
Chapter	9
Process	Relationships

CS5432	Advanced	UNIX	Programming 1

Cheng-Hsin Hsu
National	Tsing	Hua	University

Department	of	Computer	Science

Parts	of	the	course	materials	are	courtesy	of	Prof.	Chun-Ying	Huang

Outline

• Logins
• Process	groups
• Sessions
• Controlling	terminal
• Job	control
• Shell	execution	of	programs
• Orphaned	process	groups

Process	Relationship 2

Linux	Boot	Process
• The	first	process	after	system	boot	/sbin/init

– The	parent	of	all	processes
– Has	a	PID	of	1

• /sbin/init configurations
– /etc/inittab,	/etc/event.d/*,	or	/etc/init/*

• Run	levels
– sysinit
– 0	(halted),	6	(reboot),	1-5	(can	be	customized)

• Default	run	levels	– often	set	to	2,	3,	or	5

• Enable	console	logins

Process	Relationship 3

Linux	Terminal	Logins
• Terminal	setups,	an	example	from	Ubuntu	14

– Start	6	consoles	terminals	for	login
– Can	be	switched	using	hotkey	Alt+F1	~	F6

• /etc/init/tty1.conf	(on	Ubuntu…)

Process	Relationship 4

start on stopped rc RUNLEVEL=[2345] and (
not-container or
container CONTAINER=lxc or
container CONTAINER=lxc-libvirt)

stop on runlevel [!2345]

respawn
exec /sbin/getty -8 38400 tty1

The	getty	Program
• Calls	open	for	the	terminal	device

– /dev/tty1,	/dev/ttyS0,	…

• Create	file	descriptors	0,	1,	and	2
• Show	the	"login:"	prompt
• When	a	user	provides	his/her	username,	invoke	the	

"/bin/login"	program
– execle("/bin/login",	"login",	"-p",	username,	(char	*)0,	envp);

Process	Relationship 5

The	getty	Program	(Cont’d)

Process	Relationship 6

The	login	Program

• Display	the	"Password:"	prompt
– Read	user	password	using	getpass(3)
– Read	encrypted	password,	e.g.,	from	/etc/shadow
– Encrypt	user	input	password,	and	compare	the	
encrypted	with	that	stored	in	/etc/shadow

• If	a	user	login	fails	…
– The	login	program	terminates	and	the	init restarts	
getty

• If	a	user	login	succeeds	…	
– There	are	a	lot	tasks	to	be	performed

Process	Relationship 7

Actions	for	a	Successful	Login
• Set	CWD	to	the	user’s	home	directory	(chdir)
• Set	the	ownership	of	the	user’s	terminal	device	(chown)
• Set	the	access	permissions	for	the	terminal	device	so	the	user	

have	permission	to	read	from	and	write	to	it
• Set	group	IDs	by	calling	setgid (real	group)	and	initgroups (for	

supplementary	groups)
• Initialize	the	environment	variables

– HOME,	SHELL,	USER,	LOGNAME,	PATH,	…

• Set	user	ID	(setuid)	and	invoke	a	login	shell	

Process	Relationship 8

Network	Logins	– via	the	telnetd	Program

Process	Relationship 9

inetd:	Internet	Superserver

The	telnetd	Program

• Opens	a	pseudo-terminal	device	
– /dev/pts/N

• Splits	into	two	processes	using	fork
• The	parent	handles	the	communications	across	the	

network	connection	
• The	child	does	an	exec	of	the	login	program	– it	is	the	

same	as	terminal	logins
• Whether	we	log	in	through	a	terminal	or	a	network	

connection	…
– We	have	a	login	shell
– Its	standard	input/output/error	are	connected	to	either	a	

terminal	device	or	a	pseudo-terminal	device	

Process	Relationship 10

The	Purpose	of	Process	Group

• Every	process	has	a	parent	process
• The	parent	is	notified	when	its	child	terminates
• The	parent	can	obtain	the	child's	exit	status	
– The	waitpid function
– In	addition	to	wait	a	single	child,	the	parent	process	
can	wait	children	in	a	process	group

– Signals	(covered	in	the	next	chapter)	can	be	also	sent	
to	processes	in	a	process	group

• So,	what	is	a	process	group?

