
Chapter	8	
Process	Control	

CS5432	Advanced	UNIX	Programming	 1	

Cheng-Hsin	Hsu	
Na#onal	Tsing	Hua	University	

Department	of	Computer	Science	
	

Parts	of	the	course	materials	are	courtesy	of	Prof.	Chun-Ying	Huang	

Outline	

•  Overview	
•  Process	creaIon	
•  Process	terminaIon	
•  Program	execuIon	

Process	Control	 2	

Process	IdenIfiers	

•  Every	process	has	a	unique	process	ID	
– A	non-negaIve	integer	
–  Process	ID	can	be	reused	aPer	a	process	has	
terminated	

•  The	init	program	(/sbin/init)	
–  Bring	up	the	system	-	/etc/iniVab,	/etc/rc*,	or	/etc/
events.d	

–  The	init	process	never	dies	
–  The	parent	process	of	all	orphan	processes	ß	nohup,	
and	daemon	processes	

Process	Control	 3	

List	of	Running	Processes	–	ps		

•  The	ps	command	
•  Something	like	"Task	Manager"	in	Windows	
•  An	example:	"ps au"	output	
–  List	user-oriented	processes	with	terminal	aVached	

4	

$ ps au
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1183 0.0 1.6 187328 17084 tty7 Ssl+ Nov03 0:05 /usr/lib/xorg/Xorg -core
root 1772 0.0 0.1 23008 1720 tty1 Ss+ Nov03 0:00 /sbin/agetty --noclear tt
bear 9087 0.0 0.3 44432 3376 pts/8 R+ 12:03 0:00 ps au
bear 14756 0.0 0.5 29688 5388 pts/8 Ss 09:40 0:00 -bash

List	of	Running	Processes	–	top	

Process	Control	 5	

List	of	Running	Processes	–	htop	

Process	Control	 6	

Process	RelaIonships	
•  Tree	structure	
•  The	pstree	command	
•  The	init	process	

–  The	1st	process	in	
most	Linux	systems	

–  Usually	has	a	PID	of	1	

7	

Systemd:	New	init	Process	
•  Shortcomings	of	init	process	

–  Init	starts	services	sequenIally	
•  Several	init	replacements	have	been	proposed	

–  Upstart,	Epoch,	Mudar,	and	systemd	

8	

Ubuntu	16.04	

Retrieve	Process	IdenIfiers	

•  Synopsis	
– pid_t	getpid(void);		
– pid_t	getppid(void);		
– uid_t	getuid(void);		
– uid_t	geteuid(void);		
– gid_t	getgid(void);		
– gid_t	getegid(void);		

•  These	funcIons	do	not	return	errors		

Process	Control	 9	

Process	CreaIon	

Process	Control	 10	

The	fork	FuncIon	
•  Create	a	new	(child)	process,	synopsis	

–  pid_t	fork(void);		
–  Returns:	0	in	child,	process	ID	of	child	in	parent,	-1	on	error	

•  Both	the	child	and	the	parent	conInue	execuIng	with	the	
instrucIon	that	follows	the	call	to	fork	

•  The	child	is	a	copy	of	the	parent	
–  The	child	gets	a	copy	of	the	parent's	data	space,	heap,	and	stack		
–  The	parent	and	the	child	do	not	share	these	porIons	of	memory,	but	

they	share	the	text	segment	
–  Since	a	fork	is	oPen	followed	by	an	exec,	a	technique	called	copy-on-

write	(COW)	is	used:	If	memory	is	duplicated	but	not	modified,	it	is	
not	necessary	to	allocate	new	porIon	of	memory	

Process	Control	 11	

A	fork	Example	
#include "apue.h“
int glob = 6; /* external variable in initialized data */
char buf[] = "a write to stdout\n";
int main(void) {

 int var = 88; /* automatic variable on the stack */
 pid_t pid;
 if (write(STDOUT_FILENO, buf, sizeof(buf)-1)!=sizeof(buf)-1)
 err_sys("write error");
 printf("before fork\n"); /* we don't flush stdout */
 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) { /* child */
 glob++; /* modify variables */
 var++;
 } else {
 sleep(2); /* parent */
 }
 printf("pid=%d, glob=%d, var=%d\n", getpid(), glob, var);
 exit(0);

