Chapter 8
Process Control

Cheng-Hsin Hsu
National Tsing Hua University
Department of Computer Science

Parts of the course materials are courtesy of Prof. Chun-Ying Huang

CS5432 Advanced UNIX Programming

Outline

/

e Qverview
* Process creation
e Process termination

* Program execution

Process Control

Process Identifiers

* Every process has a unique process ID
— A nhon-negative integer

— Process ID can be reused after a process has
terminated

* The init program (/sbin/init)

— Bring up the system - /etc/inittab, /etc/rc*, or /etc/
events.d

— The init process never dies

— The parent process of all orphan processes < nohup,
and daemon processes

Process Control

List of Running Processes — ps

e

* The ps command
 Something like "Task Manager" in Windows

\

e

* An example: "ps au" output
— List user-oriented processes with terminal attached

$ ps au
USER
root
root
bear
bear

1183
1772
9087
14756

g wrRFR oL

VSZ
187328
23008
44432
29688

RSS
17084
1720
3376
5388

TTY
tty7
ttyl
pts/8
pts/8

STAT
Ssl+
Ss+
R+
Ss

START
NovO03
Nov03
12:03
09:40

TIME
0:05
0:00
0:00
0:00

COMMAND
/usr/lib/xorg/Xorg -core
/sbin/agetty --noclear tt
ps au

-bash

List of Running Processes — top

® 0 "l "™ — 80x24

top - 13:01:55 up 5 days, 19:57, 2 users, 1load average: 0.05, 0.07, 0.05
Tasks: 217 total, 1 running, 216 sleeping, @ stopped, @ zombie

%Cpu(s): @.5 us, 0.5 sy, 0.0 ni, 98.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 24628860 total, 4576008 used, 20052852 free, 1443900 buffers

KiB Swap: 23435256 total, @ used, 23435256 free. 2096572 cached Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
10000 www-data 20 0 1322848 69912 12084 S 14. .3 838:09.39 imageserver
7 root 20]] 0 7:37.43 rcu_sched
2916 gdm 20 39236 2640 2180 :07.54 dbus-daemon
2935 gdm 20 700840 23776 18016 :07.56 gnome-sett+
root 20 34184 4680 2696 :01.10 init
root 20 :00.01 kthreadd
root 20 :02.32 ksoftirqd/0
root 0 :00.00 kworker/0:+
root 20 :44.74 rcuos/0
root 20 :45.73 rcuos/1
root 20 :19.19 rcuos/2
root 20 :06.06 rcuos/3
root 20 :05.88 rcuos/4
root 20 :21.18 rcuos/5S
root 20 :07.18 rcuos/6
root 20 :04.43 rcuos/7
root 20 :00.00 rcu_bh

Process Control

wn

—

SO0 WWLWWS
(SIS IS IS I OSRGOS IS B GS IS IO IO IO IO I OSBGOS IO
O OO OONNNNOOOSOWN

(SIS IS IS RGOS IS G RGOS IO IO IS BSOS IS

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

(SRS IS IS IS RO IO IS B IS I S I O

(SRS IS IS B O RCSICS IGS B S IO I OS I O

(SR IS IS RS RO TGS IS B IO I S I O

NV nNnumoumonoumounmoumoum onom ounm onounm on
(SRS IO IO I OSRGOS TGS IS IS IS IO IO IS IO I S I S

ist of Running Processes — htop
e

— 80x24

1 9 [1 13[

1 10 [] 14 [

1 11 [] 15[

1 12 [1 16 [

LT Tasks: 229, 54 thr; running
Load average: 0.01 0.05 0.05
Uptime: 52 days, 20:34:26

CPUY

khlin 4
chuang 20

2855 20
2888 20
VASVAS) 20
1 20
301 20
330 20
339 20
347 chuang 20
348 chuang 20 99M 2408 12
359 chuang 20 115M 4100 2756
360 chuang 20 26472 4664 3360 .
FlHelp |(#dSetup [ESearch|iFilter[@Tree [ddSortBy[dgNi

Process Control

:00. htop

43: /usr/bin/python2
54: tmux

:09. /usr/bin/python2
:03. /usr/lib/systemd/
:27. /usr/lib/systemd/
:00. sshd: chuang [pri
:006. /usr/lib/systemd/
:00. /usr/lib/systemd/
:00. (sd-pam)

