
Chapter	11	
Thread	Control	

CS5432	Advanced	UNIX	Programming	 1	

Cheng-Hsin	Hsu	
Na#onal	Tsing	Hua	University	

Department	of	Computer	Science	
	

Parts	of	the	course	materials	are	courtesy	of	Prof.	Chun-Ying	Huang	

Outline	

•  IntroducHon	
•  Thread	limitaHons	
•  Thread	aIributes	
•  SynchronizaHon	aIributes	
•  Thread-specific	data	
•  Cancel	opHons	
•  Threads	and	signals	
•  Threads	and	fork	

Thread	Control	 2	

IntroducHon	
•  We	oOen	use	default	sePngs	for	thread	funcHons	
•  A	NULL	parameter	is	used	for	many	thread	funcHon	

parameters	
•  For	example:	

Thread	Control	 3	

int	pthread_create(pthread_t	*thread,	const	pthread_attr_t	*attr,	
																			void	*(*start_routine)	(void	*),	void	*arg);	
	
int	pthread_mutex_init(pthread_mutex_t	*mutex,	
																							const	pthread_mutexattr_t	*attr);	
	
int	pthread_rwlock_init(pthread_rwlock_t	*rwlock,	
																								const	pthread_rwlockattr_t	*attr);	
	
int	pthread_cond_init(pthread_cond_t	*cond,	
																						const	pthread_condattr_t	*attr);	

Thread	LimitaHons	

•  LimitaHons	can	be	obtained	using	sysconf	funcHon	
–  long	sysconf(int	name);	

Thread	Control	 4	

Name	of	limit	 Descrip7on	 name	argument	(sysconf)	

PTHREAD_DESTRUCTOR_ITERATION
S	

max	number	of	Hmes	an		
implementaHon	will	try	to	
destroy	the	thread-specific	
data	when	a	thread	exits	

_SC_THREAD_DESTRUCTOR_ITERATIONS		

PTHREAD_KEYS_MAX	 max	number	of	keys	that	can	
be	created	by	a	process		

_SC_THREAD_KEYS_MAX		

PTHREAD_STACK_MIN		 min	number	of	bytes	that	can	
be	used	for	a	thread's	stack		

_SC_THREAD_STACK_MIN		

PTHREAD_THREADS_MAX		
	

max	number	of	threads	that	
can	be	created	in	a	process		

_SC_THREAD_THREADS_MAX	

Thread	LimitaHons	(Cont’d)	

•  Example	of	thread	configuraHon	limits	

Thread	Control	 5	

FreeBSD	
8.0	

Linux	
3.2.0	

Mac	OS	X	
10.6.8	

Solaris	10	

PTHREAD_DESTRUCTOR_ITERATIONS		 4	 4	 4	 No	limit	

PTHREAD_KEYS_MAX		 256	 1024	 512	 No	limit	

PTHREAD_STACK_MIN		 2048	 16384	 8192	 8192	

PTHREAD_THREADS_MAX		 No	limit	 No	limit	 No	limit	 No	limit	

Thread	AIributes	
•  The	pthread_aIr_t	data	type:	IniHalizaHon	and	

deiniHalizaHon	

•  Common	thread	aIributes	

Thread	Control	 6	

int	pthread_attr_init(pthread_attr_t	*attr);	
int	pthread_attr_destroy(pthread_attr_t	*attr);		

Name	 Descrip7on	 FreeBSD	
8.0	

Linux	
3.2.0	

Mac	OS	X	
10.6.8	

Solaris	10	

detachstate		 detached	thread	aIribute		 •	 •	 •	 •	

guardsize		 guard	buffer	size	in	bytes	at	end	of	
thread	stack	 •	 •	 •	 •	

stackaddr		 lowest	address	of	thread	stack		 •	 •	 •	 •	

stacksize	 lowest	address	of	thread	stack		 •	 •	 •	 •	

detachstate	

•  We	have	introduced	pthread_detach	
•  A	thread	can	be	in	the	state	of	detached	or	joinable	
•  We	can	set	the	thread	detach	state	upon	the	creaHon	

of	a	thread	
–  PTHREAD_CREATE_DETACHED		
–  PTHREAD_CREATE_JOINABLE		

•  Returns	zero	on	success,	or	non-zero	error	codes	

Thread	Control	 7	

int	pthread_attr_getdetachstate(
												const	pthread_attr_t	*attr,	int	*detachstate);		
	
int	pthread_attr_setdetachstate(
												pthread_attr_t	*attr,	int	detachstate);		