}
Process	Control	 12	

A	fork	Example	(Cont’d)	

$./fork1 		 	terminal devices are line buffered	
a	write	to	stdout	
before	fork	
pid	=	430,	glob	=	7,	var	=	89	child's variables were changed	
pid	=	429,	glob	=	6,	var	=	88	parent's copy was not changed	
$./fork1	>	temp.out 	non-terminal devices are fully buffered	
$	cat	temp.out	
a	write	to	stdout	
before	fork	
pid	=	432,	glob	=	7,	var	=	89	
before	fork	
pid	=	431,	glob	=	6,	var	=	88		

Process	Control	 13	

fork	and	File	Sharing	

Process	Control	 14	

Handling	File	Descriptors	aPer	fork	
•  Both	parent	and	child	processes	can	use	the	file	
descriptors	at	the	same	Ime	ß	earlier	example	

•  The	parent	waits	for	the	child	to	complete		
–  The	parent	does	not	need	to	do	anything	with	its	
descriptors	

– Any	of	the	shared	descriptors	that	the	child	reads	
from	or	writes	to	have	their	file	offsets	updated	
accordingly	

•  Both	the	parent	and	the	child	go	their	own	ways		
– APer	the	fork,	the	parent	closes	the	descriptors	that	it	
doesn't	need	

–  The	child	does	the	same	thing	
–  This	scenario	is	oPen	the	case	with	network	servers		

Process	Control	 15	

Other	ProperIes	Inherited	by	the	Child	

•  Real	user	ID,	real	group	ID,	effecIve	user	ID,	effecIve	group	
ID		

•  Supplementary	group	IDs		
•  Controlling	terminal	
•  The	set-user-ID	and	set-group-ID	flags		
•  Current	working	directory	
•  File	mode	creaIon	mask	
•  Signal	mask	and	disposiIons	
•  The	close-on-exec	flag	for	any	open	file	descriptors	
•  Environment	variables	
•  …	

Process	Control	 16	

Uses	of	fork	

•  When	a	process	wants	to	duplicate	itself	
–  The	parent	and	child	can	each	execute	different	secIons	of	

code	at	the	same	Ime		
–  This	is	common	for	network	servers	

•  The	parent	waits	for	a	service	request	from	a	client		
•  When	the	request	arrives,	the	parent	calls	fork	and	lets	the	child	
handle	the	request	

•  The	parent	goes	back	to	waiIng	for	the	next	service	request	to	
arrive		

•  When	a	process	wants	to	execute	a	different	program		
–  This	is	common	for	shells		

•  the	child	does	an	exec	right	aPer	it	returns	from	the	fork		

Process	Control	 17	

Variants	of	fork	

•  vfork	
–  Creates	a	child	process	of	the	calling	process	without	copying	

the	address	space	of	the	parent	into	the	child	
–  Usually	used	when	the	child	simply	calls	exec	(or	exit)	right	

aPer	the	vfork	
–  While	the	child	is	running	and	unIl	it	calls	either	exec	or	exit,	

the	child	runs	in	the	address	space	of	the	parent	
–  More	efficient	than	use	fork	–	no	copy	is	beVer	than	some	

copies	
•  clone	

–  Linux	system	calls	for	implemenIng	fork	and	vfork	
–  A	generalized	form	of	fork	that	allows	the	caller	to	control	

what	is	shared	between	parent	and	child		

Process	Control	 18	

Process	TerminaIon	

Process	Control	 19	

Child	Process	TerminaIon	

•  Zombie	process	
–  When	a	child	process	terminates,	its	exit	status	is	expected	to	

be	read	by	its	parent	process	
–  If	the	parent	process	does	not	read	the	exit	status,	the	child	

process	becomes	a	zombie	
•  Resources	occupied	by	the	child	process	are	freed	
•  But	the	PID	and	terminaIon	state	are	kept	in	the	kernel	

•  Guarantee	the	existence	of	parent	processes	
–  If	a	parent	process	is	terminated	before	its	child	processes	
–  The	init	process	becomes	the	parent	process	of	any	process	

whose	parent	terminates	
•  The	parent	process	ID	of	the	surviving	process	is	changed	to	be	1		

