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Introduction

 We have described the process control

primitives and seen how to invoke multiple
processes

* How does a process communicate with other
processes?

* The inter-process communication (IPC)



Common IPC Mechanisms

_—

e (Half-duplex) pipes

* FIFOs

* Message queues

* Semaphores

* Shared memory

* Sockets < not today...



Pipes

\

e

* The oldest form of UNIX System IPC

* Historically, they have been half duplex

— Some modern system has full duplex pipe, but for

program portability, it is not suggested to use full
duplex pipe.

* Pipes can be used only between processes that
have a common ancestor

— Normally, a pipe is created by a process
— The process then calls fork

— The pipe is then used between the parent and the
child
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Creating a Pipe

J— \

* Synopsis

user Pr()l't‘.\\‘

int pipe(int filedes[2]);

— Returns: 0 if OK, -1 on error

fd(0)

 Two descriptors are created
— filedes[0] is opened for reading

— filedes[1] is opened for writing

pipe

e
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Sharing a Pipe

* A pipein asingle process is useless
 Normally, the process that calls pipe then calls fork

— This creates an IPC channel from the parent to the child or vice versa

parent child

fork

£4 (0] £d4d (0] £d (1]

\>{/

plpe

kernel
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Sharing a Pipe (Cont’'d)

* Asthe pipe is half duplex, the following actions may apply
depending on the scenario
— If the pipe is used for a child to send data to its parent
* The parent closes fd[1] and the child closes fd[0]

— If the pipe is used for a parent to send data to its child
* The parent closes fd[0] and the child closes fd[1], see the figure

parent child

£d [1] £4 (0]

é pipe Q

kernel
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An Example of Creating a Pipe

int main(void) {

int n;

int fd[2];

pid t pid;

char line[MAXLINE];

if (pipe(fd) < 9)
err_sys("pipe error");

if ((pid = fork()) < 0) {
err_sys("fork error");

} else if (pid > 9) { /* parent */
close(fd[@]);
write(fd[1], "hello world\n", 12);

} else { /* child */
close(fd[1]);

n = read(fd[@], line, MAXLINE);
write(STDOUT_FILENO, line, n);
}
exit(9);
}

Classical IPC 8



Process Synchronization: Using a Pipe

— —_— -
* Recall: In Chapter 8

— Race Conditions between the Parent and the Child

int main(void) {
pid_t pid;
+ TELL_WAITQ);
if ((pid = fork()) < 0) {
err_sys("fork error");
} else if (pid == 0) {

- WAIT_PARENT(); /* parent goes first */
charatatime("output from child\n");
} else {
charatatime("output from parent\n");
+ TELL_CHILD(p'id) ;
}
exit(0);
}
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Process Synchronization: Using a Pipe (Cont’d)

e \

e

static int pfdi[2], pfd2[2];

void TELL WAIT(void) {
if (pipe(pfdl) < @ || pipe(pfd2) < @)
err_sys("pipe error");

} parent
pfdl[1]
void WAIT_PARENT(void) {
pfd2[0]
char c;

"p"

child

L

if (read(pfdi[@], &c, 1) != 1)
err_sys("read error");

if (c = "'p")
err_quit("WAIT_PARENT: incorrect data");

pfdl [0]

pfd2 [1]

Only part of the implementation...

void TELL CHILD(pid t pid) {
if (write(pfdi[1l], "p", 1) != 1)
err_sys("write error");

Classical IPC
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popen and pclose Functions

* Execute a command and access its standard I/0O
— Read from its standard output, or
— Write to its standard input

— As we are using half-duplex pipe, we cannot read/
write at the same time

* Synopsis
— FILE *popen(const char *cmdstring, const char *type);
— Returns: file pointer if OK, NULL on error
— int pclose(FILE *fp);
— termination status of cmdstring, or -1 on error



popen and pclose Functions

e \

* QOperations

— create a pipe (pipe)

— fork a child (fork)

— close the unused ends of the
pipe (close)

— configure the descriptor
(dup2)

— execute a shell to run the
command (exec), and

— wait for the command to
terminate (wait)

Classical IPC

_/

* popen with a type of

parent

o
I

cmdstring (child)

stdou!