Process	Relationship 11

What	is	a	Process	Group
• Each	process	belongs	to	a	process	group
• A	process	group	is	a	collection	of	one	or	more	processes	

– Usually	associated	with	the	same	job	

• Each	process	group	has	a	unique	process	group	ID	
• Process	group	IDs	are	similar	to	process	IDs

– They	can	be	stored	in	a	pid_t data	type	

• Retrieve	of	the	process	group	ID
– #include <unistd.h>
– pid_t getpgid(pid_t pid);
– pid_t getpgrp(void);

• Is	equivalent	to	getpgid(0);

Process	Relationship 12

What	is	a	Process	Group	(Cont’d)
• Each	process	group	can	have	a	process	group	leader	

– The	leader	is	identified	by	its	process	group	ID	being	equal	to	its	
process	ID

– A	group	leader	can	create	a	group,	create	processes	in	the	group,	and	
then	quit

– The	process	group	still	exists,	as	long	as	at	least	one	process	is	in	the	
group

• The	process	group	lifetime
– Start	on	the	creation	of	the	group
– End	when	the	last	process	in	the	group	leaves

Process	Relationship 13

Create/Join	a	Process	Group
• Synopsis

– #include <unistd.h>
– int setpgid(pid_t pid, pid_t pgid);

• Explanations
– Sets	the	process	group	ID	to	pgid in	the	process	whose	process	ID	

equals	pid
– If	pid =	pgid,	the	process	specified	by	pid becomes	a	process	group	

leader
– If	pid is	0,	the	process	ID	of	the	caller	is	used	
– If	pgid is	0,	pgid =	pid

Process	Relationship 14

Create/Join	a	Process	Group	(Cont’d)

• setpgid Limitations
– A	process	can	set	the	process	group	ID	of	only	itself	and	any	of	its	

children	
– Furthermore,	it	can	not	change	the	process	group	ID	of	one	of	its	

children	after	that	child	has	called	one	of	the	exec	functions.	

• The	use	of	setpgid function
– It	is	called	after	a	fork	to	have	the	parent	set	the	process	group	ID	of	

the	child,	and
– Have	the	child	set	its	own	process	group	ID	
– The	above	two	actions	are	redundant,	but	they	guaranteed	that	the	

child	is	placed	into	its	own	process	group	ß to	avoid	race	conditions

Process	Relationship 15

Sessions
• A	session	is	a	collection	of	one	or	more	process	groups	
• The	processes	in	a	process	group	are	usually	placed	there	by	a	

shell	pipeline
• An	example

– $	proc1	|	proc2	&
– $	proc3	|	proc4	|	proc5	&

Process	Relationship 16

Create	a	Session
• Synopsis

– pid_t setsid(void);	
– Returns	pgid or	-1	if	the	caller	is	already	a	process	group	leader

• If	the	calling	process	is	not	a	process	group	leader,	this	
function	creates	a	new	session	
– The	process	becomes	the	session	leader	of	this	new	session
– The	process	is	the	only	process	in	this	new	session	
– The	process	becomes	the	process	group	leader	of	a	new	process	

group.
– The	new	process	group	ID	is	the	process	ID	of	the	calling	process	
– The	process	has	no	controlling	terminal

Process	Relationship 17

Get	the	Current	Session	ID
• Synopsis

– pid_t	getsid(pid_t	pid);	
– Returns	the	session	leader’s	process	group	ID,	or	-1	on	error
– If	pid	is	0,	getsid	returns	the	process	group	ID	of	the	calling	process's	

session	leader	

• The	session	ID	is	the	process	ID	of	the	session	leader	

• When	a	user	logged	in,	the	session	leader	is	usually	the	shell

Process	Relationship 18

Controlling	Terminal	(1/3)
• A	session	can	have	a	single	controlling	terminal

– It	is	usually	a	terminal	device	or	a	pseudo-terminal	device	

• The	session	leader	that	establishes	the	connection	to	the	
controlling	terminal	is	called	the	controlling	process	

• The	process	groups	within	a	session	can	be	divided	into:
– A	single	foreground	process	group,	and
– One	or	more	background	process	groups	

• If	a	session	has	a	controlling	terminal,
– It	has	a	single	foreground	process	group,	and
– All	other	process	groups	in	the	session	are	background	process	

groups	

Process	Relationship 19

Controlling	Terminal	(2/3)
• User	control	keys

– Send	signals	to	all	processes	in	the	foreground	process	group	
– Interrupt	key	(often	Ctrl-C):	Send	SIGINT
– Quit	key	(often	Ctrl-Backspace):	Send	SIGQUIT