Process	Control	 20	

Child	Process	TerminaIon	(Cont’d)	

•  When	a	child	process	terminates,	either	normally	or	
abnormally,	the	kernel	noIfies	the	parent	by	sending	
the	SIGCHLD	signal	to	the	parent	

•  The	terminaIon	of	a	child	is	an	asynchronous	event	as	it	can	
happen	at	any	Ime	while	the	parent	is	running	

•  This	signal	is	the	asynchronous	noIficaIon	from	the	kernel	
to	the	parent		

•  The	parent	can	choose	to	ignore	this	signal,	or	it	can	provide	
a	funcIon	that	is	called	when	the	signal	occurs	
–  The	signal	handler	funcIon	

Process	Control	 21	

The	wait	and	waitpid	FuncIon	

•  A	parent	process	is	able	to	call	wait	and	waitpid	
funcIons	to	receive	child	process	terminaIon	status	

•  The	two	funcIons	may	…	
–  Block,	if	all	of	its	children	are	sIll	running		
–  Return	immediately	with	the	terminaIon	status	of	a	child,	if	a	

child	has	terminated	and	is	waiIng	for	its	terminaIon	status	to	
be	fetched	

–  Return	immediately	with	an	error,	if	it	doesn't	have	any	child	
processes	

•  If	the	process	calls	wait	on	receipt	of	the	SIGCHLD	signal	
–  We	expect	wait	to	return	immediately		
–  But	if	we	call	it	at	any	random	point	of	Ime,	it	might	be	

blocked		

Process	Control	 22	

The	wait	and	waitpid	FuncIon	(Cont’d)	

•  Synopsis	
–  pid_t	wait(int	*status);		
–  pid_t	waitpid(pid_t	pid,	int	*status,	int	opIons);	

•  The	differences	between	these	two	funcIons		
–  Block	or	not	block	

•  The	wait	funcIon	always	block	the	caller	unIl	a	child	
process	terminates	

•  The	waitpid	funcIon	has	an	opIon	that	prevents	it	from	
being	blocked	

–  Process	terminaIon	order	
•  The	waitpid	funcIon	doesn't	wait	for	the	child	that	
terminates	first;	it	has	a	number	of	opIons	that	control	
which	process	it	waits	for.	

Process	Control	 23	

Macros	to	Interpret	Exit	Status	

Macro	 Descrip3on	

WIFEXITED(status)	 True	if	status	was	returned	for	a	child	that	terminated	normally.	In	this	
case,	we	can	execute	WEXITSTATUS(status)	to	fetch	the	low-order	8	bits	
of	the	argument	that	the	child	passed	to	exit,	_exit,or	_Exit.	

WIFSIGNALED	(status)	 True	if	status	was	returned	for	a	child	that	terminated	abnormally,	by	
receipt	of	a	signal	that	it	didn't	catch.	In	this	case,	we	can	execute	
WTERMSIG(status)		to	get	the	signal	number	casing	the	terminaIon.	
AddiIonally,	some	implementaIons	define	the	macro	
WCOREDUMP(status)		that	returns	true	if	a	core	file	of	the	terminated	
process	was	generated.	

WIFSTOPPED	(status)	 True	if	status	was	returned	for	a	child	that	is	currently	stopped.	In	this	
case,	we	can	execute	WSTOPSIG(status)	to	fetch	the	signal	number	that	
caused	the	child	to	stop.	

WIFCONTINUED	(status)	 True	if	status	was	returned	for	a	child	that	has	been	conInued	aPer	a	job	
control	stop	

Process	Control	 24	

wait	and	waitpid	–	an	Example	(1/3)	

•  Print	exit	status	

Process	Control	 25	

void pr_exit(int status) {
 if (WIFEXITED(status))
 printf("normal termination, exit status = %d\n",
 WEXITSTATUS(status));
 else if (WIFSIGNALED(status))
 printf("abnormal termination, signal number=%d%s\n",
 WTERMSIG(status),
 WCOREDUMP(status) ? " (core file generated)" : "");
 else if (WIFSTOPPED(status))
 printf("child stopped, signal number=%d\n",
 WSTOPSIG(status));