* popen with a type of “w”

parent

cmdstring (child)

o stdin
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Implementation of popen and pclose

L —_— —
e See Figure 15.12 of the textbook
* popen

o0 o 14

— Make sure that type is “r” or “w
— Create a buffer for popen children PIDs
— Create a pipe and fork a child process

— For the child:

* Iftypeis “r”, close fd[0], otherwise close fd[1]

« execl("/bin/sh", "sh", "-c", cmdstring, (char *)0);
— For the parent

e Iftypeis “r’, close fd[1], otherwise close fd[0]

* Iftypeis “r”, FILE *fp = fdopen(fd[0], type)

e Otherwise, FILE *fp = fdopen(fd[1], type)

 Save child PID (indexed by pipe fd) and return fp
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Implementation of popen and pclose (Cont’d)
— —— —

* pclose
— Get descriptor number by fd = fileno(fp);
— Retrieve the pid (indexed by pipe fd)
— Reset the corresponding pid on the children’s pid buffer to zero
— fclose(fp)
— waitpid(pid, &stat, 0)
— return(stat)

Classical IPC 14



A popen Example: Filter

* Afilter that converts uppercases into lowercases

int main(void) {
int c;
while ((c = getchar()) != EOF) {
if (isupper(c))
c = tolower(c);
if (putchar(c) == EOF)
err_sys("output error");
if (c == '\n'")
fflush(stdout);

}
exit(9);
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popen Example: Filters (Cont’d

A program that run the filter using popen, and show the
filtered content

int main(void) {

char line[MAXLINE];

FILE *fpin;

if ((fpin = popen("./myuclc"”, "r")) == NULL)
err_sys("popen error");

for (5 ;5 ) {
fputs("prompt> ", stdout);
fflush(stdout);
if (fgets(line, MAXLINE, fpin) == NULL) /* read from pipe */

break;

if (fputs(line, stdout) == EOF) parent filter program

err_sys("fputs error to pipe"); .
} ’ I i s P1pe stdout

if (pclose('Fpin) == —1) stdout stdin

err_sys("pclose error");
putchar('\n');
exit(9);

}
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Coprocess

e Definition of an UNIX system filter
— A process that reads from standard input and writes to standard
output
* Coprocess

— An UNIX system filter becomes a coprocess if the filter’s input and
output are both associated with the same program

— We need two pipe() calls to setup the communication channel
between a program and its coprocess

parent child (coprocess)
fdl (1] pipel

= stdin

fd2 (0] |- - stdout
pipe2
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Coprocess, an Example

* Afilter that read from STDIN, adds two numbers, and write to
STDOUT

— Implemented using file I/O

int main(void) {

int n, intl, int2;

char line[MAXLINE];

while ((n = read(STDIN_FILENO, line, MAXLINE)) > @) {

line[n] = © /* null terminated */

if (sscanf(line, "%d%d", &intl, &int2) == 2) {
sprintf(line, "%d\n", intl + int2);
n = strlen(line);
if (write(STDOUT_FILENO, line, n) != n)
err_sys("write error");

} else {
if (write(STDOUT_FILENO, "invalid args\n", 13) != 13)
err_sys("write error");

}

}
exit(9);
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The sig_pipe function
just print a message and

Coprocess, an Example (Coiit uj

P \ —  _  —

int main(void) {

int n, fd1[2], fd2[2];

pid_t pid;

char 1line[MAXLINE];

if (signal(SIGPIPE, sig pipe) == SIG_ERR)
err_sys("signal error");

if (pipe(fdl) < @ || pipe(fd2) < @)
err_sys("pipe error");

if ((pid = fork()) < @) err_sys("fork error");

else if (pid > @) { /* parent */
close(fd1[9]);
close(fd2[1]);

while (fgets(line, MAXLINE, stdin) != NULL) {

n = strlen(line);

if (write(fdi[1], line, n) != n)
err_sys("write error to pipe");

if ((n = read(fd2[@], line, MAXLINE)) < 0)
err_sys("read error from pipe");

if (n == 0) {
err_msg("child closed pipe");
break;
}
line[n] = ©O; /* null terminate */

if (fputs(line, stdout) == EOF)
err_sys("fputs error");