Example:	Create	a	Thread	in	Detached	
State	

Thread	Control	 8	

int	
makethread(void	*(*fn)(void	*),	void	*arg)	{		

	int	err;	
	pthread_t	tid;	
	pthread_attr_t	attr;	
	err	=	pthread_attr_init(&attr);	
	if	(err	!=	0)		
	 	return(err);	
	err	=	pthread_attr_setdetachstate(&attr,	PTHREAD_CREATE_DETACHED);	
	if	(err	==	0)		
	 	err	=	pthread_create(&tid,	&attr,	fn,	arg);	
	pthread_attr_destroy(&attr);		
	return(err);	

}	

Thread	Stack	Address	and	Size	

•  You	may	want	to	allocate	memory	for	thread	stack	
–  The	shared	stack	may	be	insufficient	
–  Use	memory	spaces	allocated	by	using	malloc	or	mmap	

–  Returns	zero	on	success,	or	non-zero	error	codes	
•  The	stackaddr	parameter	is	the	lowest	addressable	address	in	the	

range	of	memory	–	It	is	not	necessarily	the	start	of	the	stack	
–  Stacks	may	grow	from	higher	addresses	to	lower	addresses,	or	
–  from	lower	addresses	to	higher	addresses	

Thread	Control	 9	

int	pthread_attr_getstack(const	pthread_attr_t	*attr,		
												void	**stackaddr,	size_t	*stacksize);	
int	pthread_attr_setstack(const	pthread_attr_t	*attr,	
												void	*stackaddr,	size_t	*stacksize);		

Thread	Stack	Address	and	Size	(Cont’d)	

•  We	have	pthread_aIr_getstackaddr	and	pthread_aIr_setstackaddr	
funcHons,	but	the	use	of	these	two	funcHons	are	not	recommended:	
In	fact,	the	two	funcHons	are	considered	as	deprecated	
–  The	stackaddr	might	be	the	beginning	of	the	stack,	or	the	lowest	address	

of	the	stack	ß	may	lead	to	unnecessary	complicaHons…	

•  We	can	also	get	or	set	the	thread	stack	size	

–  Return	zero	on	success,	or	non-zero	error	codes	

Thread	Control	 10	

int	pthread_attr_getstacksize(
												const	pthread_attr_t	*attr,	
												size_t	*stacksize);		
	
int	pthread_attr_setstacksize(
												pthread_attr_t	*attr	,	size_t	stacksize);		

guardsize	

•  To	protect	stack	overflow	caused	by	a	single	thread	
•  There	is	a	buffer	at	the	end	of	a	stack	
•  By	default,	the	size	is	set	to	PAGESIZE	bytes	
•  This	feature	can	be	disabled	if	the	size	is	set	to	zero	
•  If	a	thread	stack	overflows,	the	process	will	receive	an	

error,	possibly	with	a	unique	signal	–	But	actually	you	
may	simply	get	a	SIGSEGV	

–  Return	zero	on	success,	or	non-zero	error	codes	

Thread	Control	 11	

int	pthread_attr_getguardsize(const	pthread_attr_t	*attr,	
																														size_t	*guardsize);	
int	pthread_attr_setguardsize(pthread_attr_t	*attr,	
																														size_t	guardsize);		

SynchronizaHon	AIributes	

•  SynchronizaHon	aIributes	are	used	by	mutexes,	
reader-writer	locks,	and	condiHon	variables	

•  All	of	them	have	similar	iniHalizaHon	and	destroy	
funcHons	

Thread	Control	 12	

int	pthread_mutexattr_init(pthread_mutexattr_t	*attr);	
int	pthread_mutexattr_destroy(pthread_mutexattr_t	*attr);		
	
int	pthread_rwlockattr_init(pthread_rwlockattr_t	*attr);	
int	pthread_rwlockattr_destroy(pthread_rwlockattr_t	
*attr);		
	
int	pthread_condattr_init(pthread_condattr_t	*attr);	
int	pthread_condattr_destroy(pthread_condattr_t	*attr);		
	