}

wait	and	waitpid	–	an	Example	(2/3)	

int main(void) {
 pid_t pid;int status;
 if ((pid = fork()) < 0) err_sys("fork error");
 else if (pid == 0) /* child */ exit(7);
 if (wait(&status) != pid) err_sys("wait error");
 pr_exit(status); /* and print its status */
 if ((pid = fork()) < 0) err_sys("fork error");
 else if (pid == 0) /* child */ abort(); /* generates SIGABRT */
 if (wait(&status) != pid) err_sys("wait error");
 pr_exit(status); /* and print its status */
 if ((pid = fork()) < 0) err_sys("fork error");
 else if (pid == 0) /* child */ status /= 0;
 /* divide by 0 generates SIGFPE */
 if (wait(&status) != pid) err_sys("wait error");
 pr_exit(status); /* and print its status */
 exit(0);

}

$./fig8.6-wait1	
normal	terminaIon,	exit	status	=	7	
abnormal	terminaIon,	signal	number	=	6	
abnormal	terminaIon,	signal	number	=	8	

Process	Control	 26	

The	waitpid	FuncIon	

•  The	wait	funcIon	waits	for	any	of	the	children	
•  if	we	want	to	wait	for	a	specific	process	to	terminate,	

use	waitpid	instead	
•  Synopsis,	again	

–  pid_t	waitpid(pid_t	pid,	int	*status,	int	opIons);	
•  The	meaning	of	the	argument	‘pid’	

Process	Control	 27	

pid	 InterpretaIon	

<	-1	 Waits	for	any	child	whose	process	group	ID	equals	the	absolute	value	of	pid.	

==	-1	 Waits	for	any	child	process.	In	this	respect,	waitpid	is	equivalent	to	wait.	

==	0	 Waits	for	any	child	whose	process	group	ID	equals	that	of	the	calling	process.	

>	0	 Waits	for	the	child	whose	process	ID	equals	pid.	

The	waitpid	FuncIon	(Cont’d)	

•  waitpid	opIons	

Process	Control	 28	

Constant	 DescripIon	

WNOHANG	 The	waitpid	funcIon	will	not	block	if	a	child	specified	by	pid	is	
not	immediately	available.	In	this	case,	the	return	value	is	0	

WUNTRACED	 If	the	implementaIon	supports	job	control,	the	status	of	any	
child	specified	by	pid	that	has	stopped,	and	whose	status	has	
not	been	reported	since	it	has	stopped,	is	returned.	The	
WIFSTOPPED	macro	determines	whether	the	return	value	
corresponds	to	a	stopped	child	process	

WCONTINUED	 If	the	implementaIon	supports	job	control,	the	status	of	any	
child	specified	by	pid	that	has	been	conInued	aPer	being	
stopped,	but	whose	status	has	not	yet	been	reported,	is	
returned	

Avoid	Zombies	by	Calling	fork	Twice	

int	main(void)	{	
	pid_t	pid;	
	if	((pid	=	fork())	<	0)									{	err_sys("fork	error");	}	
	else	if	(pid	==	0)	{												/*	first child */	
	 	if	((pid	=	fork())	<	0) 				{	err_sys("fork	error");	}	
	 	else	if	(pid	>	0)	exit(0);			/*	parent from second fork==first child	*/	
	 	/*	We're the second child; our parent becomes init as soon as our real parent calls �
	 		*	exit() in the statement above. Here's where we'd continue executing, knowing that�
	 		*	 when we're done, init will reap our status.	*/	
	 	sleep(2);	
	 	printf("second	child,	parent	pid	=	%d\n",	getppid());	
	 	exit(0);	
	}	
	if	(waitpid(pid,	NULL,	0)	!=	pid)	/*	wait	for	first	child	*/	
	 	err_sys("waitpid	error");	
	/*	We're the parent (the original process); we continue executing, knowing that we're�
		*	not the parent of the second child.	*/	
	exit(0);	

}		
Process	Control	 29	

Race	CondiIons	
•  Recall	that	the	fork	funcIon	create	a	process,	but	it	does	not	

guarantee	which	process,	the	parent	or	the	child,	runs	first	
•  An	example	(Figure	8.12)	