}Classical IPC

if (ferror(stdin))
err_sys("fgets error on stdin");
exit(0);
} else { /* child */
close(fdi[1]);
close(fd2[0]);
if (fd1[@] != STDIN_FILENO) {
if (dup2(fdi[@], STDIN FILENO) != STDIN_FILENO)
err_sys("dup2 error to stdin");
close(fd1[0]);
}
if (fd2[1] != STDOUT_FILENO) {
if (dup2(fd2[1], STDOUT_FILENO) !=
STDOUT_FILENO)
err_sys("dup2 error to stdout");
close(fd2[1]);
}
if (execl("./add2", "add2", (char *)@) < 9)
err_sys("execl error");

}

return 9;

}
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Coprocess and Standard 1/0O

 What happens if the coprocess is
implemented using standard 1/0?

— The filter no longer works!

* |t is because the I/O buffering mode

— When standard input/output are not terminal
devices, they are fully buffered

— Solution: We need pseudo-terminals devices to
emulate the line buffer or unbuffered channel
(not discussed in this Chapter)



FIFOs

/

e Firstin, first out
* FIFOs are sometimes called named pipes

* Pipes can be only used between processes of a common
ancestor

 With FIFOs, unrelated processes can exchange data
* Creating a FIFO, synopsis
— int mkfifo(const char *pathname, mode_t mode);

— Returns: 0 if OK, -1 on error

* Once we have used mkfifo to create a FIFO, we open it using
open
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Open an FIFO

e

e

* When we open a FIFO, the non-blocking flag (O_NONBLOCK)
affects what happens
* In the normal case (O_NONBLOCK not specified)
— An open for read-only blocks until another process opens the FIFO for
writing
— Similarly, an open for write-only blocks until some other process
opens the FIFO for reading

* |f O NONBLOCK is specified

— An open for read-only returns immediately

— But an open for write-only returns -1 with errno set to ENXIO if no
process has the FIFO open for reading
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Share an FIFO

* |tis common to have multiple writers for a
given FIFO

 We have to worry about atomic writes if we
don't want the writes from multiple processes
to be interleaved
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Applications of FIFOs

/ \

* Data passing

— Pass data without creating intermediate
temporary files

* Client-server communication

— Used as rendezvous points in client-server
applications

Classical IPC
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FIFO Applications — Data Passin

* Scenario
— Process a filtered input stream twice

prog3

mput

file ——» progl

prog2
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FIFO Applications — Data Passing (Cont’d)

S \ —

 Solutions with FIFO

— $ mkfifo fifol
$ prog3 < fifol &
$ progl < infile | tee fifol | prog2

FIFO +— prog3l

mput

- “0gl tee
file progt /™" tef

pProg2
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FIFO Applications — Client-Server
nmunication

e \

* Scenario #1: One way communication
— Clients send requests to a server

server

read |requests

well-known

FIFO

client “e client
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FIFO Applications — Client-Server

Communication (Cont’d) |
- mmunication {Lc S

* Scenario #2: Two-way communications

— Client-server communication using FIFOs

server

read requests

client-specific well-known client-specific
FIFO FIFO FIFO

read replies read replies

client .o client
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XSI (SysV) IPC

e \

e XSl —X/Open System Interface

* Three types of XSI IPC

— Message queue
— Semaphore
— Shared memory

e Common user commands
— ipcs — list IPC objects
— ipcrm — remove |IPC objects
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XSI (SysV) IPC (Cont’d)

e

 |PCidentifiers

— Each IPC structure in the kernel is referred to by a non-negative
integer identifier

— We need to know the identifier to access the IPC object
 However, the identifier is an internal name for an IPC object

