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IntroducHon	
•  We	oOen	use	default	sePngs	for	thread	funcHons	
•  A	NULL	parameter	is	used	for	many	thread	funcHon	

parameters	
•  For	example:	
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int	pthread_create(pthread_t	*thread,	const	pthread_attr_t	*attr,	
																			void	*(*start_routine)	(void	*),	void	*arg);	
	
int	pthread_mutex_init(pthread_mutex_t	*mutex,	
																							const	pthread_mutexattr_t	*attr);	
	
int	pthread_rwlock_init(pthread_rwlock_t	*rwlock,	
																								const	pthread_rwlockattr_t	*attr);	
	
int	pthread_cond_init(pthread_cond_t	*cond,	
																						const	pthread_condattr_t	*attr);	



Thread	LimitaHons	

•  LimitaHons	can	be	obtained	using	sysconf	funcHon	
–  long	sysconf(int	name);	
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Name	of	limit	 Descrip7on	 name	argument	(sysconf)	

PTHREAD_DESTRUCTOR_ITERATION
S	

max	number	of	Hmes	an		
implementaHon	will	try	to	
destroy	the	thread-specific	
data	when	a	thread	exits	

_SC_THREAD_DESTRUCTOR_ITERATIONS		

PTHREAD_KEYS_MAX	 max	number	of	keys	that	can	
be	created	by	a	process		

_SC_THREAD_KEYS_MAX		

PTHREAD_STACK_MIN		 min	number	of	bytes	that	can	
be	used	for	a	thread's	stack		

_SC_THREAD_STACK_MIN		

PTHREAD_THREADS_MAX		
	

max	number	of	threads	that	
can	be	created	in	a	process		

_SC_THREAD_THREADS_MAX	



Thread	LimitaHons	(Cont’d)	

•  Example	of	thread	configuraHon	limits	
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FreeBSD	
8.0	

Linux	
3.2.0	

Mac	OS	X	
10.6.8	

Solaris	10	

PTHREAD_DESTRUCTOR_ITERATIONS		 4	 4	 4	 No	limit	

PTHREAD_KEYS_MAX		 256	 1024	 512	 No	limit	

PTHREAD_STACK_MIN		 2048	 16384	 8192	 8192	

PTHREAD_THREADS_MAX		 No	limit	 No	limit	 No	limit	 No	limit	



Thread	AIributes	
•  The	pthread_aIr_t	data	type:	IniHalizaHon	and	

deiniHalizaHon	

•  Common	thread	aIributes	
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int	pthread_attr_init(pthread_attr_t	*attr);	
int	pthread_attr_destroy(pthread_attr_t	*attr);		

Name	 Descrip7on	 FreeBSD	
8.0	

Linux	
3.2.0	

Mac	OS	X	
10.6.8	

Solaris	10	

detachstate		 detached	thread	aIribute		 •	 •	 •	 •	

guardsize		 guard	buffer	size	in	bytes	at	end	of	
thread	stack	 •	 •	 •	 •	

stackaddr		 lowest	address	of	thread	stack		 •	 •	 •	 •	

stacksize	 lowest	address	of	thread	stack		 •	 •	 •	 •	



detachstate	

•  We	have	introduced	pthread_detach	
•  A	thread	can	be	in	the	state	of	detached	or	joinable	
•  We	can	set	the	thread	detach	state	upon	the	creaHon	

of	a	thread	
–  PTHREAD_CREATE_DETACHED		
–  PTHREAD_CREATE_JOINABLE		

•  Returns	zero	on	success,	or	non-zero	error	codes	
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int	pthread_attr_getdetachstate(	
												const	pthread_attr_t	*attr,	int	*detachstate);		
	
int	pthread_attr_setdetachstate(	
												pthread_attr_t	*attr,	int	detachstate);		