–  You	cannot	predict	the	parent	or	the	child	runs	first	

Process	Control	 30	

int	main(void)	{	
	pid_t			pid;	
	if	((pid	=	fork())	<	0) 	{	err_sys("fork	error");	}	
	else	if	(pid	==	0) 	{	charatatime("output	from	child\n");	}	
	else 	{	charatatime("output	from	parent\n");	}	
	exit(0);	

}	

Race	CondiIons	–	SoluIon	#1	
•  If	the	parent	waits	unIl	a	child	terminates	

–  Use	wait	or	waitpid	to	block	the	parent	process	
–  Make	sure	that	the	child	runs	first	

•  If	a	child	waits	unIl	its	parent	terminates	
–  When	its	parent	terminates,	init	will	be	the	new	parent,	which	has	a	

PID	of	1	
–  Use	getppid	funcIon	to	check	the	value	of	ppid	periodically	

•  The	problem	
–  Either	the	parent	or	the	child	has	to	terminate	first	
–  Polling	is	not	efficient	

Process	Control	 31	

while	(getppid()	!=	1)	
	sleep(1);		

Race	CondiIons	–	SoluIon	#2	
•  CommunicaIon	via	interprocess	communicaIons	(IPC)	
•  An	example	of	implemenIng	using	signals	

–  TELL_WAIT():	IniIalize	
–  WAIT_PARENT():	blocks	execuIon	and	waits	for	its	parent	
–  TELL_CHILD(pid):	tell	a	child	that	it	has	finished	
–  WAIT_CHILD():	blocks	execuIon	and	waits	for	its	child	
–  TELL_PARENT(ppid):	tell	its	parent	that	it	has	finished	

Process	Control	 32	

Race	CondiIons	–	SoluIon	#2	(Cont’d)	

•  ModificaIons	to	Figure	8.12	example	

Process	Control	 33	

 int main(void) {
 pid_t pid;

+ TELL_WAIT();
 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) {

+ WAIT_PARENT(); /* parent goes first */
 charatatime("output from child\n");
 } else {
 charatatime("output from parent\n");

+ TELL_CHILD(pid);
 }
 exit(0);
 }

Process	ExecuIon	

Process	Control	 34	

How	UNIX	Recognizes	Binaries?	

•  It	is	done	by	checking	file	content	
•  ELF	binaries	

•  Interpreter	Files	(Scripts)	

Process	Control	 35	

$	hexdump	-C	some-ELF-binary	|	head	
00000000		7f	45	4c	46	02	01	01	00		00	00	00	00	00	00	00	00		|.ELF............|	
00000010		02	00	3e	00	01	00	00	00		30	07	40	00	00	00	00	00		|..>.....0.@.....|	
00000020		40	00	00	00	00	00	00	00		48	15	00	00	00	00	00	00		|@.......H.......|	

$	hexdump	-C	some-interpreter-file	|	head	
00000000		23	21	2e	2f	65	63	68	6f		62	69	6e	20	66	6f	6f	0a		|#!./echobin	foo.|	
00000010	

Support	More	Binaries	(Linux)	
•  The	binfmt_misc	file	system	(on	Linux)	

•  Add	new	binary	formats	by	ediIng	/proc/sys/fs/binfmt_misc/register	
–  Basic	

format:	:name:type:offset:magic:mask:interpreter:flags	
–  You	may	have	a	look	at	the	document		

hVps://www.kernel.org/doc/DocumentaIon/binfmt_misc.txt	
–  Example:	(as	root)	

Process	Control	 36	

binfmt_misc	on	/proc/sys/fs/binfmt_misc	type	binfmt_misc	(rw,noexec,nosuid,nodev)	

#	echo	":DOSWin:M::MZ::/usr/bin/wine:"	>	/proc/sys/fs/binfmt_misc/register	
#	cat	/proc/sys/fs/binfmt_misc/DOSWin	
enabled	
interpreter	/usr/bin/wine	
flags:	
offset:	0	
magic:	4d5a	

