory

—

e

* Allows two or more processes to share a given
region of memory

 This is the fastest form of IPC

— The data does not need to be copied between the
client and the server, but

— We have to synchronize access to a given region
among multiple processes

* If the server is placing data into a shared memory
region, the client should not try to access the data

— Synchronizing can be done by semaphores

Shared Memory (Cont’d)

e

* Creating or opening a shared memory
* Synopsis
— int shmget(key_t key, size_t size, int flag);
— Returns: shared memory ID if OK, -1 on error

— Upon creating, the least significant 9 bits of semfig define the
permissions for the shared memory

— flag can be OR’ed with IPC_CREAT and/or IPC_EXCL

— The actual size of the created shared memory is round up to
multiples of the PAGE_SIZE (4096 bytes)

— When a shared memory is created, it’s content initialized to all zero

Classical IPC

55

Shared Memory — System Limitations

— \ —_—

* The limitations may vary on different platforms

|”

— “ipcs -I” command on Linux
— “ipcs -M” on BSD and Mac OS X

$ ipcs -1

------ Shared Memory Limits --------

max number of segments = 4096

max seg size (kbytes) = 18014398509465599

max total shared memory (kbytes) = 18446744073642442748
min seg size (bytes) =1

Classical IPC 56

Controlling Shared Memory

e The internal data structure associated with a
shared memory

struct shmid_ds {

struct ipc_perm shm_perm; /* Ownership and permissions */
size_t shm_segsz; /* Size of segment (bytes) */
time_t shm_atime; /* Last attach time */

time_t shm_dtime; /* Last detach time */

time_t shm_ctime; /* Last change time */

pid_t shm_cpid; /* PID of creator */

pid_t shm_1pid; /* PID of last shmat(2)/shmdt(2) */
shmatt_t shm_nattch; /* No. of current attaches */

}s

Classical IPC 57

Controlling Shared Memory (Cont’d)

e

/,

* Synopsis
— int shmctl(int shmid, int cmd, struct shmid_ds *buf);
— Returns: 0 if OK, -1 on error

— Commands
e |IPC_STAT: Retrieve the internal shmid_ds data structure

IPC_SET: Set the internal shmid_ds data structure
— shm_perm.uid, shm_perm.gid, and shm_perm.mode

IPC_RMID: Remove the shared memory, but it is actually
removed until the last process using the segment terminates
or detaches it

SHM_LOCK: Make the shared memory not swappable
SHM_UNLOCK: Make the shared memory swappable

— The last two commands can be only used by superuser

Classical IPC 58

Attach a Shared Memory

* Synopsis
— void *shmat(int shmid, const void *addr, int flag);
— Returns: pointer to shared memory segment if OK, -1 on error

— The addr argument

* If addris NULL, the segment is attached at the first available
address selected by the kernel (*RECOMMENDED)

e If addris not NULL and SHM_RND is not specified, the segment is
attached at the address given by addr

* If addris not NULL and SHM_RND is specified, the segment is
attached at the address given by (addr - (addr modulus SHMLBA))
— Round down to the multiples of SHMLBA

— The flag argument

 If the SHM _RDONLY bit is specified in flag, the
segment is attached read-only

Classical IPC 59

Detach a Shared Memory

_/

e

* Synopsis
— int shmdt(void *addr);
— Returns: 0 if OK, -1 on error

Classical IPC 60

Message Queue versus Pipe versus

/

—LINIX Socket

e Difference is not clear

_/

 Message queues share disadvantages of XSl
IPC, see textbook 15.6.4

Operation User System | Clock
message queue 0.58 4.16 5.09
full-duplex pipe 0.61 4.30 5.24
UNIX domain socket 0.59 5.58 7.49

CS5432 Advanced UNIX Programming

Figure 15.27 Timing comparison of IPC alternatives on Solaris

61

Semaphores versus Record Locking

* Observation 1: Semaphore may be overcomplicated

* Observation 2: Record locking may be preferred
because: (i) easier to handle the case of process
termination and (ii) process-shared mutex may not
be supported

Operation User System | Clock
semaphores with undo 0.50 6.08 7.55
advisory record locking 0.51 9.06 4.38
mutex in shared memory 0.21 0.40 0.25

Figure 15.29 Timing comparison of locking alternatives on Linux

CS5432 Advanced UNIX Programming 62

Homework?

(] NOW
M LATER