Example:	Create	a	Thread	in	Detached	
State	
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int	
makethread(void	*(*fn)(void	*),	void	*arg)	{		

	int	err;	
	pthread_t	tid;	
	pthread_attr_t	attr;	
	err	=	pthread_attr_init(&attr);	
	if	(err	!=	0)		
	 	return(err);	
	err	=	pthread_attr_setdetachstate(&attr,	PTHREAD_CREATE_DETACHED);	
	if	(err	==	0)		
	 	err	=	pthread_create(&tid,	&attr,	fn,	arg);	
	pthread_attr_destroy(&attr);		
	return(err);	

}	



Thread	Stack	Address	and	Size	

•  You	may	want	to	allocate	memory	for	thread	stack	
–  The	shared	stack	may	be	insufficient	
–  Use	memory	spaces	allocated	by	using	malloc	or	mmap	

–  Returns	zero	on	success,	or	non-zero	error	codes	
•  The	stackaddr	parameter	is	the	lowest	addressable	address	in	the	

range	of	memory	–	It	is	not	necessarily	the	start	of	the	stack	
–  Stacks	may	grow	from	higher	addresses	to	lower	addresses,	or	
–  from	lower	addresses	to	higher	addresses	

Thread	Control	 9	

int	pthread_attr_getstack(const	pthread_attr_t	*attr,		
												void	**stackaddr,	size_t	*stacksize);	
int	pthread_attr_setstack(const	pthread_attr_t	*attr,	
												void	*stackaddr,	size_t	*stacksize);		



Thread	Stack	Address	and	Size	(Cont’d)	

•  We	have	pthread_aIr_getstackaddr	and	pthread_aIr_setstackaddr	
funcHons,	but	the	use	of	these	two	funcHons	are	not	recommended:	
In	fact,	the	two	funcHons	are	considered	as	deprecated	
–  The	stackaddr	might	be	the	beginning	of	the	stack,	or	the	lowest	address	

of	the	stack	ß	may	lead	to	unnecessary	complicaHons…	

•  We	can	also	get	or	set	the	thread	stack	size	

–  Return	zero	on	success,	or	non-zero	error	codes	
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int	pthread_attr_getstacksize(	
												const	pthread_attr_t	*attr,	
												size_t	*stacksize);		
	
int	pthread_attr_setstacksize(	
												pthread_attr_t	*attr	,	size_t	stacksize);		



guardsize	

•  To	protect	stack	overflow	caused	by	a	single	thread	
•  There	is	a	buffer	at	the	end	of	a	stack	
•  By	default,	the	size	is	set	to	PAGESIZE	bytes	
•  This	feature	can	be	disabled	if	the	size	is	set	to	zero	
•  If	a	thread	stack	overflows,	the	process	will	receive	an	

error,	possibly	with	a	unique	signal	–	But	actually	you	
may	simply	get	a	SIGSEGV	

–  Return	zero	on	success,	or	non-zero	error	codes	

Thread	Control	 11	

int	pthread_attr_getguardsize(const	pthread_attr_t	*attr,	
																														size_t	*guardsize);	
int	pthread_attr_setguardsize(pthread_attr_t	*attr,	
																														size_t	guardsize);		



SynchronizaHon	AIributes	

•  SynchronizaHon	aIributes	are	used	by	mutexes,	
reader-writer	locks,	and	condiHon	variables	

•  All	of	them	have	similar	iniHalizaHon	and	destroy	
funcHons	
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int	pthread_mutexattr_init(pthread_mutexattr_t	*attr);	
int	pthread_mutexattr_destroy(pthread_mutexattr_t	*attr);		
	
int	pthread_rwlockattr_init(pthread_rwlockattr_t	*attr);	
int	pthread_rwlockattr_destroy(pthread_rwlockattr_t	
*attr);		
	
int	pthread_condattr_init(pthread_condattr_t	*attr);	
int	pthread_condattr_destroy(pthread_condattr_t	*attr);		
	