• If	a	network	disconnect	is	detected	by	the	terminal	interface,	
the	SIGHUP	is	sent	to	the	controlling	process	(the	session	
leader)

Process	Relationship 20

Controlling	Terminal	(3/3)

Process	Relationship 21

Whom	to	Send	Signals?
• How	does	the	terminal	device	know	the	foreground	process	

group?
• It	can	be	set	using	the	tcgetpgrp and	tcsetpgrp functions
• Synopsis

– pid_t tcgetpgrp(int filedes);
– int tcsetpgrp(int filedes, pid_t pgrpid);

• It	can	be	only	set	by	the	controlling	process,	who	knows	the	
descriptor	of	the	controlling	terminal

• Most	applications	don't	call	these	two	functions	directly	
• They	are	normally	called	by	job-control	shells

Process	Relationship 22

Direct	Access	to	the	Controlling	Terminal

• Usually,	a	controlling	terminal	is	established	
automatically	when	we	log	in	

• There	are	times	a	program	wants	to	talk	to	the	
controlling	terminal	directly
– For	example,	ask	a	user	to	input	his/her	password	from	the	

terminal	even	if	the	standard	input	or	standard	output	is	
redirected

• This	can	be	done	by	opening	the	file	/dev/tty
– This	special	file	is	a	synonym	within	the	kernel	for	the	

controlling	terminal	
– If	the	program	doesn't	have	a	controlling	terminal,	the	open	of	

this	device	will	fail	

Process	Relationship 23

Direct	Access	to	the	Controlling	Terminal,
an	Example

• Another	example:	getpass.c
– Read	password	from	a	user	without	ECHO

Process	Relationship 24

#include <unistd.h>
#include <stdio.h>
int main() {

FILE *fp;
if((fp = fopen("/dev/tty", "w")) == NULL) {

fprintf(stdout, "cannot open the controlling terminal.\n");
return(-1);

}
fprintf(fp, "write to /dev/tty\n");
fprintf(stdout, "write to stdout\n");
return(0);

}

$./a.out
write to /dev/tty
write to stdout
$./a.out > xxx
write to /dev/tty
$ cat xxx
write to stdout

Job	Control

• This	feature	allows	us	to	start	multiple	jobs	from	
a	single	terminal

• Control	which	jobs	can	access	the	terminal	and	
which	jobs	are	to	run	in	the	background

• Job	control	requires	three	forms	of	support	
– A	shell	that	supports	job	control	
– The	terminal	driver	in	the	kernel	must	support	job	
control

– The	kernel	must	support	certain	job-control	signals
– (and	also	applications….)	

Process	Relationship 25

Job	Control	(Cont’d)
• Start	a	job	in	background	– the	&	operator

• Stop	a	job	running	in	foreground
– A	user	can	press	Ctrl-Z	to	stop	a	running	foreground	job
– The	SIGTSTP	is	sent	to	all	processes	in	the	foreground	process	group

$ ps auxw | grep ps &
[1] 30554
$ bear 30553 0.0 0.0 2744 1016 pts/1 R 12:26 0:00 ps auxw
bear 30554 0.0 0.0 3240 812 pts/1 S 12:26 0:00 grep ps
(Just press enter)
[1]+ Done ps auxw | grep ps

Process	Relationship 26

SIGTTIN	and	SIGTTOU
• Processes	in	the	foreground	process	group	is	always	able	to	

read	from	and	write	to	the	terminal
• However,	background	processes	is	restricted	to	do	so
• An	example	of	reading	from	the	terminal	– received	SIGTTIN

Process	Relationship 27

$ cat > temp.foo & start in background, but it'll read from standard input
[1] 1681
$ we press RETURN
[1] + Stopped cat > temp.foo
$ fg %1 bring job number 1 into the foreground
cat > temp.foo the shell tells us which job is now in the foreground
hello, world enter one line
^D type the end-of-file character
$ cat temp.foo check that the one line was put into the file
hello, world

SIGTTIN	and	SIGTTOU	(Cont’d)
• An	example	of	reading	from	the	terminal	– received	SIGTTOU

