Chapter 11
Threads

Cheng-Hsin Hsu
National Tsing Hua University
Department of Computer Science

Parts of the course materials are courtesy of Prof. Chun-Ying Huang

CS5432 Advanced UNIX Programming

Outline

e

e Overview and introduction

* Thread creation
e Thread termination

* Thread synchronization

Threads

Introduction

 We have introduced the relationships between processes

— There is only a limited amount shares can occur between related
processes

 Here we are going to introduce threads
— ltis able to perform multiple tasks within a single process

— All threads within a single process have access to the same process
components, e.g,. file descriptors and memory

* If asingle resource is shared among multiple threads

— We need synchronization mechanisms to prevent multiple threads
from viewing inconsistencies in their shared resources

Threads 3

Thread Concepts

* Atypical UNIX process can be thought of as having a single
thread of control

— Each process is doing only one thing at a time
* With multiple threads of control

— We can design our programs to do more than one thing at a time
within a single process

— Each thread handles a task
* Benefits of using multiple threads
— Simplify code that deals with asynchronous events

— Shares the same memory spaces and file descriptors

— Problems can be partitioned to improve overall program
throughput

— Interactive programs can realize improved response time

Threads

Thread Concepts (Cont’d)

* Multithread programming can be realized also on a
single processor

— The performance still gets improved as there is always 1/0O
operations that block the execution of a process

— However, if you have a multiprocessor system, threaded
program may run faster

* Athread consists of the information necessary to
represent an execution context within a process
— Thread ID
— Register values, stack content, a signal mask, an errno variable
— Scheduling priority and policy, and
— Thread specific data

Threads

The UNIX Thread Standard

* Defined by POSIX
— Portable Operating System Interface for UNIX

— POSIX.1-2001
— Also known as “pthreads” or “POSIX threads”

* Build programs with thread supports
— Your program has to include <pthread.h>

— To compile a C/C++ program with thread support, you have to add
“-pthread” or “-Ipthread” argument when compiling with gcc

Threads

Linux Implementation of POSIX
— —Threads —

* Threads are implemented via the clone system call
— Basically, they are processes sharing more information

 Two flavors: LinuxThreads and NPTL
* LinuxThreads: The original thread implementation

 NPTL: Native POSIX Thread Library

— Better conformance to POSIX.1

* For example, POSIX.1 requires threads of a process obtaining the same
PID value when calling getpid(), but LinuxThreads does not follow it

— Better performance
— Require supports from the C library and the kernel
 Both are 1:1 thread model

 That s, each thread maps to a kernel scheduling entity

Threads

Thread lIdentification

Every thread has a thread ID
— |t may be not unique in the system

— The thread ID has significance only within the context of the
process to which it belongs

The pthread_t data type
— Similar to pid_t, pthread_t is used to identify a thread
— It can be a structure (not forced to be an integer)

* Test the equivalence of thread IDs

— int pthread_equal(pthread_t tid1, pthread_t tid2);

— Returns: nonzero if equal, zero otherwise

Get the current thread ID
— pthread_t pthread_self(void);

Threads

Thread ID: A Job Queue Example

e

e

* A master thread assign jobs to worker threads by their IDs

A worker thread only removes the job tagged with its own
thread ID

* This can be done by examining the thread ID using the
pthread_equal function /\

/\ TID 1 TID 3 TID 2 TID 3
ithr;'dd}‘ ‘;\’0‘::; - jOb @ jOob | job |- job

Threads 9

Thread Creation

* With pthreads, when a program runs, it also starts out as a
single process with a single thread of control

e Create additional threads

— int pthread create(pthread t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void*), void *restrict arg);

“thread” should be the address of a previous declared pthread_t
variable

e “attr” is used to customize thread attributes
* The newly created thread starts running the “start_routine” function
* The “arg” is then passed to the “start_routine” function

— Returns: 0 if OK, error number on failure

Threads 10

Thread Creation (Cont’d)

* When a thread is created ...
— There is no guarantee which thread runs first
* The newly created thread or the calling thread?