Mutex	AIribute:Process-Shared	
•  By	default,	only	threads	in	the	same	process	can	share	the	

same	mutex	
•  A	mutex	can	be	between	processes	

–  For	example,	we	have	shared	memory	mechanism	
–  The	process-shard	aIribute	must	be	enabled	

•  The	pshared	value	
–  PTHREAD_PROCESS_PRIVATE	–	More	efficient	implementaHon	
–  PTHREAD_PROCESS_SHARED	–	More	expensive	implementaHon	
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int	pthread_mutexattr_getpshared(	
																						const	pthread_mutexattr_t	*attr,	
																						int	*pshared);	
int	pthread_mutexattr_setpshared(pthread_mutexattr_t	*attr,	
																																	int	pshared);		
	



Mutex	AIribute:	Type	
•  We	have	four	exclusive	types	of	mutex	
–  PTHREAD_MUTEX_NORMAL	

•  Standard	mutex	type	that	does	not	do	any	special	error	
checking	or	deadlock	detecHon	

–  PTHREAD_MUTEX_ERRORCHECK	
•  Provide	error	checking	ß	avoid:	(i)	double	lock,	(ii)	double	
unlock,	and	(iii)	unlock	a	mutex	locked	by	another	thread	

–  PTHREAD_MUTEX_RECURSIVE	
•  Allow	the	same	thread	to	lock	the	mutex	mulHple	Hmes.	The	
locker	has	to	perform	the	same	number	of	unlocks	to	
release	the	mutex	

–  PTHREAD_MUTEX_DEFAULT	
•  The	system	dependent	default	choice	of	mutex	type	
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Mutex	AIribute:	Type	(Cont’d)	

•  Comparison	of	mutex	type	behavior	

	
•  FuncHons	to	get	and	get	mutex	type	
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Mutex	type	 Relock	without	
unlock?	

Unlock	when	not	
owned?	

Unlock	when	
unlocked?	

PTHREAD_MUTEX_NORMAL	 deadlock	 undefined	 undefined	

PTHREAD_MUTEX_ERRORCHECK	 returns	error	 returns	error	 returns	error	

PTHREAD_MUTEX_RECURSIVE	 allowed	 returns	error	 returns	error	

PTHREAD_MUTEX_DEFAULT	 system	dependent	 system	dependent	 system	dependent	

int	pthread_mutexattr_gettype(	
																										const	pthread_mutexattr_t	*	attr,	
																										int	*type);		
int	pthread_mutexattr_settype(pthread_mutexattr_t	*attr,	
																														int	type);		
	



PTHREAD_MUTEX_RECURSIVE	–	A	
Common	Scenario	

•  Assume	we	cannot	
modify	func1	and	
func2	

•  Suppose	func1	and	
func2	always	try	to	
lock	an	object	

•  If	func1	calls	func2	
internally,	there	
must	be	a	deadlock	

•  A	recursive	mutex	
would	prevent	the	
deadlock	in	the	
scenario	
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PTHREAD_MUTEX_RECURSIVE	–	A	
Common	Scenario	(Cont’d)	

•  Another	alternaHve	to	
solve	the	same	scenario	

•  Assume	we	are	able	to	
modify	the	codes	

•  We	have	two	variants	for	
func2:	
–  A	public	version	that	

locks	the	object	
–  An	internal	version	that	

does	not	lock	the	object	
•  func1	locks	the	object	and	

calls	the	internal	version	
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Other	Common	AIributes	

•  Reader-writer	locks,	condiHon	variables,	and	
barriers	support	process-shared	aIribute	
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int	pthread_rwlockattr_getpshared(const	pthread_rwlockattr_t	*attr,	
																																		int	*pshared);	
int	pthread_rwlockattr_setpshared(pthread_rwlockattr_t	*attr,	
																																		int	pshared);		
	
int	pthread_condattr_getpshared(const	pthread_condattr_t	*attr,	
																																int	*pshared);	
int	pthread_condattr_setpshared(pthread_condattr_t	*attr,	
																																int	pshared);	
	
int	pthread_barrierattr_getpshared(	
																		const	pthread_barrierattr_t	*attr,	int	*pshared);	
int	pthread_barrierattr_setpshared(pthread_barrierattr_t	*attr,	
																																			int	pshared);		
	