More	binfmt_misc	Examples	

•  Sample	formats	listed	in	binfmt_misc	file	
system	

Process	Control	 37	

$	ls	/proc/sys/fs/binfmt_misc/	
jar											qemu-arm									qemu-mips								qemu-s390x								qemu-sparc64	
python2.7					qemu-armeb							qemu-mipsel						qemu-sh4										register	
python3.4					qemu-cris								qemu-ppc									qemu-sh4eb								status	
qemu-aarch64		qemu-m68k								qemu-ppc64							qemu-sparc	
qemu-alpha				qemu-microblaze		qemu-ppc64abi32		qemu-sparc32plus	

More	binfmt_misc	Examples	(Cont’d)	

•  Jar	

•  ARM	executable	

Process	Control	 38	

$	cat	/proc/sys/fs/binfmt_misc/jar		
enabled	
interpreter	/usr/bin/jexec	
flags:		
offset	0	
magic	504b0304	

$	cat	/proc/sys/fs/binfmt_misc/qemu-armeb		
enabled	
interpreter	/usr/bin/qemu-armeb-static	
flags:	OC	
offset	0	
magic	7f454c4601020100000000000000000000020028	
mask		ffffffffffffff00fffffffffffffffffffeffff	

The	exec	FuncIons	

•  Replace	the	calling	process	with	a	new	program	
•  The	new	program	starts	execuIng	at	its	main	funcIon	
•  The	process	ID	does	not	change	across	an	exec,	because	

a	new	process	is	not	created	
•  Synopsis	

–  extern	char	**environ;	
–  int	execl(const	char	*path,	const	char	*arg,	...);	
–  int	execlp(const	char	*file,	const	char	*arg,	...);	
–  int	execle(const	char	*path,	const	char	*arg,	...,	char	*	const	

envp[]);	
–  int	execv(const	char	*path,	char	*const	argv[]);	
–  int	execvp(const	char	*file,	char	*const	argv[]);	
–  int	execve(const	char	*path,	char	*const	argv[],	char	*const	

envp[]);	

Process	Control	 39	

Differences	Among	the	Six	exec	FuncIons	

•  pathname	–	must	be	absolute	or	relaIve	paths	
•  filename	–	does	not	contain	a	slash	(/),	filename	will	be	

searched	in	directories	listed	in	the	PATH	variable	

Process	Control	 40	

FuncIon	 pathname	 filename	 arg	list	 argv[]	 environ	 envp[]	

execl	 •	 •	 •	

execlp	 •	 •	 •	

execle	 •	 •	 •	

execv	 •	 •	 •	

execvp	 •	 •	 •	

execve	 •	 •	 •	

(leVer	in	
name)	

p	 l	 v	 e	

RelaIonship	of	the	Six	exec	FuncIons		

Process	Control	 41	

char	*env_init[]	=	{	"USER=unknown",	"PATH=/tmp",	NULL	};	
int	main(void)	{	

	pid_t	pid;	
	if	((pid	=	fork())	<	0)											{	err_sys("fork	error");	}	
	else	if	(pid	==	0)	{														/*	specify pathname, specify environment	*/	
	 	if	(execle(“./fig8.17-echoall",	"echoall",	"myarg1",	
	 	 	 	"MY	ARG2",	(char	*)0,	env_init)	<	0)	
	 	 	err_sys("execle	error");	
	}	
	if	(waitpid(pid,	NULL,	0)	<	0)				{	err_sys("wait	error");	}	
	if	((pid	=	fork())	<	0)											{	err_sys("fork	error");	}	
	else	if	(pid	==	0)	{														/*	specify filename, inherit environment	*/	
	 	if	(execlp("fig8.17-echoall",	"echoall",	"only	1	arg",	(char	*)0)	<	0)	
	 	 	err_sys("execlp	error");	
	}	
	exit(0);	

}		

An	exec	Example	
•  Suppose	we	have	a	program	echoall	that	dumps	argv[*]	and	environ[*]	

–  Note:	echoall	must	be	placed	in	one	directory	listed	in	$PATH	

Process	Control	 42	

An	exec	Example	(Cont’d)	

$	PATH=$PATH:.	./fig8.16-exec1	
argv[0]:	echoall	
argv[1]:	myarg1	
argv[2]:	MY	ARG2	
USER=unknown	
PATH=/tmp	
argv[0]:	echoall	
argv[1]:	only	1	arg	
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:.	
TERM=xterm	
SHELL=/bin/bash	