— The newly created thread
* Has access to the process address space, and

* Inherit floating-point environment and signal mask from the
calling process

e pthread functions usually return an error code when
they fail
— They do not use the errno variable
— It is not recommended to use global variables for status checks

— However, the per thread copy of errno is still provided for
compatibility

Threads 11

Thread Creation, an Example

pthread_t ntid;
void printids(const char *s) {
pid t pid = getpid();
pthread _t tid = pthread _self();
printf("%s pid %u tid %u (©x%x)\n", s, (unsigned int)pid,
(unsigned int) tid, (unsigned int) tid);
}
void * thr_fn(void *arg) {
printids("new thread: "); return((void *)0);
}
int main(void) {
int err = pthread _create(&ntid, NULL, thr_fn, NULL);
if (err != Q)
err_quit("can't create thread: %s\n", strerror(err));
printids("main thread:");
sleep(1);
exit(9);
}

Threads 12

Thread Creation, an Example (Cont’d)

— \ —

* The result can be different on vaious platforms
— The pthread_t may be not an integer

— The getpid() function may return different values for the two thread
(although it is expected to return the same value)

$./figll.2-threadid
new thread: pid 3207 tid 3084950416 (Oxb7e09b90)
main thread: pid 3207 tid 3084953264 (0Oxb7e0a6b0)

Threads 13

Thread Termination

 Terminate the entire process
— If any thread within a process calls exit, _Exit, or _exit
— If received a signal with the default action of terminating the process

 Terminate a single thread
— Return from the start routine.
* The return value is the thread's exit code
— Cancelled by another thread in the same process
— The thread calls pthread_exit

Threads 14

Thread Termination Status

* The exit status of a process can be retrieved using wait functions
— wait, waitpid, ..., etc

e The exit status of a thread can also be retrieved

 The pthread join function

— int pthread_join(pthread_t thread, void **value_ptr);
— Returns: 0 if OK, error number on failure
— This function suspends the calling thread
* Unless the target thread has already terminated
— The retrieved exit status is stored in value_ptr, if it is not NULL
— The target thread is then placed in a “detached” state

* The storage for that thread is released

Threads 15

Thread Termination Status (Cont’d)

e \ —

* The storage of a thread can be released immediately right on
its termination
 The pthread detach function
— Set the state of a thread to be “detached”
— int pthread_detach(pthread_t thread);
— Returns: 0 if OK, error number on failure
* A detached thread can not be joined
— A call to pthread_join for a detached thread will return EINVL

Threads 16

Thread Termination, an Example

— \ —_—

void * tfnl(void *a) { printf("thread 1 returning\n"); return((void *)1); }
void * tfn2(void *a) { printf("thread 2 exiting\n"); pthread_exit((void *)2); }
int main(void) {

Threads

int err;

pthread t tidl, tid2;

void *tret;

err = pthread create(&tidl, NULL, tfnl, NULL);

if (err != 0)err_quit("can't create thread 1: %s\n", strerror(err));
err = pthread_create(&tid2, NULL, tfn2, NULL);

if (err != 0)err_quit(“"can't create thread 2: %s\n", strerror(err));
err = pthread join(tidl, &tret);

if (err != 0)err_quit("can't join with thread 1: %s\n", strerror(err));
printf("thread 1 exit code %d\n", (int)tret);

err = pthread_join(tid2, &tret);

if (err != 0)err_quit(“"can't join with thread 2: %s\n", strerror(err));
printf("thread 2 exit code %d\n", (int)tret);
exit(9);

$./figll.3-exitstatus
thread 1 returning
thread 2 exiting
thread 1 exit code 1
thread 2 exit code 2 17

void * and pthread Functions

* In pthread create and pthread_exit function, we pass
arguments using the "void *" type

— The typeless pointer
* The pointer can be used to pass more than a single value

— Values can be store in a data structure
— The pointer of the data structure is then passed to pthread_create or
pthread_exit

 However, the data structure should not be placed on the
stack

— When a thread is terminated, the memory of its stack is released
— |t might be reused by other threads

Threads 18

Cancelling a Thread

 The pthread_cancel function
— int pthread_cancel(pthread_t tid);
— Returns: 0 if OK, error number on failure