	



Thread-Specific	Data	

•  Thread-specific	data,	also	called	thread-private	data	
•  We	would	like	each	thread	to	access	its	own	separate	copy	of	

the	data	
•  We	do	not	have	to	worry	about	synchronizing	access	with	

other	threads	
•  An	straighrorward	soluHon	

–  Use	an	array	to	store	thread-specific	data	based	on	thread	id	
–  However,	thread	ids	may	be	small	(and	incremenHng)	integers	
–  Even	if	we	have	such	an	array,	we	sHll	need	extra	protecHons	to	

prevent	a	thread	from	accessing	other	threads’	data	
•  Thread-specific	data	can	be	used	to	provide	a	mechanism	for	

adapHng	process-based	interfaces	to	a	mulHthreaded	
environment		
–  The	errno	example	
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Thread-Specific	Data:	Steps	

•  Create	a	pthread	key	–	This	should	be	done	
only	ONCE	for	all	threads	in	the	same	process	

•  Get	the	data	associated	with	the	key	for	the	
current	thread	

•  If	data	is	not	available,	allocate	the	data	and	
associate	the	data	with	the	key	

•  If	data	is	no	longer	required,	it	can	be	released	
and	de-associated	
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pthread	Key	
•  Create	and	delete	of	thread	key	

•  Before	allocaHng	thread-specific	data,	we	need	to	create	a	key	to	
associate	with	the	data		

•  An	opHonal	destructor	can	be	provided	to	release	the	data	address	when	
a	thread	exits	
–  The	non-NULL	data	address	will	be	passed	to	the	destructor	

•  A	pthread	key	should	be	created	only	once	
•  A	call	to	pthread_key_delete	will	NOT	invoke	the	corresponding	

destructor	

Thread	Control	 21	

int	pthread_key_create(	
																pthread_key_t	*keyp,	void	(*destructor)(void	*));		
	
int	pthread_key_delete(pthread_key_t	*key);		



Example:	Create	a	pthread	Key	

•  However,	race	condiHons	may	happen	for	the	blue	lines	
•  We	need	a	beIer	soluHon	
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void	destructor(void	*);	
	
pthread_key_t	key;	
int	init_done	=	0;	
	
int	threadfunc(void	*arg)	{	

	if	(!init_done)	{	
	 	init_done	=	1;	
	 	err	=	pthread_key_create(&key,	destructor);	
	}		
	...	

}		



Example:	Create	a	pthread	Key	
(Revised)	

•  We	can	work	with	pthread_once	funcHon	

Thread	Control	 23	

void	destructor(void	*);	
		
pthread_key_t	key;	
pthread_once_t	init_done	=	PTHREAD_ONCE_INIT;		
	
void	thread_init(void)	{	

		err	=	pthread_key_create(&key,	destructor);	
	}		
	
int	threadfunc(void	*arg)	{	

		pthread_once(&init_done,	thread_init);		
	...		

}		

pthread_once_t	initflag	=	PTHREAD_ONCE_INIT;	
int	pthread_once(pthread_once_t	*initflag,	void	(*initfn)(void));		



Get,	Associate,	and	De-associate	Data	

•  Get	

–  Return	non-NULL	for	the	associated	value,	or	NULL	if	no	
value	has	been	associated	with	the	key	

•  Associate	and	de-associate	

–  Use	a	non-NULL	value	to	associate	the	data	
–  Use	a	NULL	data	to	de-associate	the	data,	previously	
associated	data	should	be	retrieved	and	released	first	

–  Return	zero	on	success,	or	non-error	error	codes	
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void	*pthread_getspecific(pthread_key_t	key);		

int	pthread_setspecific(pthread_key_t	key,	const	void	*value);		