41 more lines that aren't shown
DISPLAY=localhost:10.0	
LESSCLOSE=/usr/bin/lesspipe	%s	%s	
_=./fig8.16-exec1	

Process	Control	 43	

exec	of	Interpreter	Files	
•  All	contemporary	UNIX	systems	support	interpreter	files	
•  These	files	are	text	files	that	begin	with	a	line	of	the	form	

–  #!	pathname	[opIonal-argument]	
–  For	example,	the	shell	scripts	begins	with	the	line	#!/bin/sh	

•  Interpreter	files	can	be	also	executed	by	exec	funcIons	

Process	Control	 44	

exec	of	Interpreter	Files,	an	Example	

•  Suppose	we	have	a	program	echoarg	that	prints	all	
arguments	

•  Suppose	we	have	an	interpreter	file	tes?nterp	contains	
#!/path/to/echoarg	foo	

Process	Control	 45	

int	main(void)	{	
	pid_t	pid;	
	if	((pid	=	fork())	<	0)						{	err_sys("fork	error");	}	
	else	if	(pid	==	0)	{ 						/*	child	*/	
	 	if	(execl("/path/to/testinterp",	"testinterp",	
	 	 	"myarg1",	"MY	ARG2",	(char	*)0)	<	0)	
	 	 	err_sys("execl	error");	
	}	
	if	(waitpid(pid,	NULL,	0)	<	0)			/*	parent	*/	
	 	err_sys("waitpid	error");	
	exit(0);	

}		

exec	of	Interpreter	Files,	an	Example	(Cont’d)	

•  The	output	of	the	previous	example	is	shown	above	
•  The	kernel	actually	executes	the	interpreter	(pathname	

and	argument	aPer	the	#!	symbol)	
•  The	exec	executable	name	and	its	arguments	are	passed	

as	addiIonal	arguments	to	the	interpreter	

Process	Control	 46	

$ cat /path/to/testinterp
#!/path/to/echoarg foo
$./fig8.20-exec2
argv[0]: /path/to/echoarg
argv[1]: foo
argv[2]: /path/to/testinterp
argv[3]: myarg1
argv[4]: MY ARG2

More	on	exec	of	Interpreter	Files	

•  Usage	of	most	of	the	shells,	for	example	bash	
–  bash	[op#ons]	[command]	[arguments]	
–  If	a	shell	script	sample.sh	begins	with	#!/bin/bash	
–  ExecuIon	of	the	shell	script	with	a	command	

“./sample.sh	1	2	3”	is	equivalent	to	run	“/bin/bash	./sample.sh	
1	2	3”	

•  Another	example,	usage	of	the	gawk	uIlity	
–  gawk	[op#ons]	-f	program-file	[--]	[files	…]	
–  A	gawk	script	sample.awk	must	begin	with	#!/bin/gawk	-f	
–  ExecuIon	of	the	gawk	script	with	a	command	

“./sample.awk	test”	is	equivalent	to	run	
“/bin/gawk	-f	./sample.awk	test”	

Process	Control	 47	

The	system	FuncIon	

•  Execute	shell	commands	in	the	program	
•  Synopsis	
–  int	system(const	char	*cmdstring);		

•  An	example	
– system("date	>	file");		
– Execute	the	date	command	and	redirect	its	
output	to	file	

•  It’s	much	more	convenient	

Process	Control	 48	

The	system	FuncIon	

•  It	is	implemented	by	calling	fork(),	exec(),	and	waitpid()	
•  If	either	fork()	fails	or	waitpid()	returns	an	error	other	
than	EINTR,	system()	returns	-1	with	errno	set	to	
indicate	the	error	

•  If	exec()	fails,	it	implies	that	the	shell	cannot	be	
executed,	the	return	value	is	as	if	the	shell	had	
executed	exit(127).	

•  If	all	the	three	funcIons	(fork,	exec,	and	waitpid)	
succeed,	the	return	value	from	system()	is	the	
terminaIon	status	of	the	shell,	in	the	same	format	to	
that	of	waitpid().	