:00. sshd: chuang@pts/
:00. /bin/bash -1

F8 i1l [FQuit

24344 3904 3060
206M 14184 4796
37568 5800 2612
206M 14184 4796
33180 5132 3108
1046M 220M 220M
114M 8520 7196
472980 36004 2592
40444 4844 41000

SRR RS ECESESES) S
nhnunomom oumh onom non n
SO0 O
OO0 ® O N N|-
SO O0OOOONOOOS O~
SO0 NN

Process Relationships

e Tree structure init-+-NetworkManager
| —acpid
e The pstree command I-gﬁgn

-cupsd

-2* [dbus-daemon]
-dbus-Tlaunch

-6* [getty]

* The init process
— The 15t process in

most Linux systems -gnome-settings----1 fgnome-settings-}
-gnome-terminal-+-bash---pstree
— Usually hasa PID of 1 | -bash

"—{gnome-terminal}
-hald---hald-runner-+-hald-addon-acpi
| -hald-addon-inpu
"-hald-addon-stor
-kTogd
-sys logd
-system-tools-ba
-udevd
" -vmware-guestd

I
I
I
I
I
I
I
I
| | -gnome-pty-helpe
I
I
I
I
I
I
I
I

Systemd: New init Process

_— e e

e Shortcomings of init process
— Init starts services sequentially

e Several init replacements have been proposed
— Upstart, Epoch, Mudar, and systemd

@ [] bear — ssh bear@10.211.55.4 — 90x26
systemd (1) -+-ModemManager (761) -+- {gdbus} (778)

| “-{gmain} (772)

| -NetworkManager (14201) -+-dhclient (17717)

| | -dnsmasq(14260)

| | -{gdbus} (14204)

| “-{gmain} (14202)

| —accounts-daemon(718) -+-{gdbus} (749)

| “-{gmain} (743)

| -acpid(737)

| -agetty (1772)

| -at-spi-bus-laun(1356)-+-dbus-daemon(1369)

| | -{dconf worker} (1365)

| | -{gdbus} (1361)

| *-{gmain} (1360)

| -at-spi2-registr(1372)-+-{gdbus} (1378)

| “-{gmain} (1377)

| -avahi-daemon (649) ---avahi-daemon(670)

| -colord(861)-+-{gdbus} (874)

| ignain (872 Ubuntu 16.04

| -cron(726)

| -cups-browsed (756) -+-{gdbus} (1061)

| ‘-{gmain} (1060)

| -cupsd (9015)

| -dbus-daemon (659)

| -dbus-daemon(1347)

Retrieve Process ldentifiers

* Synopsis
— pid_t getpid(void);
— pid_t getppid(void);
— uid_t getuid(void);
— uid_t geteuid(void);
— gid_t getgid(void);
— gid_t getegid(void);
* These functions do not return errors

Process Creation

\

10

The fork Function

* Create a new (child) process, synopsis
— pid_t fork(void);
— Returns: 0 in child, process ID of child in parent, -1 on error

* Both the child and the parent continue executing with the
instruction that follows the call to fork

 The child is a copy of the parent

— The child gets a copy of the parent's data space, heap, and stack

— The parent and the child do not share these portions of memory, but
they share the text segment

— Since a fork is often followed by an exec, a technique called copy-on-
write (COW) is used: If memory is duplicated but not modified, it is
not necessary to allocate new portion of memory

Process Control 11

A fork Example

e

#include "apue.h"

int glob = 6; /* external variable in initialized data */
char buf[] = "a write to stdout\n";
int main(void) {
int var = 88; /* automatic variable on the stack */
pid_t pid;

if (write(STDOUT_FILENO, buf, sizeof(buf)-1)!=sizeof(buf)-1)
err_sys('write error");

printf("before fork\n"); /* wedon't flush stdout */

if ((pid = fork()) < 0) {
err_sys("fork error");

} else if (pid == 0) { /* child */

glob++; /% modify variables */
var++;
} else {
sleep(2); /* parent */
}
printf("pid=%d, glob=%d, var=%d\n", getpid(), glob, var);
exit(0);

Proce;; Control 12

A fork Example (Cont’d)