Example:	A	Thread-Safe	ImplementaHon	of	
getenv	
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static	pthread_key_t	key;	
static	pthread_once_t	init_done	=	PTHREAD_ONCE_INIT;	
pthread_mutex_t	env_mutex	=	PTHREAD_MUTEX_INITIALIZER;	
		
extern	char	**environ;	
	
static	void	thread_init(void)	{	

	pthread_key_create(&key,	free);	
}	
	
char	*	getenv(const	char	*name)	{	

	int	i,	len;	
	char	*envbuf;	
	pthread_once(&init_done,	thread_init);		

	



Example:	A	Thread-Safe	ImplementaHon	of	
getenv	(Cont’d)	
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	pthread_mutex_lock(&env_mutex);	
	envbuf	=	(char	*)	pthread_getspecific(key);	
	if	(envbuf	==	NULL)	{	
	 	if((envbuf	=	malloc(ARG_MAX))	==	NULL)	{		 	 	 	
	pthread_mutex_unlock(&env_mutex);		
	 	 	return(NULL);	
	 	}	
	 	pthread_setspecific(key,	envbuf);	
		}		
		len	=	strlen(name);	
		for	(i	=	0;	environ[i]	!=	NULL;	i++)	{	
	 	if	((strncmp(name,	environ[i],	len)	==	0)	
	 	&&		(environ[i][len]	==	'='))	{		
	 	 	strcpy(envbuf,	&environ[i][len+1]);		
	 	 	pthread_mutex_unlock(&env_mutex);		
	 	 	return(envbuf);	
	 	}	
	}	
	pthread_mutex_unlock(&env_mutex);	
	return(NULL);		

}	



Cancel	OpHons:	Cancel	State	
•  Recall	that	the	pthrad_cancel	funcHon	simply	send	a	
“cancellaHon	request”	to	the	target	thread	

•  The	caller	of	pthread_cancel	does	not	wait	for	thread	
terminaHon	

•  The	target	thread	may	be	not	terminate	immediately	
•  The	target	thread	is	terminated	at	a	“cancellaHon	
point”	

•  We	can	temporarily	disable	“cancellaHon	points”	
–  If	we	have	some	criHcal	codes	that	must	not	be	
interrupted	by	cancellaHon	requests	

•  We	can	setup	the	“cancel	state”	
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Cancel	OpHons:	Cancel	State	(Cont’d)	

•  The	cancel	opHon	is	not	included	in	the	pthread	aIribute	
	
–  Return:	zero	on	success,	or	non-zero	error	codes	

•  The	cancelability	can	be:	
–  PTHREAD_CANCEL_ENABLE	(the	default)	
–  PTHREAD_CANCEL_DISABLE	

•  List	of	cancellaHon	points	are	shown	in	the	next	slide	
•  If	a	thread	does	not	call	any	of	the	cancellaHon	point	funcHons,	by	default	

it	will	not	be	terminated	
•  You	can	manually	embed	cancellaHon	point	in	your	program	

–  pthread_testcancel	also	not	works	when	the	cancel	opHon	is	set	to	DISABLED	
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int	pthread_setcancelstate(int	state,	int	*oldstate);	

void	pthread_testcancel(void);		



List	of	CancellaHon	Points	
•  Defined	by	POSIX.1	
•  There	are	also	cancellaHon	points	opHonally	defined	by	

POSIX.1	(omiIed,	please	refer	to	the	text	book)	
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accept											mq_timedsend												putpmsg								sigsuspend	
aio_suspend						msgrcv																		pwrite									
sigtimedwait	
clock_nanosleep		msgsnd																		read											sigwait	
close												msync																			readv										sigwaitinfo	
connect										nanosleep															recv											sleep	
creat												open																				recvfrom							system	
fcntl2											pause																			recvmsg								tcdrain	
fsync												poll																				select									usleep	
getmsg											pread																			sem_timedwait		wait		
getpmsg										pthread_cond_timedwait		sem_wait							waitid	
lockf												pthread_cond_wait							send											waitpid	
mq_receive							pthread_join												sendmsg								write			
mq_send										pthread_testcancel						sendto									writev	
mq_timedreceive		putmsg																		sigpause	