— We need a naming scheme to refer the same IPC object — the IPC
keys

* |PC keys

— Whenever an IPC structure is being created , a key must be specified
— Keys are of data type key_t

— Then, the identifier of the referred IPC object is returned

Classical IPC
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Sharing of IPC Objects

e

/

* Aserver can create an IPC object with a key of IPC_PRIVATE

— The identifier of the created IPC object can be passed by storing
in a file, or

— Fork a child, which inherits the identifier directly

 Aserver and a client can agree on a key by defining the key
in a common header

 Aserver and a client can agree on a pathname and a
project ID
— The key can be generated by the ftok function
— key_t ftok(const char *path, int id);
— path must be an existing file, and

— id is a 8-bit non-zero number (you can not use more than 8
bits!)
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XSI IPC — Advantages and
| -Disadvantages *
* Advantages
— Reliable
— Supports flow control

— Record based
— Can be processed in other than first-in, first-out order

* Disadvantages
— |PC data may left in the system even if no one refers to it

— They are different from file system objects, i.e. no
descriptors

— Therefore, we need a different set of system calls to
manipulate them




Message Queues

e

e

* A message queue is a linked list of messages stored within the
kernel

 Each queue has a message queue identifier

* Creating or opening a message queue
— int msgget(key _t key, int flag);
— Returns: 0 if OK, -1 on error

— Upon creating, the least significant 9 bits of flag define the
permissions for the message queue

— flag can be OR’ed with IPC_CREAT and/or IPC_EXCL
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Message Queue — System Limitations

e

/,

* The limitations may vary on different platforms

— “ipcs -I” command on Linux
— “ipcs -Q” on BSD and Mac OS X

$ ipcs -1

------ Messages Limits --------

max queues system wide = 32768

max size of message (bytes) = 8192
default max size of queue (bytes) = 16384
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Controlling a Message Queue

e

struct msqgid_ds {

e

e The internal data structure associated with a
message queue

struct ipc_perm msg_perm;

time_t

time_t

time_t
unsigned long
msgqnum_t
msglen_t
pid_t

pid_t

Classical IPC

msg_stime;
msg_rtime;
msg_ctime;
__msg_cbhytes;
msg_qgnum;
msg_qbytes;
msg_1lspid;
msg_1lrpid;

/* Ownership and permissions */

/* Time of last msgsnd(2) */

/* Time of last msgrcev(2) */

/* Time of last change */

/* Current number of bytes in queue (non-standard) */
/* Current number of messages in queue */

/* Maximum number of bytes allowed in queue */

/* PID of last msgsnd(2) */

/* PID of last msgrcv(2) */
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Controlling a Message Queue (Cont’d)

—

/,

* Synopsis
— int msgctl(int msqid, int cmd, struct msqid _ds *buf);
— Returns: 0 if OK, -1 on error

e The cmd can be

— |PC_STAT: Retrieve the internal msqgid_ds data
structure
— |PC_SET: Set the msqid_ds

* msg_perm.uid, msg_perm.gid, msg_perm.mode, and
msg_qgbytes

* Only superuser is able to increase msg_qbytes
— IPC_RMID: Remove the queue (immediately)



Send a Message into Queue

* Synopsis
— int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag);
 The message, which is pointed to by ptr
— It must be started with an long integer (the type of the message)
— A nbytes message follows the long integer
struct msgbuf {
long type; /* message type, must be > 0 */
char mtext[1]; /* message data */

}s

— The flag
 |[IPC_NOWAIT: non-blocking access to the queue

e If the queue is full and IPC_NOWAIT is specified
— It returns a error with errno set to EAGAIN
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Receive a Message from Queue

e

e

* Synopsis
— ssize_t msgrev(int msqid, void *ptr, size_t nbytes, long type, int flag);

— Returns: size of data portion of message if OK, -1 on error

* The message type
— If type == 0, the first message on the queue is returned
— If type > 0, the first message on the queue whose message type
equals type is returned

— If type < 0, the first message on the queue whose message type is the
lowest value less than or equal to the absolute value of type is

returned
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Receive a Message from Queue
* The flags

— IPC_NOWAIT: non-blocking access to the queue
— MSG_EXCEPT

* If type > 0, the first message on the queue whose
message type has a non-equal type is returned

— MSG_NOERROR

* |f the received message has a longer size than nbytes, it
is truncated and then returned
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Message Queue: Hello, World!