Process	Control	 49	

The	system	FuncIon	–	A	Simple	ImplementaIon	

int	system(const	char	*cmdstring)				/*	version without signal handling	*/	{	
				pid_t	pid;	
				int	status;	
				if	(cmdstring	==	NULL)	
								return(-1);																		/*	always a command processor with UNIX	*/	
				if	((pid	=	fork())	<	0)	{	
								status	=	-1;																	/*	probably out of processes */	
				}	else	if	(pid	==	0)	{											/*	child	*/	
								execl("/bin/sh",	"sh",	"-c",	cmdstring,	(char	*)	0);	
								_exit(127);																		/*	execl error */	
				}	else	{																									/*	parent	*/	
								while	(waitpid(pid,	&status,	0)	<	0)	{	
												if	(errno	!=	EINTR)	{	
																status	=	-1;	/*	error other than EINTR from waitpid() */	
																break;	
				}	}	}	
				return(status);	
}		

Process	Control	 50	

system	and	suid/sgid	Programs	
•  It	might	become	a	security	problem	if	a	suid/sgid	program	

calls	the	system	funcIon	
•  If	a	suid/sgid	program	use	the	system	funcIon	to	execute	a	

command	
–  The	executed	command	has	the	same	euid/egid	as	the	calling	process	

•  If	a	suid/sgid	program	needs	to	execute	a	program	
–  Use	exec	funcIons	instead	
–  Change	euid/egid	before	calling	exec	
–  seteuid	and	setegid	

Process	Control	 51	

User	IdenIficaIon	
•  Any	process	can	find	out	its	real	and	effecIve	user	ID	
and	group	ID	
–  struct	passwd	*getpwuid(uid_t	uid);	
–  getpwuid(getuid())	

•  It	may	not	work	for	a	single	user	that	has	mulIple	login	
names,	and	all	have	the	same	UID	

•  An	alternaIve	
–  #include	<unistd.h>	
–  char	*getlogin(void);	
–  int	getlogin_r(char	*buf,	size_t	bufsize);	

•  With	a	login	name,	the	correspond	password	entry	can	
be	obtained	using	getpwnam()	

Process	Control	 52	

Process	Times	
•  The	Imes(2)	funcIon	
•  Count	the	current	process	user/system	CPU	Ime	
•  Count	the	user/system	CPU	Ime	for	all	waited	processes	

–  A	child’s	CPU	Imes	are	counted	aPer	its	terminaIon	status	has	been	
read	by	using	wait()	funcIons	

–  #include	<sys/times.h>	
–  clock_t	times(struct	tms	*buf);	

Process	Control	 53	

struct	tms	{	
								clock_t	tms_utime;		/*	user	time	*/	
								clock_t	tms_stime;		/*	system	time	*/	
								clock_t	tms_cutime;	/*	user	time	of	children	*/	
								clock_t	tms_cstime;	/*	system	time	of	children	*/	
};	

Assignment	#6	(5%)	
We	will	write	a	Iny	shell	(tsh)	command	processor	like	sh,	bash,	
or	csh	for	single	line	commands.	Your	shell's	main	loop	will	
display	a	prompt,	read	a	line	of	input,	and	fork	a	child	process	to	
perform	the	indicated	command.		
	
Required	capabiliIes:	
•  Ordinary	commands,	consisIng	of	an	executable	program	

name	and	an	opIonal	list	of	arguments,	run	in	a	separate	
process.	

•  Two	built-in	commands:		cd	and	pwd	
•  Background	processing,	when	the	last	token	in	the	command	

line	is	"&".	
	
	

CS5432	Advanced	UNIX	Programming	 54	

Assignment	#6	(5%)	(cont.)	
You	should	write	tsh	in	C,	using	Unix	system	calls	covered	in	our	
lectures.	The	main	loop	of	your	shell	may	look	like	this:	
•  prints	a	prompt;		
•  reads	a	command	line;		
•  parses	the	command	line	into	tokens	(words);		
•  forks	a	child		
–  loads	and	executes	the	command;	//	child	process	

•  waits	for	the	child	to	terminate;	//	parent	process	
Required	error	checking:	
-  Any	command	not	found	in	one	of	the	directories	on	$PATH.		
Due	date:	Nov	22,	2016	
	 CS5432	Advanced	UNIX	Programming	 55	