S ./forkl terminal devices are line buffered
a write to stdout

before fork

pid = 430, glob =7, var = 89 child's variables were changed
pid = 429, glob = 6, var = 88 parent's copy was not changed

S ./forkl > temp.out non-terminal devices are fully buffered
S cat temp.out

a write to stdout

before fork

pid =432, glob =7, var =89

before fork

pid =431, glob =6, var = 88

Process Control 13

/

parent process table entry

fork and File Sharing

file table

file status flags

current file offset

v-node pointer —

fd file
flags pointer
fd 0:
fd 1:
fd 2:

file status flags

current file offset

child process table entry

v-node pointer —

Procesg

fd
flags

file
pointer

file status flags

current file offset

v-node pointer ——————

Control

v-node table

v-node
information

i-node
information

e e - e - - e - -

current file size

\

v-node
information

i-node
information

e - - - - e - - -

current file size

v-node
information

i-node
information

b — — — — — — — —

current file size

-

14

Handling File Descriptors after fork

//

e

* Both parent and child processes can use the file
descriptors at the same time < earlier example

* The parent waits for the child to complete

— The parent does not need to do anything with its
descriptors

— Any of the shared descriptors that the child reads

from or writes to have their file offsets updated
accordingly

* Both the parent and the child go their own ways

— After the fork, the parent closes the descriptors that it
doesn't need

— The child does the same thing
— This scenario is often the case with network servers

Other Properties Inherited by the Child

J— e, —_—

* Real user ID, real group ID, effective user ID, effective group
ID

 Supplementary group IDs

* Controlling terminal

* The set-user-ID and set-group-ID flags

e Current working directory

* File mode creation mask

e Signal mask and dispositions

* The close-on-exec flag for any open file descriptors
* Environment variables

Process Control 16

Uses of fork

 When a process wants to duplicate itself

— The parent and child can each execute different sections of
code at the same time

— This is common for network servers
* The parent waits for a service request from a client

 When the request arrives, the parent calls fork and lets the child
handle the request

* The parent goes back to waiting for the next service request to
arrive

* When a process wants to execute a different program

— This is common for shells
* the child does an exec right after it returns from the fork

Process Control 17

Variants of fork

—— i
e vfork
— Creates a child process of the calling process without copying
the address space of the parent into the child
— Usually used when the child simply calls exec (or exit) right
after the vfork
— While the child is running and until it calls either exec or exit,
the child runs in the address space of the parent
— More efficient than use fork — no copy is better than some
copies
* clone

— Linux system calls for implementing fork and vfork

— A generalized form of fork that allows the caller to control
what is shared between parent and child

Process Control 18

Process Termination

\

19

Child Process Termination

\

e Zombie process

— When a child process terminates, its exit status is expected to
be read by its parent process

— If the parent process does not read the exit status, the child
process becomes a zombie

* Resources occupied by the child process are freed
e But the PID and termination state are kept in the kernel

Guarantee the existence of parent processes
— If a parent process is terminated before its child processes

— The init process becomes the parent process of any process
whose parent terminates

* The parent process ID of the surviving process is changed to be 1

Process Control 20

Child Process Termination (Cont’d)

e \ —

 When a child process terminates, either normally or
abnormally, the kernel notifies the parent by sending
the SIGCHLD signal to the parent

 The termination of a child is an asynchronous event as it can
happen at any time while the parent is running

* This signal is the asynchronous notification from the kernel
to the parent

* The parent can choose to ignore this signal, or it can provide
a function that is called when the signal occurs

— The signal handler function

Process Control 21

The wait and waitpid Function

* A parent process is able to call wait and waitpid
functions to receive child process termination status

* The two functions may ...
— Block, if all of its children are still running

— Return immediately with the termination status of a child, if a
child has terminated and is waiting for its termination status to
be fetched

— Return immediately with an error, if it doesn't have any child
processes

* |If the process calls wait on receipt of the SIGCHLD signal
— We expect wait to return immediately

— But if we call it at any random point of time, it might be
blocked

The wait and waitpid Function (Cont’d)

J— e, —

* Synopsis

— pid_t wait(int *status);

— pid_t waitpid(pid_t pid, int *status, int options);
* The differences between these two functions

— Block or not block

* The wait function always block the caller until a child
process terminates

* The waitpid function has an option that prevents it from
being blocked

— Process termination order

* The waitpid function doesn't wait for the child that
terminates first; it has a number of options that control
which process it waits for.