* |t just like the thread tid calls
pthread exit(PTHREAD CANCELED)

* The thread tid can select to ignore or control how it is
canceled

* pthread_cancel does not wait for the thread to terminate
— |t simply makes the request

Threads 19

Cleanup Functions

/ \

* Recall the atexit function
— Register functions that execute when a process terminates

* Similar works can be done for threads
— void pthread_cleanup_push(void (*rtn)(void *), void *arg);
— void pthread_cleanup _pop(int execute);
* The registered routines is executed when ...
— Making a call to pthread_exit
— Responding to a cancellation request

— Making a call to pthread_cleanup_pop with a nonzero execute
argument

* If the argument is zero, it just remove the routine on stack top

Threads

20

Comparison of Process and Thread

Primitives

Process Primitive

Thread Primitive

Description

fork pthread create create a new flow of control
exit pthread_exit exit from an existing flow of control
waitpid pthread_join get exit status from flow of control
atexit pthread _cleanup_push | register function to be called at exit
from flow of control
getpid pthread_self get ID for flow of control
abort pthread_cancel request abnormal termination of flow

of control

Threads

21

Thread Synchronization

 Threads of a process share the same memory
* Each thread must see a consistent view of data
 The data is always consistent if ...

— Each thread uses variables that other threads do not
read or modify

— Variables are read-only

* However, if a thread modifies a shared data

— We need to synchronize the threads to ensure that
they do not use an invalid value

Unsafe Access of Shared Variables,
_Example #1

° TWO th readsl one for Thread A Thread B

updating and one for
reading read

— Suppose a write operation
needs two cycles

— The read operation occurs Hime write,

during the write operations
read

' wri tt‘z

Threads 23

Unsafe Access of Shared Variables,

_Example #2

 Two threads, both
increasing a variable

Read the memory
location into a register

Increment the value in
the register

— Write the new value

back to the memory
location

Threads

\

time

Thread A

fetch i into register
(register=5)

Thread B

increment the
contents of
the register
(register=6)

fetch i into register
(register=5)

store the contents
of the register
into i
(register=6)

increment the
contents of
the register
(register=6)

store the contents
of the register
into i
(register=6)

Contents of i

6

24

Synchronized Memory Access

_/

//

Thread A Thread B

 To solve the previous problem,

we have to use a lock that allows read

only one thread to access the
variable at a time

e |If thread B wants to read the
variable, it acquires a lock

* If thread A updates the variable, time

it acquires the same lock

— Thread B will be unable to read write,
the variable until thread A releases

read

write ,

the lock

read

Threads 25

Mutexes

* Mutual exclusives

A mutex is basically a lock
— We set (lock) it before accessing a shared resource
— ltis released (unlocked) when we're done

e When a mutex is set ...

— Any other thread that tries to set it will be blocked until the
lock holder releases it

— If more than one thread is blocked when a mutex is unlocked
* All threads blocked on the lock will be made runnable
* The first one to run will be able to set the lock
* The others will see that the mutex is still locked and go back to
wait
— Only one thread will proceed at a time

Threads

26

pthread Mutexes

e

* Data type: pthread _mutex_t
* |nitialize and destroy

— int pthread_mutex_init(pthread _mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

— int pthread_mutex_destroy(pthread_mutex_t *mutex);
— Returns: 0 if OK, error number on failure

e Alternatively
— pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Threads

27

pthread Mutexes (Cont’d)

e

* Lock and unlock
— int pthread_mutex_lock(pthread _mutex_t *mutex);
— int pthread_mutex_trylock(pthread mutex_t *mutex);
— int pthread_mutex_unlock(pthread _mutex_t *mutex);
— Returns: 0 if OK, error number on failure

Threads

28

A Mutex Example —

struct foo {
int f_count;
pthread_mutex_t f_lock;
/* ... more stuff here ... */

}s

struct foo * foo_alloc(void) { /*allocate the object */
struct foo *fp;
if ((fp = malloc(sizeof(struct foo))) != NULL) {
fp->f_count = 1;
if (pthread_mutex_init(&fp->f_lock, NuLL) != 0) {

free(fp);
return(NULL);
}
/* ... continue initialization ... */
}
return(fp);