—FExample -

struct msgbuf {

long mtype; /* message type, must be > @ */
char mtext[0]; /* message data */
}s
int main() {
int gqid = -1, rlen, wlen;
char buf[1024];
pid t pid;
struct msgbuf *msg = (struct msgbuf*) buf;
//

if((gqid = msgget(IPC_PRIVATE, IPC_CREAT|IPC_EXCL|0660)) < @)
err_sys("msgget");

if((pid = fork()) < 0)
err_sys("fork");
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Message Queue: Hello, World!

Example (Cont’d, +

if(pid == @) { /* child */
msg->mtype = 0;
if((rlen = msgrcv(qid, msg, sizeof(buf)-sizeof(*msg), O, 0)) < 0)
err_sys("msgrcv");
printf("[%1d] %s (%u bytes)\n", msg->mtype, msg->mtext, rlen);
} else { /* parent */
msg->mtype = 1024;
wlen = snprintf(msg->mtext, sizeof(buf)-sizeof(*msg),
"%s", MESSAGE);
if(msgsnd(qid, msg, wlen+l, 9) < 0)
perror("msgsnd");
else if(wait(&wlen) < 1)
perror("wait");
if(qid >= @)
if(msgctl(qid, IPC _RMID, NULL) < O)
err_sys("msgctl(RMID)");

}

return 0;

}
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Semaphore (1/3)

* Asemaphore is a shared counter

* Itis used to provide access to a shared data object for
multiple processes

* Procedures for a process to obtain a shared resource
— Test the semaphore that controls the resource

— If the value of the semaphore is positive, the process can use the
resource

* The process decrements the semaphore value by 1
— If the value of the semaphore is O

* The process goes to sleep until the semaphore value is greater than 0
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Semaphore (2/3)

* Features

— A semaphore is a set of one or more semaphore values
* Itis not simply a single non-negative value

— Semaphore creation (semget) and initialization (semctl) are
independent

* It may be a problem as we cannot atomically create a new semaphore
set and initialize all the values in the set

— Al XSI IPC objects are not released automatically
* They remain in existence even when no process is using them

* We have to worry about a program’s termination without releasing
semaphores

* This can be solved by the semaphore UNDO feature
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Semaphore (3/3)

* Creating or opening a set of semaphore
— int semget(key_t key, int nsems, int semflg);
— Returns: semaphore ID if OK, -1 on error
— Creates a new set of nsems semaphores
* |f opening an existing semaphores, this value can be 0O

— Upon creating, the least significant 9 bits of
semflg define the permissions for the semaphore
set

— semflg can be OR’ed with IPC_CREAT and/or
IPC_EXCL



Semaphore — System Limitations

— \ —_—

* The limitations may vary on different platforms

|”

— “ipcs -I” command on Linux
— “ipcs -S” on BSD and Mac OS X

$ ipcs -1

------ Semaphore Limits --------
max number of arrays = 128

max semaphores per array = 250

max semaphores system wide = 32000
max ops per semop call = 32
semaphore max value = 32767
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Controlling Semaphores (1/3)

 The internal data structure associated with a semaphore set

struct semid_ds {
struct ipc_perm sem_perm; /* Ownership and permissions */
time_t sem_otime; /* Last semop time */
time_t sem_ctime; /* Last change time */
unsigned short sem_nsems; /* No. of semaphores in set */

s
 Each member of the semaphore set has at least these attributes

maintained by the kernel:
— semval: semaphore value, always >=0
— sempid: pid for last operation
— semncnt: # of processes waiting for the semval to increase
— semzcnt:  # of processes waiting for the semval to be zero