Macros to Interpret Exit Status

e

\ —

Macro

Description

WIFEXITED(status)

True if status was returned for a child that terminated normally. In this
case, we can execute WEXITSTATUS(status) to fetch the low-order 8 bits
of the argument that the child passed to exit, _exit,or _Exit.

WIFSIGNALED (status)

True if status was returned for a child that terminated abnormally, by
receipt of a signal that it didn't catch. In this case, we can execute
WTERMSIG(status) to get the signal number casing the termination.

Additionally, some implementations define the macro
WCOREDUMP(status) that returns true if a core file of the terminated
process was generated.

WIFSTOPPED (status)

True if status was returned for a child that is currently stopped. In this
case, we can execute WSTOPSIG(status) to fetch the signal number that
caused the child to stop.

WIFCONTINUED (status)

True if status was returned for a child that has been continued after a job
control stop

Process Control

24

wait and waitpid — an Example (1/3)

— \ —_—

* Print exit status

void pr_exit(int status) {
if (WIFEXITED(status))
printf("normal termination, exit status = %d\n",
WEXITSTATUS(status));
else if (WIFSIGNALED(status))
printf("abnormal termination, signal number=%d%s\n",
WTERMSIG(status),
WCOREDUMP(status) ? " (core file generated)" : "");
else if (WIFSTOPPED(status))
printf("child stopped, signal number=%d\n",
WSTOPSIG(status));

Process Control 25

wait and waitpid — an Example (2/3)

\ —_—

int main(void) {

pid_t pid;int status;

if ((pid = fork()) < 0)
else if (pid == 0) /* child */
1f (wait(&status) != pid)
pr_exit(status);

if ((pid = fork()) < 0)
else if (pid == 0) /* child */
1f (wait(&status) != pid)
pr_exit(status);

if ((pid = fork()) < 0)
else if (pid == 0) /* child */

1f (wait(&status) != pid)
pr_exit(status);
ex1t(0);

Pro}ess Control

S ./fig8.6-waitl

normal termination, exit status =7
abnormal termination, signal number = 6
abnormal termination, signal number = 8

err_sys("fork error");
exit(7);

err_sys("wait error");
/* and print its status */
err_sys("fork error");
abort(); /* generates SIGABRT */
err_sys("wait error");
/* and print its status */
err_sys("fork error");
status /= 0;

/* divide by 0 generates SIGFPE */
err_sys("wait error");
/* and print its status */

26

The waitpid Function

The wait function waits for any of the children

* if we want to wait for a specific process to terminate,
use waitpid instead

* Synopsis, again
— pid_t waitpid(pid_t pid, int *status, int options);

* The meaning of the argument ‘pid’

pid Interpretation

<-1 Waits for any child whose process group ID equals the absolute value of pid.

==-1 | Waits for any child process. In this respect, waitpid is equivalent to wait.

== Waits for any child whose process group ID equals that of the calling process.

>0 Waits for the child whose process ID equals pid.

Process Control

27

The waitpid Function (Cont’d)

* waitpid options

Constant Description

WNOHANG | The waitpid function will not block if a child specified by pid is
not immediately available. In this case, the return value is 0

WUNTRACED | If the implementation supports job control, the status of any
child specified by pid that has stopped, and whose status has
not been reported since it has stopped, is returned. The
WIFSTOPPED macro determines whether the return value
corresponds to a stopped child process

WCONTINUED | If the implementation supports job control, the status of any
child specified by pid that has been continued after being
stopped, but whose status has not yet been reported, is
returned

Avoid Zombies by Calling fork Twice

— \ —_—

int main(void) {

pid t pid;
if ((pid = fork()) < @) { err_sys("fork error"); }
else if (pid == 0) { /* first child */

if ((pid = fork()) < @) { err_sys("fork error"); }

else if (pid > ©) exit(@); /* parent from second fork==first child */
/* We're the second child; our parent becomes init as soon as our real parent calls
* exit() in the statement above. Here's where we'd continue executing, knowing that
* when we're done, init will reap our status. */
sleep(2);
printf("second child, parent pid = %d\n", getppid());
exit(9);
}
if (waitpid(pid, NULL, ©) != pid) /* wait for first child */
err_sys("waitpid error");
/* We're the parent (the original process); we continue executing, knowing that we're
* not the parent of the second child. */
exit(0);
}