Cancel	OpHons:	Cancel	Type	
•  We	have	menHoned	that	a	thread	is	cancelled	at	cancel	

points	
•  So	the	cancellaHon	of	a	thread	is	deferred	to	a	cancel	point	
•  If	we	would	like	a	thread	to	be	cancelled	immediately,	we	

can	change	the	cancel	type	

•  The	type	can	be	
–  PTHREAD_CANCEL_DEFERRED	(the	default)	
–  PTHREAD_CANCEL_ASYNCHRONOUS		

•  If	the	cancel	state	is	set	to	DISABLED,	a	thread	will	be	not	
cancelled	
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int	pthread_setcanceltype(int	type,	int	*oldtype);	



Threads	and	Signals	
•  The	signal	disposiHon	is	shared	by	all	threads	
•  But	each	thread	has	their	own	signal	mask	
•  Signals	are	delivered	to	only	one	thread	in	the	process	

–  If	the	signal	is	related	to	a	hardware	fault	or	expiring	Hmer,	the	signal	
is	sent	to	the	thread	whose	acHon	caused	the	event		

–  Other	signals	are	delivered	to	an	arbitrary	thread	
–  So	usually	we	block	unused	signals	in	threads,	and	prevent	signals	

from	being	sent	to	an	incorrect	thread		

•  SePng	up	per-thread	signal	mask	
–  The	parameters	are	equivalent	to	sigprocmask	funcHon	
–  You	have	to	use	pthread_sigmask	instead	of	sigprocmask	
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int	pthread_sigmask(int	how,	const	sigset_t	*set,	
																																			sigset_t	*oset);		



Thread:	Wait	for	a	Signal	

•  A	thread	is	able	to	wait	for	a	signal	using	sigwait	funcHon	

–  The	set	argument	specifies	the	signals	to	wait	
–  The	signop	stores	the	number	of	signal	that	was	delivered	

•  Usually	we	have	to	block	signals	that	will	be	waited	by	sigwait	
•  sigwait	atomaHcally	unblocks	signals	and	wait	unHl	one	is	

delivered	
•  MulHple	signal	receivers	

–  If	a	thread	has	registered	a	signal	handler	as	well	as	made	
funcHon	call	to	sigwait,	only	one	(the	handler	or	sigwait)	will	
receive	the	signal	–	that	is	implementaHon	dependent	

–  If	two	threads	calls	sigwait	to	wait	for	the	same	signal,	only	one	
will	receive	the	signal	
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int	sigwait(const	sigset_t	*set,	int	*signop);	



Send	a	Signal	to	a	Thread	

•  Similar	to	kill,	we	can	send	a	signal	to	a	thread	

– Return	zero	on	success,	or	non-zero	error	codes	
•  We	may	pass	a	value	zero	to	signo	to	check	
the	existence	of	a	thread	

•  If	a	default	signal	acHon	for	a	signal	is	to	
terminate	the	process,	the	enHre	process	will	
be	killed	
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int	pthread_kill(pthread_t	thread,	int	signo);		



Threads	and	fork()	
•  A	child	process	inherits	a	lot	from	its	parent	
•  Include	mutex,	reader-writer	lock,	and	condiHon	variables	
•  In	a	mulH-threaded	program,	only	ONE	thread	is	in	the	

child	process	
–  That’s	the	thread	calls	fork	

•  Locks	held	by	other	threads	will	be	NOT	released,	and	there	
is	no	way	for	the	child	thread	to	release	the	locks	

•  The	lock	problem	will	not	happen	if	a	child	process	calls	
exec	
–  All	the	old	address	space	is	discarded,	so	the	lock	state	doesn't	
maIer		