Classical IPC 46



Controlling Semaphores (2/3)

* Synopsis
— int semctl(int semid, int semnum, int cmd, /* union semun arg */);

— Returns: it depends on commands
— This function may be called with 3 or 4 arguments, depends on cmd

— The 4t argument

union semun {

int val; /* Value for SETVAL */
struct semid_ds *buf; /* Buffer for IPC_STAT, IPC SET */
unsigned short *array; /*Array for GETALL, SETALL */

}s
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Controlling Semaphores (3/3)

 Available cmds

cmds Description

IPC_STAT Retrieve the internal semid_ds data structure and stores in arg.buf

IPC_SET Set the internal semid_ds data structure by arg.buf
m sem_perm.uid, sem_perm.gid, and sem_perm.mode

IPC_RMID Remove the semaphore (immediately)

GETVAL Return the value of semnum-th member

SETVAL Set the value of semnum-th member by arg.val

GETPID Return the value of sempid for the semnum-th member
GETNCNT Return the value of semncnt for the semnum-th member
GETZCNT Return the value of semzcnt for the semnum-th member

GETALL Retrieve all semaphore values, returned by arg.array

SETALL Set all semaphore values by arg.array
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Semaphore Operations

* Synopsis
— int semop(int semid, struct sembuf semoparrayl], size_t nops);

— Returns: 0 if OK, -1 on error

— The semoparray argument is a pointer to an array of semaphore
operations

— Please see the next slide for the details of operations

struct sembuf {

unsigned short sem_num; /* member # in set (0, 1, ..., nsems-1) */
short sem_op; /* operation (negative, 0, or positive) */
short sem_flg; /* IPC_NOWAIT, SEM_UNDO */

}s

Classical IPC
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Semaphore Operations — Return Resources

— \ —_—

* sem _op is positive: sem _op is added to the
semaphore's value

e |f SEM UNDOQO is specified, sem op is
subtracted from the semaphore's adjustment
value for this process
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Semaphore Operations — Obtain Resources

— \ —
* sem _op is negative

* |f resources are available (|sem _op| >=sem _val)
— |sem_op| is substracted from the semaphore's value

— If SEM_UNDO is specified, |sem _op| is added to the semaphore’s
adjustment value for this process

If resources are not available (|sem _op| < sem val)
— If IPC_NOWAIT is specified, semop returns an error of EAGAIN
— If IPC_NOWAIT is not specified

* The semncnt value for this semaphore is increased

* The process is suspended until ...

— The semaphore's value becomes greater than or equal to the |sem op],
the semncnt should be increased

— The semaphore is removed from the system: semop returns an error of
EIDRM

— Itis interrupted by a signal: semop returns an error of EINTR
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Semaphore Operations — Wait until Zero

e

e

* sem _opis zero

* The calling process wants to wait until the semaphore's value
becomes O

* If the semaphore's value is currently O, the function returns
immediately

 Otherwise,

— If IPC_NOWAIT is specified, return is made with an error of EAGAIN
— If IPC_NOWAIT is not specified

* The semzcnt value for this semaphore is incremented
* The calling process is suspended until ...

— The semaphore's value becomes 0, the semzcnt should be increased

— The semaphore is removed from the system: semop returns an error of
EIDRM

— Itis interrupted by a signal: semop returns an error of EINTR
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Semaphore Adjustment on

* We have mentioned the problem

— A program’s termination without releasing semaphores may block future
access to the resource

 The problem can be solved by the UNDO feature
— When we specify the SEM_UNDO flag for a semaphore operation

— The kernel remembers how many resources we allocated from that
particular semaphore

— When the process terminates, the kernel checks whether the process
has any outstanding semaphore adjustments, i.e., the value is >0

— If so, applies the adjustment to the corresponding semaphore

* semval is increased by the adjustments



Shared Memory

—

e

* Allows two or more processes to share a given
region of memory

 This is the fastest form of IPC

— The data does not need to be copied between the
client and the server, but

— We have to synchronize access to a given region
among multiple processes

* If the server is placing data into a shared memory
region, the client should not try to access the data