Mutex	AIribute:Process-Shared	
•  By	default,	only	threads	in	the	same	process	can	share	the	

same	mutex	
•  A	mutex	can	be	between	processes	

–  For	example,	we	have	shared	memory	mechanism	
–  The	process-shard	aIribute	must	be	enabled	

•  The	pshared	value	
–  PTHREAD_PROCESS_PRIVATE	–	More	efficient	implementaHon	
–  PTHREAD_PROCESS_SHARED	–	More	expensive	implementaHon	

Thread	Control	 13	

int	pthread_mutexattr_getpshared(
																						const	pthread_mutexattr_t	*attr,	
																						int	*pshared);	
int	pthread_mutexattr_setpshared(pthread_mutexattr_t	*attr,	
																																	int	pshared);		
	

Mutex	AIribute:	Type	
•  We	have	four	exclusive	types	of	mutex	
–  PTHREAD_MUTEX_NORMAL	

•  Standard	mutex	type	that	does	not	do	any	special	error	
checking	or	deadlock	detecHon	

–  PTHREAD_MUTEX_ERRORCHECK	
•  Provide	error	checking	ß	avoid:	(i)	double	lock,	(ii)	double	
unlock,	and	(iii)	unlock	a	mutex	locked	by	another	thread	

–  PTHREAD_MUTEX_RECURSIVE	
•  Allow	the	same	thread	to	lock	the	mutex	mulHple	Hmes.	The	
locker	has	to	perform	the	same	number	of	unlocks	to	
release	the	mutex	

–  PTHREAD_MUTEX_DEFAULT	
•  The	system	dependent	default	choice	of	mutex	type	

Thread	Control	 14	

Mutex	AIribute:	Type	(Cont’d)	

•  Comparison	of	mutex	type	behavior	

	
•  FuncHons	to	get	and	get	mutex	type	

Thread	Control	 15	

Mutex	type	 Relock	without	
unlock?	

Unlock	when	not	
owned?	

Unlock	when	
unlocked?	

PTHREAD_MUTEX_NORMAL	 deadlock	 undefined	 undefined	

PTHREAD_MUTEX_ERRORCHECK	 returns	error	 returns	error	 returns	error	

PTHREAD_MUTEX_RECURSIVE	 allowed	 returns	error	 returns	error	

PTHREAD_MUTEX_DEFAULT	 system	dependent	 system	dependent	 system	dependent	

int	pthread_mutexattr_gettype(
																										const	pthread_mutexattr_t	*	attr,	
																										int	*type);		
int	pthread_mutexattr_settype(pthread_mutexattr_t	*attr,	
																														int	type);		
	

PTHREAD_MUTEX_RECURSIVE	–	A	
Common	Scenario	

•  Assume	we	cannot	
modify	func1	and	
func2	

•  Suppose	func1	and	
func2	always	try	to	
lock	an	object	

•  If	func1	calls	func2	
internally,	there	
must	be	a	deadlock	

•  A	recursive	mutex	
would	prevent	the	
deadlock	in	the	
scenario	

Thread	Control	 16	

PTHREAD_MUTEX_RECURSIVE	–	A	
Common	Scenario	(Cont’d)	

•  Another	alternaHve	to	
solve	the	same	scenario	

•  Assume	we	are	able	to	
modify	the	codes	

•  We	have	two	variants	for	
func2:	
–  A	public	version	that	

locks	the	object	
–  An	internal	version	that	

does	not	lock	the	object	
•  func1	locks	the	object	and	

calls	the	internal	version	

Thread	Control	 17	

Other	Common	AIributes	

•  Reader-writer	locks,	condiHon	variables,	and	
barriers	support	process-shared	aIribute	