}

Threads 29

A Mutex Example —
_Protecta-DataStructure (Cont’d)

void foo_hold(struct foo *fp) { /*add a reference to the object */
pthread_mutex_lock (&fp->f_lock) ;

fp->f_count++;
pthread_mutex_unlock(&fp->f_lock);

}
void foo_rele(struct foo *fp) { /*release a reference to the object */

pthread_mutex_lock (&fp->f_lock) ;

1t (--fp->f_count == 0) { /*last reference */
pthread_mutex_unlock (&fp->f_lock);
pthread_mutex_destroy(&fp->f_Tlock) ;

free(fp);

} else {
pthread_mutex_unlock(&fp->f_lock);

}

30

Threads

Deadlock Avoidance

Threads

How deadlock happens?
— Case #1: A thread lock the same mutex twice
— Case #2: Two threads (T1/T2) and two mutexes (MA/MB)
* T1 locks MA and then locks MB
* T2 locks MB and then locks MA
 T1 and T2 may block each other

Avoidance
— Case #1 is easier to avoid

— Case #2: Mutexes has to be locked in the same order

e Every thread locks MA first and then locks MB

* However, it is sometimes difficult to apply an ordered lock
— The pthread_mutex_trylock function

* Make sure that we can lock all required mutexes at one time

31

Reader-Writer Lock

e Similar to mutexes, but allow higher degree of parallelism
 With a mutex, it can be only
— Locked, or
— Unlocked
 With a reader-write lock, it can be
— Locked in read mode
— Locked in write mode, or
— Unlocked
* Reader-Write Lock
— Multiple reader locks can be acquired simultaneously

— Only one can lock in write mode

— If a reader/writer already locks, the coming writer/reader must wait
until it unlocks

Threads 32

pthread Reader-Writer Lock

e

* Data type: pthread_rwlock_t

* I|nitialize and destroy

— int pthread_rwlock_init(pthread rwlock_t *restrict rwlock,
const pthread_rwlockattr_t *restrict attr);

— int pthread_rwlock_destroy(pthread rwlock_t *rwlock);
— Returns: 0 if OK, error number on failure

* Lock and unlock
— int pthread_rwlock_rdlock(pthread rwlock_t *rwlock);
— int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
— int pthread_rwlock_tryrdlock(pthread rwlock_t *rwlock);
— int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
— int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);
— Returns: 0 if OK, error number on failure

Threads 33

Condition Variable

e

e

* Condition variable is another synchronization mechanism
available to threads

* |t has to be used with mutexes

— The condition itself is protected by a mutex
— A thread must first lock the mutex to change the condition state

* Condition variable allows a thread to wait in a race-free way
for arbitrary conditions to occur

Threads 34

pthread Condition Variables:
L lnitialize and Destroy

 Data type: pthread cond t
* |nitialize and destroy

— int pthread_cond_init(pthread_cond_t *restrict cond,
pthread_condattr_t *restrict attr);

— int pthread _cond_destroy(pthread _cond_t *cond);
— Returns: 0 if OK, error number on failure
e Alternatively

— pthread_cond_t cond = PTHREAD_COND_INITIALIZER,;

Threads 35

pthread Condition Variables:

— Waitfaorthe Condition

—

* Synopsis

— int pthread_cond_wait(pthread _cond_t *restrict cond,
pthread _mutex_t *restrict mutex);

— int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread _mutex_t *restrict mutex,
const struct timespec *restrict abstime);

e The condition wait function unlocks the mutex first
* |t then waits for the condition to occur

— The running state of the current thread is set to sleeping

pthread Condition Variables: Timed

e

 The timespec data structure

* Itis the absolute time that the wait gives up

struct timespec {

__time_t tv_sec; /*Seconds. */
Tong int tv_nsec; /* Nanoseconds. */

* An example of setting the absolute expire time

Threads

void maketimeout(struct timespec *tsp, long minutes) {

struct timeval now; /*getthe current time */

gettimeofday(&now) ;
tsp->tv_sec = now.tv_sec;
tsp->tv_nsec = now.tv_usec * 1000; /* usec to nsec */