Process Control 29

Race Conditions

* Recall that the fork function create a process, but it does not
guarantee which process, the parent or the child, runs first

 An example (Figure 8.12)

— You cannot predict the parent or the child runs first

int main(void) {

pid t pid;

if ((pid = fork()) < @) { err_sys("fork error"); }

else if (pid == 0) { charatatime("output from child\n"); }
else { charatatime("output from parent\n"); }
exit(9);

Process Control 30

Race Conditions — Solution #1

* If the parent waits until a child terminates
— Use wait or waitpid to block the parent process
— Make sure that the child runs first

* If a child waits until its parent terminates

— When its parent terminates, init will be the new parent, which has a
PID of 1

— Use getppid function to check the value of ppid periodically

while (getppid() != 1)
sleep(1);

* The problem

— Either the parent or the child has to terminate first
— Polling is not efficient

Process Control 31

Race Conditions — Solution #2

« Communication via interprocess communications (IPC)
* An example of implementing using signals

— TELL_WAIT(): Initialize

— WAIT_PARENT(): blocks execution and waits for its parent

— TELL_CHILD(pid): tell a child that it has finished

— WAIT_CHILD(): blocks execution and waits for its child

— TELL_PARENT(ppid): tell its parent that it has finished

Process Control 32

Race Conditions — Solution #2 (Cont’d)

/,

\

e

* Modifications to Figure 8.12 example

int main(void) {

pid_t pid;

TELL_WAIT(O);

if ((pid = fork()) < 0) {
err_sys("fork error");

} else if (pid == 0) {
WAIT_PARENT(); /* parent goes first */
charatatime("output from child\n");

} else {
charatatime("output from parent\n");
TELL_CHILD(p'i d);

}

exit(0);

}

Process Control

33

Process Execution

\

34

How UNIX Recognizes Binaries?

— \ —_—

* Itis done by checking file content
* ELF binaries

$ hexdump -C some-ELF-binary | head

00000000 7f 45 4c 46 02 01 01 00 0O 00 00 00 00 00 00 00 |

00000010 ©2 00 3e 00 Ol 00 00 00 30 O7 40 00 00 00 00 00 |..>..... 0.@..... |
00000020 40 00 00 00 00 00 00 00 48 15 00 00 00 00 00 00 |

* Interpreter Files (Scripts)

$ hexdump -C some-interpreter-file | head
000000 23 21 2e 2f 65 63 68 6f 62 69 6e 20 66 6f 6f @a |#!./echobin foo. |

00000010
Dec Hx Oct Html Chr

32 20 040 &«#32; Space

33 21 041 ! !

34 22 042 «#34;

35 23 043 # #

36 24 044 $
Process Control 37 25 045 %: % 35

L L T Vol o W P L L S

<

Support More Binaries (Linux)

e

//

* The binfmt_misc file system (on Linux)
binfmt_misc on /proc/sys/fs/binfmt_misc type binfmt _misc (rw,noexec,nosuid,nodev)

 Add new binary formats by editing /proc/sys/fs/binfmt_misc/register
— Basic
format: :name:type:offset:magic:mask:interpreter:flags

— You may have a look at the document
https://www.kernel.org/doc/Documentation/binfmt misc.txt

— Example: (as root)

echo ":DOSWin:M::MZ::/usr/bin/wine:" > /proc/sys/fs/binfmt _misc/register
cat /proc/sys/fs/binfmt _misc/DOSWin

enabled

interpreter /usr/bin/wine

flags:

offset: ©

magic: 4d5a

Process Control 36

More binfmt_misc Examples

* Sample formats listed in binfmt_misc file
system

$ 1s /proc/sys/fs/binfmt_misc/

jar gemu-arm gemu-mips gemu-s390x gemu-sparcé64
python2.7 gemu-armeb gemu-mipsel gemu-sh4 register
python3.4 gemu-cris gemu-ppc gemu-shdeb status
gemu-aarché4 gemu-m68k gemu-ppc64 gemu-spanrc

gemu-alpha gemu-microblaze gemu-ppc64abi32 gemu-sparc32plus

Process Control 37

e

Jar

$ cat /proc/sys/fs/binfmt _misc/jar
enabled

interpreter /usr/bin/jexec

flags:

offset ©

magic 504b0304

ARM executable

$ cat /proc/sys/fs/binfmt_misc/gemu-armeb
enabled

interpreter /usr/bin/gemu-armeb-static

flags: OC

offset ©

magic 7f454c4601020100000000000000000000020028
mask fffffffrffrffroofrffrffrffrfffrffrfeffff