Thread	Control	 18	

int	pthread_rwlockattr_getpshared(const	pthread_rwlockattr_t	*attr,	
																																		int	*pshared);	
int	pthread_rwlockattr_setpshared(pthread_rwlockattr_t	*attr,	
																																		int	pshared);		
	
int	pthread_condattr_getpshared(const	pthread_condattr_t	*attr,	
																																int	*pshared);	
int	pthread_condattr_setpshared(pthread_condattr_t	*attr,	
																																int	pshared);	
	
int	pthread_barrierattr_getpshared(
																		const	pthread_barrierattr_t	*attr,	int	*pshared);	
int	pthread_barrierattr_setpshared(pthread_barrierattr_t	*attr,	
																																			int	pshared);		
	
	

Thread-Specific	Data	

•  Thread-specific	data,	also	called	thread-private	data	
•  We	would	like	each	thread	to	access	its	own	separate	copy	of	

the	data	
•  We	do	not	have	to	worry	about	synchronizing	access	with	

other	threads	
•  An	straighrorward	soluHon	

–  Use	an	array	to	store	thread-specific	data	based	on	thread	id	
–  However,	thread	ids	may	be	small	(and	incremenHng)	integers	
–  Even	if	we	have	such	an	array,	we	sHll	need	extra	protecHons	to	

prevent	a	thread	from	accessing	other	threads’	data	
•  Thread-specific	data	can	be	used	to	provide	a	mechanism	for	

adapHng	process-based	interfaces	to	a	mulHthreaded	
environment		
–  The	errno	example	

Thread	Control	 19	

Thread-Specific	Data:	Steps	

•  Create	a	pthread	key	–	This	should	be	done	
only	ONCE	for	all	threads	in	the	same	process	

•  Get	the	data	associated	with	the	key	for	the	
current	thread	

•  If	data	is	not	available,	allocate	the	data	and	
associate	the	data	with	the	key	

•  If	data	is	no	longer	required,	it	can	be	released	
and	de-associated	

Thread	Control	 20	

pthread	Key	
•  Create	and	delete	of	thread	key	

•  Before	allocaHng	thread-specific	data,	we	need	to	create	a	key	to	
associate	with	the	data		

•  An	opHonal	destructor	can	be	provided	to	release	the	data	address	when	
a	thread	exits	
–  The	non-NULL	data	address	will	be	passed	to	the	destructor	

•  A	pthread	key	should	be	created	only	once	
•  A	call	to	pthread_key_delete	will	NOT	invoke	the	corresponding	

destructor	

Thread	Control	 21	

int	pthread_key_create(
																pthread_key_t	*keyp,	void	(*destructor)(void	*));		
	
int	pthread_key_delete(pthread_key_t	*key);		

Example:	Create	a	pthread	Key	

•  However,	race	condiHons	may	happen	for	the	blue	lines	
•  We	need	a	beIer	soluHon	

Thread	Control	 22	

void	destructor(void	*);	
	
pthread_key_t	key;	
int	init_done	=	0;	
	
int	threadfunc(void	*arg)	{	

	if	(!init_done)	{	
	 	init_done	=	1;	
	 	err	=	pthread_key_create(&key,	destructor);	
	}		
	...	

}		

Example:	Create	a	pthread	Key	
(Revised)	

•  We	can	work	with	pthread_once	funcHon	

Thread	Control	 23	

void	destructor(void	*);	
		
pthread_key_t	key;	
pthread_once_t	init_done	=	PTHREAD_ONCE_INIT;		
	
void	thread_init(void)	{	

		err	=	pthread_key_create(&key,	destructor);	
	}		
	
int	threadfunc(void	*arg)	{	

		pthread_once(&init_done,	thread_init);		
	...		