— Synchronizing can be done by semaphores



Shared Memory (Cont’d)

e

* Creating or opening a shared memory
* Synopsis
— int shmget(key_t key, size_t size, int flag);
— Returns: shared memory ID if OK, -1 on error

— Upon creating, the least significant 9 bits of semfig define the
permissions for the shared memory

— flag can be OR’ed with IPC_CREAT and/or IPC_EXCL

— The actual size of the created shared memory is round up to
multiples of the PAGE_SIZE (4096 bytes)

— When a shared memory is created, it’s content initialized to all zero

Classical IPC
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Shared Memory — System Limitations

— \ —_—

* The limitations may vary on different platforms

|”

— “ipcs -I” command on Linux
— “ipcs -M” on BSD and Mac OS X

$ ipcs -1

------ Shared Memory Limits --------

max number of segments = 4096

max seg size (kbytes) = 18014398509465599

max total shared memory (kbytes) = 18446744073642442748
min seg size (bytes) =1
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Controlling Shared Memory

e The internal data structure associated with a
shared memory

struct shmid_ds {

struct ipc_perm shm_perm; /* Ownership and permissions */
size_t shm_segsz; /* Size of segment (bytes) */
time_t shm_atime; /* Last attach time */

time_t shm_dtime; /* Last detach time */

time_t shm_ctime; /* Last change time */

pid_t shm_cpid; /* PID of creator */

pid_t shm_1pid; /* PID of last shmat(2)/shmdt(2) */
shmatt_t shm_nattch; /* No. of current attaches */

}s
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Controlling Shared Memory (Cont’d)

e

/,

* Synopsis
— int shmctl(int shmid, int cmd, struct shmid_ds *buf);
— Returns: 0 if OK, -1 on error

— Commands
e |IPC_STAT: Retrieve the internal shmid_ds data structure

IPC_SET: Set the internal shmid_ds data structure
— shm_perm.uid, shm_perm.gid, and shm_perm.mode

IPC_RMID: Remove the shared memory, but it is actually
removed until the last process using the segment terminates
or detaches it

SHM_LOCK: Make the shared memory not swappable
SHM_UNLOCK: Make the shared memory swappable

— The last two commands can be only used by superuser
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Attach a Shared Memory

* Synopsis
— void *shmat(int shmid, const void *addr, int flag);
— Returns: pointer to shared memory segment if OK, -1 on error

— The addr argument

* If addris NULL, the segment is attached at the first available
address selected by the kernel (*RECOMMENDED)

e If addris not NULL and SHM_RND is not specified, the segment is
attached at the address given by addr

* If addris not NULL and SHM_RND is specified, the segment is
attached at the address given by (addr - (addr modulus SHMLBA))
— Round down to the multiples of SHMLBA

— The flag argument

 If the SHM _RDONLY bit is specified in flag, the
segment is attached read-only
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Detach a Shared Memory

_/

e

* Synopsis
— int shmdt(void *addr);
— Returns: 0 if OK, -1 on error
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Message Queue versus Pipe versus

/

—LINIX Socket

e Difference is not clear

_/

 Message queues share disadvantages of XSl
IPC, see textbook 15.6.4

Operation User System | Clock
message queue 0.58 4.16 5.09
full-duplex pipe 0.61 4.30 5.24
UNIX domain socket 0.59 5.58 7.49

CS5432 Advanced UNIX Programming

Figure 15.27 Timing comparison of IPC alternatives on Solaris
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Semaphores versus Record Locking

* Observation 1: Semaphore may be overcomplicated

* Observation 2: Record locking may be preferred
because: (i) easier to handle the case of process
termination and (ii) process-shared mutex may not
be supported

Operation User System | Clock
semaphores with undo 0.50 6.08 7.55
advisory record locking 0.51 9.06 4.38
mutex in shared memory 0.21 0.40 0.25

Figure 15.29 Timing comparison of locking alternatives on Linux
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