/* add the offset to get timeout value */
tsp->tv_sec += minutes * 60;

37

pthread Condition Variables:

— Notifications —

Notify threads that a condition has been satisfied
— int pthread_cond_broadcast(pthread cond _t *cond);
— int pthread_cond_signal(pthread cond_t *cond);

— Returns: 0 if OK, error number on failure

pthread _cond_ broadcast
— Wake up all waiting threads

pthread cond_signal
— Wake up one waiting threads

— POSIX.1 allows the implementation wakes up more than one threads
— Waked up threads have to contend for the mutex

Threads 38

pthread Condition Variables: An
= —Example S

struct msg { struct msg *m next; /* ... more stuff here ... */ };
struct msg *workgq;
pthread cond_t gready
pthread mutex_ t qlock
void process _msg(void) {
struct msg *mp;
for (55) A{
pthread mutex lock(&qglock);
while (workq == NULL) pthread cond wait(&gready, &glock);
mp = workgq;
workq = mp->m_next;
pthread mutex unlock(&qglock);
/* now process the message mp */

PTHREAD_COND_INITIALIZER;
PTHREAD_MUTEX_INITIALIZER;

}

}

void enqueue_msg(struct msg *mp) {
pthread mutex lock(&qglock);
mp->m_next = workgq;
workg = mp;
pthread mutex unlock(&qglock);
pthread cond signal(&gready);

Threadl 39

Example: An Implementation of a

 Job header

class Job {
private:
pthread_t tid;
int ch;
public:
Job(int ch = @, pthread t tid = 0);
pthread_t getlId();
void setId(pthread t tid);
int getChar();
void setChar(int ch);

}s

Threads

Waorker Queue — Jobs

e

* Job Implementation

Job::Job(int ch, pthread_t tid) {
this->ch = ch;
this->tid = tid;

}

pthread t Job::getId() {
return tid;

}
void Job::setId(pthread t tid) {

this->tid = tid;

}

int Job::getChar() {
return ch;

}
void Job::setChar(int ch) {

this->ch = ch;

}

40

Example: An Implementation of a

- finition

#define ASSIGNID /* Assign thread id to jobs */
#define ORDERED /* Ensure that jobs are processed in the order */
#define N_WORKERS 3

pthread mutex_t mutex = PTHREAD MUTEX INITIALIZER;

pthread cond t cond = PTHREAD COND_INITIALIZER;
std::1list<Job> jobqueue;

int do_the job(long id, int ch) {

if(ch == -1) /* terminate the worker */
return -1;

printf("worker-%1d: %c\n", id, ch);

return 0;

}

Threads 41

Example: An Implementation of a
— Mmai nc)

int main(int argc, char *argv[]) {
pthread_t workers[N_WORKERS];
// check args
if(argc < 2) {
fprintf(stderr, "usage: %s input-string\n", argv[0]);
return -1;
}
// create workers
for(int i = @; i < N_WORKERS; i++) {
if(pthread create(&workers[i], NULL,
worker_main, (void *) (long) i) != 0) {
fprintf(stderr, "create worker[%d] failed\n", i);
exit(-1);

Threads 4?2

Threads

Example: An Implementation of a

= NC

// create jobs
for(char *ptr = argv[1l]; *ptr; ptr++) {
#ifdef ASSIGNID
Job j(*ptr, workers[(ptr - argv[1l]) % N_WORKERS]);
#else
Job j(*ptr);
#endif
pthread mutex_ lock(&mutex);
jobqueue.push_back(j);
pthread _mutex_unlock(&mutex);
pthread_cond signal(&cond);

43

Threads

Example: An Implementation of a

— ' NC)

// terminate workers
for(int 1 = ©; i < N_WORKERS; i++) {
#ifdef ASSIGNID
Job j(-1, workers[i]);
#else
Job j(-1);
#endif
pthread mutex_ lock(&mutex);
jobqueue.push_back(j);
pthread _mutex_unlock(&mutex);
pthread_cond signal(&cond);