Process Control

More binfmt _misc Examples (Cont’d)

\

e

38

The exec Functions

* Replace the calling process with a new program
 The new program starts executing at its main function

 The process ID does not change across an exec, because
d NEW Process is not created
. Synop5|s
extern char **environ;
— int execl(const char *path, const char *arg, ...);
— int execlp(const char *file, const char *arg, ...);

— int execle(const char *path, const char *arg, ..., char * const
envpl]);
— int execv(const char *path, char *const argv[]);

— int execvp(const char *file, char *const argv[]);

— int execve(const char *path, char *const argv[], char *const
envpl]);

Process Control 39

Differences Among the Six exec Functions

 pathname — must be absolute or relative paths
* filename — does not contain a slash (/), filename will be
searched in directories listed in the PATH variable
Function | pathname | filename arg list argv[] environ envp(]
execl J . J
execlp . . .
execle J . .
execv L4 ° °
execvp . . .
execve L ° °
(letter in P Y e
name)

Process Control

40

Relationship of the Six exec Functions

execlp execl execle
build argo build argo build argo
try each use execve
execvp —— execv .
PATH prefix environ (system call)
Process Control 41

An exec Example

e Suppose we have a program echoall that dumps argv[*] and environ[*]
— Note: echoall must be placed in one directory listed in SPATH

char *env_init[] = { "USER=unknown", "PATH=/tmp", NULL };
int main(void) {

pid t pid;
if ((pid = fork()) < @) { err_sys("fork error"); }
else if (pid == @) { /* specify pathname, specify environment */

if (execle(“./fig8.17-echoall", "echoall", "myargl",
"MY ARG2", (char *)0, env_init) < 0)
err_sys("execle error");

}
if (waitpid(pid, NULL, ©) < 0) { err_sys("wait error"); }
if ((pid = fork()) < @) { err_sys("fork error"); }
else if (pid == 0) { /* specify filename, inherit environment */
if (execlp("fig8.17-echoall”, "echoall", "only 1 arg", (char *)@) < 0)
err_sys("execlp error");
}
exit(0);

}

Process Control 4?2

An exec Example (Cont’d)

$ PATH=$PATH:. ./fig8.16-execl
argv[0]: echoall
argv[1l]: myargl
argv[2]: MY ARG2
USER=unknown
PATH=/tmp
argv[0]: echoall
argv[1l]: only 1 arg
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:.
TERM=xterm
SHELL=/bin/bash
41 more lines that aren't shown
DISPLAY=localhost:10.0
LESSCLOSE=/usr/bin/lesspipe %s %S
_=./fig8.16-execl

Process Control 43

exec of Interpreter Files

* All contemporary UNIX systems support interpreter files
* These files are text files that begin with a line of the form
— #! pathname [optional-argument]
— For example, the shell scripts begins with the line #!/bin/sh
Interpreter files can be also executed by exec functions

Process Control 44

exec of Interpreter Files, an Example

— \ —_—

* Suppose we have a program echoarg that prints all
arguments

* Suppose we have an interpreter file testinterp contains
#!/path/to/echoarg foo

int main(void) {

pid_t pid;
if ((pid = fork()) < 9) { err_sys("fork error"); }
else if (pid == 0) { /* child */

if (execl("/path/to/testinterp", "testinterp",
"myargl", "MY ARG2", (char *)@) < 0)
err_sys("execl error");
}
if (waitpid(pid, NULL, @) < @) /* parent */
err_sys("waitpid error");
exit(9);
}

Process Control 45

exec of Interpreter Files, an Example (Cont’d)

$ cat /path/to/testinterp

#'/path/to/echoarg foo
./f198.20-exec?2

argv[O]. /path/to/echoarg

argv[l]: foo

argv[2]: /path/to/testinterp

argv[3]: myargl

argv[4]: MY ARG2

* The output of the previous example is shown above

 The kernel actually executes the interpreter (pathname
and argument after the #! symbol)