}		

pthread_once_t	initflag	=	PTHREAD_ONCE_INIT;	
int	pthread_once(pthread_once_t	*initflag,	void	(*initfn)(void));		

Get,	Associate,	and	De-associate	Data	

•  Get	

–  Return	non-NULL	for	the	associated	value,	or	NULL	if	no	
value	has	been	associated	with	the	key	

•  Associate	and	de-associate	

–  Use	a	non-NULL	value	to	associate	the	data	
–  Use	a	NULL	data	to	de-associate	the	data,	previously	
associated	data	should	be	retrieved	and	released	first	

–  Return	zero	on	success,	or	non-error	error	codes	

Thread	Control	 24	

void	*pthread_getspecific(pthread_key_t	key);		

int	pthread_setspecific(pthread_key_t	key,	const	void	*value);		

Example:	A	Thread-Safe	ImplementaHon	of	
getenv	

Thread	Control	 25	

static	pthread_key_t	key;	
static	pthread_once_t	init_done	=	PTHREAD_ONCE_INIT;	
pthread_mutex_t	env_mutex	=	PTHREAD_MUTEX_INITIALIZER;	
		
extern	char	**environ;	
	
static	void	thread_init(void)	{	

	pthread_key_create(&key,	free);	
}	
	
char	*	getenv(const	char	*name)	{	

	int	i,	len;	
	char	*envbuf;	
	pthread_once(&init_done,	thread_init);		

	

Example:	A	Thread-Safe	ImplementaHon	of	
getenv	(Cont’d)	

Thread	Control	 26	

	pthread_mutex_lock(&env_mutex);	
	envbuf	=	(char	*)	pthread_getspecific(key);	
	if	(envbuf	==	NULL)	{	
	 	if((envbuf	=	malloc(ARG_MAX))	==	NULL)	{		 	 	 	
	pthread_mutex_unlock(&env_mutex);		
	 	 	return(NULL);	
	 	}	
	 	pthread_setspecific(key,	envbuf);	
		}		
		len	=	strlen(name);	
		for	(i	=	0;	environ[i]	!=	NULL;	i++)	{	
	 	if	((strncmp(name,	environ[i],	len)	==	0)	
	 	&&		(environ[i][len]	==	'='))	{		
	 	 	strcpy(envbuf,	&environ[i][len+1]);		
	 	 	pthread_mutex_unlock(&env_mutex);		
	 	 	return(envbuf);	
	 	}	
	}	
	pthread_mutex_unlock(&env_mutex);	
	return(NULL);		

}	

Cancel	OpHons:	Cancel	State	
•  Recall	that	the	pthrad_cancel	funcHon	simply	send	a	
“cancellaHon	request”	to	the	target	thread	

•  The	caller	of	pthread_cancel	does	not	wait	for	thread	
terminaHon	

•  The	target	thread	may	be	not	terminate	immediately	
•  The	target	thread	is	terminated	at	a	“cancellaHon	
point”	

•  We	can	temporarily	disable	“cancellaHon	points”	
–  If	we	have	some	criHcal	codes	that	must	not	be	
interrupted	by	cancellaHon	requests	

•  We	can	setup	the	“cancel	state”	

Thread	Control	 27	

Cancel	OpHons:	Cancel	State	(Cont’d)	

•  The	cancel	opHon	is	not	included	in	the	pthread	aIribute	
	
–  Return:	zero	on	success,	or	non-zero	error	codes	

•  The	cancelability	can	be:	
–  PTHREAD_CANCEL_ENABLE	(the	default)	
–  PTHREAD_CANCEL_DISABLE	

•  List	of	cancellaHon	points	are	shown	in	the	next	slide	
•  If	a	thread	does	not	call	any	of	the	cancellaHon	point	funcHons,	by	default	

it	will	not	be	terminated	
•  You	can	manually	embed	cancellaHon	point	in	your	program	

–  pthread_testcancel	also	not	works	when	the	cancel	opHon	is	set	to	DISABLED	

Thread	Control	 28	

int	pthread_setcancelstate(int	state,	int	*oldstate);	

void	pthread_testcancel(void);		

List	of	CancellaHon	Points	
•  Defined	by	POSIX.1	
•  There	are	also	cancellaHon	points	opHonally	defined	by	

POSIX.1	(omiIed,	please	refer	to	the	text	book)	

Thread	Control	 29	

accept											mq_timedsend												putpmsg								sigsuspend	
aio_suspend						msgrcv																		pwrite									
sigtimedwait	
clock_nanosleep		msgsnd																		read											sigwait	
close												msync																			readv										sigwaitinfo	
connect										nanosleep															recv											sleep	
creat												open																				recvfrom							system	
fcntl2											pause																			recvmsg								tcdrain	
fsync												poll																				select									usleep	
getmsg											pread																			sem_timedwait		wait		
getpmsg										pthread_cond_timedwait		sem_wait							waitid	
lockf												pthread_cond_wait							send											waitpid	
mq_receive							pthread_join												sendmsg								write			
mq_send										pthread_testcancel						sendto									writev	
mq_timedreceive		putmsg																		sigpause	