44

Example: An Implementation of a

_—WoerkerQueue — main Func (4/4)

// process all jobs

size t jobs;

do {
pthread _mutex_ lock(&mutex);
jobs = jobqueue.size();
pthread_mutex_unlock(&mutex);
pthread_cond signal(&cond);

} while(jobs > 0);

// wait for all workers

for(int i = @; i < N_WORKERS; i++) {
void *ret;
pthread_join(workers[i], &ret);

}

//

return 0;
} /* end of main() */

Threads

45

Example: An Implementation of a

;—%&W—M&er—/l,/

void* worker_main(void *arg) {
long id = (long) arg;
printf("# worker-%1d created\n", id);
while(1l) {
Job j;
pthread_mutex_lock(&mutex);
pthread cond wait(&cond, &mutex);
// has at least one job
j = jobqueue.front();
if(j.getld() ==
|| pthread_equal(pthread self(), j.getId())) {
jobqueue.pop front();
#ifdef ORDERED
// follow the order: unlock after job is done
if(do_the_job(id, j.getChar()) < 0) {
pthread mutex unlock(&mutex);
break;
}
#endif
} else {

Threads

-~

alcao
| g L

pthread mutex unlock(&mutex);
continue;
}
/* unlock before doing the job */
pthread_mutex_unlock(&mutex);
#ifndef ORDERED
// could be out of order
if(do_the job(id, j.getChar()) < @)
break;
#endif

}
printf("# worker-%1d terminated\n",

id);
return NULL;
}

46

Spin Lock

\

e

 Mutex blocks a process by sleeping

* Spin lock blocks by busy-waiting, or spinning,
until the local is acquired

— More responsive: never being rescheduled
— Consumes more CPU cycles due to spinning

— Useful for non-preemptive schedulers

* Spin lock is less crucial for preemptive schedulers

— Modern mutex may be implemented with a
combination of spinning and sleeping

Barriers
i S _
e Barriers are used to coordinate multiple threads
working in parallel

Allow each thread to wait until all cooperating
threads have reached the same point

* Create and destroy a barrier

int pthread_barrier_init(pthread barrier_t *restrict barrier,
const pthread barrierattr_t *restrict attr,

unsigned count);
int pthread_barrier_destroy(pthread barrier_t *barrier);

e Wait for a barrier

int pthread _barrier_wait(pthread _barrier_t *barrier);

Threads 48

Barrier Example (1/3)

e \

#define HAS BARRIER
#tdefine N 5

static pthread barrier_t barrier;

void *worker(void *arg) {
long i, id = (long) arg;
for(i = 0; i < id+1l; i++) {
printf("%1ld", id+1);
}
printf("[%1d/done]\n", id+1);
#ifdef HAS BARRIER

pthread barrier wait(&barrier);
#tendif
return NULL;

}

Threads

49

Barrier Example (2/3)

int main() {
long i;
pthread t tid;
#ifdef HAS BARRIER
pthread barrier_init(&barrier, NULL, N+1);
#endif
for(i = 0; 1 < N; i++) {
if(pthread create(&tid, NULL, worker, (void*) i) != 0) {
fprintf(stderr, "pthread create failed.\n");
return -1;
}
}
#ifdef HAS_BARRIER
pthread_barrier_wait(&barrier);
pthread_barrier_destroy(&barrier);
#endif
printf("all done.\n");
return 0;

ThreaJs 50

Barrier Example (3/3)

 Without HAS_BARRIER ¢ With HAS_BARRIER

$./barrier $./barrier
3314444[4/done] 22[2/done]
all done. 13[1/done]
444414 /done]
$./barrier 55555[5/done]
all done. 33[3/done]
all done.
$./barrier
333[3/done] $./barrier
1[1/done] 43233[3/done]
22[2/done] 2[2/done]
44444 /done] 555551[1/done]
all done. [5/done]
444[4/done]
all done.

Threads 51

Assignment #8 (5%)

* Exercise questions 11.1 - 11.5, each
guestion is worth 1%

* Due date: Dec 12t 2016