* The exec executable name and its arguments are passed
as additional arguments to the interpreter

Process Control 46

More on exec of Interpreter Files

— \ —

* Usage of most of the shells, for example bash
— bash [options] [command] [arguments]
— If a shell script sample.sh begins with #!/bin/bash

— Execution of the shell script with a command
“/sample.sh 1 2 3” is equivalent to run “/bin/bash ./sample.sh
123”7

* Another example, usage of the gawk utility
— gawk [options] -f program-file [--] [files ...]
— A gawk script sample.awk must begin with #!/bin/gawk -f

— Execution of the gawk script with a command
“/sample.awk test” is equivalent to run
“Ibin/gawk -f ./sample.awk test”

Process Control 47

The system Function

* Execute shell commands in the program
* Synopsis

— int system(const char *cmdstring);
 An example

— system("date > file");

— Execute the date command and redirect its
output to file

* |t’s much more convenient

The system Function

* |tisimplemented by calling fork(), exec(), and waitpid()

* |f either fork() fails or waitpid() returns an error other
than EINTR, system() returns -1 with errno set to
indicate the error

* |f exec() fails, it implies that the shell cannot be
executed, the return value is as if the shell had
executed exit(127).

 |f all the three functions (fork, exec, and waitpid)
succeed, the return value from system() is the
termination status of the shell, in the same format to

that of waitpid().

The system Function — A Simple Implementation

[— \ I

int system(const char *cmdstring) /* version without signal handling */ {
pid t pid;
int status;
if (cmdstring == NULL)

return(-1); /* always a command processor with UNIX */
if ((pid = fork()) < 0) {

status = -1; /* probably out of processes */
} else if (pid == 0) { /* child */

execl("/bin/sh", "sh", "-c", cmdstring, (char *) 0);

_exit(127); /* execl error */
} else { /* parent */

while (waitpid(pid, &status, @) < @) {
if (errno != EINTR) {

status = -1;/%* error other than EINTR from waitpid() */
break;

Froh

return(status);

Process Control 50

system and suid/sgid Programs

— \ —_—

* |t might become a security problem if a suid/sgid program
calls the system function
e |f a suid/sgid program use the system function to execute a
command
— The executed command has the same euid/egid as the calling process
* |f a suid/sgid program needs to execute a program
— Use exec functions instead

— Change euid/egid before calling exec
— seteuid and setegid

Process Control 51

User Identification

* Any process can find out its real and effective user ID
and group ID

— struct passwd *getpwuid(uid t uid);
— getpwuid(getuid())

* |t may not work for a single user that has multiple login
names, and all have the same UID

* An alternative
— #include <unistd.h>
— char *getlogin(void);
— int getlogin r(char *buf, size t bufsize);
* With a login name, the correspond password entry can
be obtained using getpwnam()

Process Times

e

_

 The times(2) function
e Count the current process user/system CPU time

e Count the user/system CPU time for all waited processes

— A child’s CPU times are counted after its termination status has been
read by using wait() functions

— #include <sys/times.h>
— clock_t times(struct tms *buf);

struct tms {

}s

Process Control

clock_t tms_utime; /*
clock_t tms_stime; /*
clock_t tms_cutime; /*
clock_t tms _cstime; /*

user time */

system time */

user time of children */
system time of children */

53

Assignment #6 (5%)

We will write a tiny shell (tsh) command processor like sh, bash,
or csh for single line commands. Your shell's main loop will
display a prompt, read a line of input, and fork a child process to
perform the indicated command.

Required capabilities:

* Ordinary commands, consisting of an executable program
name and an optional list of arguments, run in a separate
process.

 Two built-in commands: cd and pwd

* Background processing, when the last token in the command
line is "&".

Assignment #6 (5%) (cont.)

e

e

You should write tsh in C, using Unix system calls covered in our
lectures. The main loop of your shell may look like this:

* prints a prompt;
* reads a command line;
e parses the command line into tokens (words);
* forks a child
— loads and executes the command; // child process
e waits for the child to terminate; // parent process
Required error checking:
- Any command not found in one of the directories on SPATH.
Due date: Nov 22, 2016

CS5432 Advanced UNIX Programming 55