Process	Relationship 28

$ cat temp.foo & execute in background
[1] 1719
$ hello, world the output from the background job appears after the prompt

we press RETURN
[1] + Done cat temp.foo
$ stty tostop disable ability of background jobs to output

to the controlling terminal
$ cat temp.foo & try it again in the background
[1] 1721
$ we press RETURN and find the job is stopped
[1] + Stopped(SIGTTOU) cat temp.foo
$ fg %1 resume stopped job in the foreground
cat temp.foo the shell tells us which job is now in the foreground
hello, world and here is its output

Process	Relationship 29

Summary	
of	Job	
Control	
Features

Shell	Execution	of	Programs
• $	ps -o	pid,ppid,pgid,sid,comm

• $	ps -o	pid,ppid,pgid,sid,comm |	cat1	|	cat2

PID PPID PGID SID COMMAND
949 947 949 949 sh
1774 949 949 949 ps

PID PPID PGID SID COMMAND
949 947 949 949 sh
1988 949 949 949 cat2
1989 1988 949 949 ps
1990 1988 949 949 cat1

Process	Relationship 30

***	This	example	comes	from	the	
textbook	and	it	might	be	different	if	
you	are	working	with	a	different	shell

Shell	Execution	of	Programs	(Cont’d)

• On	Ubuntu	16.04
• $	ps -o	pid,ppid,pgid,sid,comm

• $	ps -o	pid,ppid,pgid,sid,comm |	cat1	|	cat2

Process	Relationship 31

PID PPID PGID SID COMMAND
19064 19060 19064 19064 bash
19237 19064 19237 19064 ps

PID PPID PGID SID COMMAND
19064 19060 19064 19064 bash
19238 19064 19238 19064 ps
19239 19064 19238 19064 cat1
19240 19064 19238 19064 cat2

Orphaned	Process	Groups	

• A	process	whose	parent	terminates	is	called	an	orphan	and	is	
inherited	by	the	init process	

• A	entire	process	group	can	be	orphaned
• Definition	of	an	orphaned	process	group

– A	process	group	is	orphaned	if	the	parent	process	of	every	member	
is	either	a	member	of	the	group	or	not	a	member	of	the	group’s	
session

– In	contrast,	a	process	group	is	not	orphaned	if	a	process	in	the	
group	has	a	parent	in	a	different	process	group	but	in	the	same	
session

• If	a	process	group	becomes	orphaned
– Every	stopped	process	in	the	group	is	sent	the	SIGHUP	followed	by	

the	SIGCONT
– The	default	action	on	receipt	of	a	SIGHUP	is	to	terminate	the	

process

Process	Relationship 32

Orphaned	Process	Group,	an	Example

main(void) {
char c;
pid_t pid;
pr_ids("parent"); /* parent: pid, ppid, pgrp, and tpgrp */
if ((pid = fork()) < 0) { err_sys("fork error"); }
else if (pid > 0) { /* parent */

sleep(5); /* sleep to let child stop itself */
exit(0); /* then parent exits */

} else { /* child */
pr_ids("child"); /* child: pid, ppid, pgrp, and tpgrp */
signal(SIGHUP, sig_hup); /* establish signal handler */
kill(getpid(), SIGTSTP); /* stop ourself */
pr_ids("child"); /* prints only if we're continued */
if (read(STDIN_FILENO, &c, 1) != 1)

printf("read error from controlling TTY, errno = %d\n",
errno);

exit(0);
}

}

Process	Relationship 33

Orphaned	Process	Group,	an	Example	(Cont’d)

• The	parent	and	the	child	prints	out	their	own	information
• The	parent	then	sleeps	for	5	seconds
• The	child	stopped	itself
• When	the	parent	terminates,	the	child	received	SIGHUP	and	

SIGCONT
– Since	the	child	has	assigned	the	SIGHUP	handler,	it	is	not	

terminated
– The	child	is	now	in	background,	so	read	from	TTY	got	the	EIO	error

Process	Relationship 34

$./fig9.11-orphan3
parent: pid = 6099, ppid = 2837, pgrp = 6099, tpgrp = 6099
child: pid = 6100, ppid = 6099, pgrp = 6099, tpgrp = 6099
(sleep for 5 seconds)
SIGHUP received, pid = 6100
child: pid = 6100, ppid = 1, pgrp = 6099, tpgrp = 2837
read error from controlling TTY, errno = 5

Assignment

No	assignment	this	time.	

The	points	will	be	merged	with	the	next	
Chapter’s	assignment!

CS5432	Advanced	UNIX	Programming 35