Cancel	OpHons:	Cancel	Type	
•  We	have	menHoned	that	a	thread	is	cancelled	at	cancel	

points	
•  So	the	cancellaHon	of	a	thread	is	deferred	to	a	cancel	point	
•  If	we	would	like	a	thread	to	be	cancelled	immediately,	we	

can	change	the	cancel	type	

•  The	type	can	be	
–  PTHREAD_CANCEL_DEFERRED	(the	default)	
–  PTHREAD_CANCEL_ASYNCHRONOUS		

•  If	the	cancel	state	is	set	to	DISABLED,	a	thread	will	be	not	
cancelled	

Thread	Control	 30	

int	pthread_setcanceltype(int	type,	int	*oldtype);	

Threads	and	Signals	
•  The	signal	disposiHon	is	shared	by	all	threads	
•  But	each	thread	has	their	own	signal	mask	
•  Signals	are	delivered	to	only	one	thread	in	the	process	

–  If	the	signal	is	related	to	a	hardware	fault	or	expiring	Hmer,	the	signal	
is	sent	to	the	thread	whose	acHon	caused	the	event		

–  Other	signals	are	delivered	to	an	arbitrary	thread	
–  So	usually	we	block	unused	signals	in	threads,	and	prevent	signals	

from	being	sent	to	an	incorrect	thread		

•  SePng	up	per-thread	signal	mask	
–  The	parameters	are	equivalent	to	sigprocmask	funcHon	
–  You	have	to	use	pthread_sigmask	instead	of	sigprocmask	

Thread	Control	 31	

int	pthread_sigmask(int	how,	const	sigset_t	*set,	
																																			sigset_t	*oset);		

Thread:	Wait	for	a	Signal	

•  A	thread	is	able	to	wait	for	a	signal	using	sigwait	funcHon	

–  The	set	argument	specifies	the	signals	to	wait	
–  The	signop	stores	the	number	of	signal	that	was	delivered	

•  Usually	we	have	to	block	signals	that	will	be	waited	by	sigwait	
•  sigwait	atomaHcally	unblocks	signals	and	wait	unHl	one	is	

delivered	
•  MulHple	signal	receivers	

–  If	a	thread	has	registered	a	signal	handler	as	well	as	made	
funcHon	call	to	sigwait,	only	one	(the	handler	or	sigwait)	will	
receive	the	signal	–	that	is	implementaHon	dependent	

–  If	two	threads	calls	sigwait	to	wait	for	the	same	signal,	only	one	
will	receive	the	signal	

Thread	Control	 32	

int	sigwait(const	sigset_t	*set,	int	*signop);	

Send	a	Signal	to	a	Thread	

•  Similar	to	kill,	we	can	send	a	signal	to	a	thread	

– Return	zero	on	success,	or	non-zero	error	codes	
•  We	may	pass	a	value	zero	to	signo	to	check	
the	existence	of	a	thread	

•  If	a	default	signal	acHon	for	a	signal	is	to	
terminate	the	process,	the	enHre	process	will	
be	killed	
	

Thread	Control	 33	

int	pthread_kill(pthread_t	thread,	int	signo);		

Threads	and	fork()	
•  A	child	process	inherits	a	lot	from	its	parent	
•  Include	mutex,	reader-writer	lock,	and	condiHon	variables	
•  In	a	mulH-threaded	program,	only	ONE	thread	is	in	the	

child	process	
–  That’s	the	thread	calls	fork	

•  Locks	held	by	other	threads	will	be	NOT	released,	and	there	
is	no	way	for	the	child	thread	to	release	the	locks	

•  The	lock	problem	will	not	happen	if	a	child	process	calls	
exec	
–  All	the	old	address	space	is	discarded,	so	the	lock	state	doesn't	
maIer		

•  How	to	avoid	such	a	problem	if	a	child	process	does	not	call	
exec?	