•  How	to	avoid	such	a	problem	if	a	child	process	does	not	call	
exec?	
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The	pthread_arork	FuncHon	
•  Prototype	

–  Return	zero	on	success,	or	non-zero	error	codes	
•  The	prepare	funcHon	is	called	before	fork()	
funcHon	is	executed	

•  The	parent	funcHon	is	called	aOer	fork()	@	the	
parent	process	

•  The	child	funcHon	is	called	aOer	fork()	@	the	
child	process	
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int	pthread_atfork(void	(*prepare)(void),	
																			void	(*parent)(void),	void	(*child)(void));		
	



SoluHon	to	the	Lock	Problem	

•  Acquire	all	the	locks	in	the	parent	funcHon	
•  This	is	to	guarantee	that	all	the	locks	have	
been	unlocked	and	then	acquired	by	the	
parent	funcHon	before	fork	is	performed	

•  Unlock	the	locks	in	both	the	parent	funcHon	
and	the	child	funcHon,	so	the	lock	states	at	
the	parent	and	the	child	are	synchronized	(all	
are	unlocked)	
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Example	of	the	Lock	Problem:	The	
Worker	

•  Lock,	sleep	for	3	seconds,	and	then	unlock	
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pthread_mutex_t	lock	=	PTHREAD_MUTEX_INITIALIZER;	
	
void	*worker(void	*arg)	{	
								pthread_mutex_lock(&lock);	
								puts("worker:	locked.");	
								sleep(3);	
								puts("worker:	unlocked.");	
								pthread_mutex_unlock(&lock);	
								return(0);	
}	



Example	of	the	Lock	Problem:	The	
Parent	and	the	Child	
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int	main(void)	{	
								pid_t	pid;	
								pthread_t	tid;	
	

	pthread_create(&tid,	NULL,	worker,	0);	
								sleep(1);	
								puts("parent:	The	lock	is	held	by	the	worker	thread.");	

	if	((pid	=	fork())	==	0)	{	
																puts("child:	start.");		//	the	only	thread	@	
child	
																pthread_mutex_lock(&lock);	
																puts("child:	locked.");	//	never	reach	here	
																pthread_mutex_unlock(&lock);	
																puts("child:	terminated.");	
																return	0;	
								}	

	pthread_join(tid,	NULL);	
	return	0;	

}	



Example	of	the	Lock	Problem:	The	
Callback	FuncHons	
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void	prepare(void)	{	
								pthread_mutex_lock(&lock);	
}	
	
void	parent(void)	{	
								pthread_mutex_unlock(&lock);	
}	
	
void	child(void)	{	
								pthread_mutex_unlock(&lock);	
}	



Example	of	the	Lock	Problem:	Revised	
Codes	
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int	main(void)	{	
								pid_t	pid;	
								pthread_t	tid;	

	pthread_atfork(prepare,	parent,	child);	
	pthread_create(&tid,	NULL,	worker,	0);	

								sleep(1);	
								puts("parent:	The	lock	is	held	by	the	worker	thread.");	

	if	((pid	=	fork())	==	0)	{	
																puts("child:	start.");		//	the	only	thread	@	
child	
																pthread_mutex_lock(&lock);	
																puts("child:	locked.");	//	lock	ok	
																pthread_mutex_unlock(&lock);	
																puts("child:	terminated.");	
																return	0;	
								}	

	pthread_join(tid,	NULL);	
	return	0;	

}	



Assignment	#9	(5%)	
1.  (2%)	Given	that	you	can	create	mulHple	threads	to	

perform	different	tasks	within	a	program,	explain	why	you	
might	sHll	need	to	use	fork.	

2.  (3%)	AOer	calling	fork,	could	we	safely	reiniHalize	a	
condiHon	variable	in	the	child	process	by	first	destroying	
the	condiHon	variable	with	pthread_cond_destroy	and	
then	iniHalizing	it	with	pthread_cond_init?	
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