Thread	Control	 34	

The	pthread_arork	FuncHon	
•  Prototype	

–  Return	zero	on	success,	or	non-zero	error	codes	
•  The	prepare	funcHon	is	called	before	fork()	
funcHon	is	executed	

•  The	parent	funcHon	is	called	aOer	fork()	@	the	
parent	process	

•  The	child	funcHon	is	called	aOer	fork()	@	the	
child	process	

Thread	Control	 35	

int	pthread_atfork(void	(*prepare)(void),	
																			void	(*parent)(void),	void	(*child)(void));		
	

SoluHon	to	the	Lock	Problem	

•  Acquire	all	the	locks	in	the	parent	funcHon	
•  This	is	to	guarantee	that	all	the	locks	have	
been	unlocked	and	then	acquired	by	the	
parent	funcHon	before	fork	is	performed	

•  Unlock	the	locks	in	both	the	parent	funcHon	
and	the	child	funcHon,	so	the	lock	states	at	
the	parent	and	the	child	are	synchronized	(all	
are	unlocked)	

	
Thread	Control	 36	

Example	of	the	Lock	Problem:	The	
Worker	

•  Lock,	sleep	for	3	seconds,	and	then	unlock	

Thread	Control	 37	

pthread_mutex_t	lock	=	PTHREAD_MUTEX_INITIALIZER;	
	
void	*worker(void	*arg)	{	
								pthread_mutex_lock(&lock);	
								puts("worker:	locked.");	
								sleep(3);	
								puts("worker:	unlocked.");	
								pthread_mutex_unlock(&lock);	
								return(0);	
}	

Example	of	the	Lock	Problem:	The	
Parent	and	the	Child	

Thread	Control	 38	

int	main(void)	{	
								pid_t	pid;	
								pthread_t	tid;	
	

	pthread_create(&tid,	NULL,	worker,	0);	
								sleep(1);	
								puts("parent:	The	lock	is	held	by	the	worker	thread.");	

	if	((pid	=	fork())	==	0)	{	
																puts("child:	start.");		//	the	only	thread	@	
child	
																pthread_mutex_lock(&lock);	
																puts("child:	locked.");	//	never	reach	here	
																pthread_mutex_unlock(&lock);	
																puts("child:	terminated.");	
																return	0;	
								}	

	pthread_join(tid,	NULL);	
	return	0;	

}	

Example	of	the	Lock	Problem:	The	
Callback	FuncHons	

Thread	Control	 39	

void	prepare(void)	{	
								pthread_mutex_lock(&lock);	
}	
	
void	parent(void)	{	
								pthread_mutex_unlock(&lock);	
}	
	
void	child(void)	{	
								pthread_mutex_unlock(&lock);	
}	

Example	of	the	Lock	Problem:	Revised	
Codes	

Thread	Control	 40	

int	main(void)	{	
								pid_t	pid;	
								pthread_t	tid;	

	pthread_atfork(prepare,	parent,	child);	
	pthread_create(&tid,	NULL,	worker,	0);	

								sleep(1);	
								puts("parent:	The	lock	is	held	by	the	worker	thread.");	

	if	((pid	=	fork())	==	0)	{	
																puts("child:	start.");		//	the	only	thread	@	
child	
																pthread_mutex_lock(&lock);	
																puts("child:	locked.");	//	lock	ok	
																pthread_mutex_unlock(&lock);	
																puts("child:	terminated.");	
																return	0;	
								}	

	pthread_join(tid,	NULL);	
	return	0;	

}	

Assignment	#9	(5%)	
1.  (2%)	Given	that	you	can	create	mulHple	threads	to	

perform	different	tasks	within	a	program,	explain	why	you	
might	sHll	need	to	use	fork.	

2.  (3%)	AOer	calling	fork,	could	we	safely	reiniHalize	a	
condiHon	variable	in	the	child	process	by	first	destroying	
the	condiHon	variable	with	pthread_cond_destroy	and	
then	iniHalizing	it	with	pthread_cond_init?	

CS5432	Advanced	UNIX	Programming	 41	

