Chapter 7
Process Environment

Cheng-Hsin Hsu

National Tsing Hua University
Department of Computer Science

Parts of the course materials are courtesy of Prof. Chun-Ying Huang

CS5432 Advanced UNIX Programming

Outline

e

* Process start and termination
* Environment variables

* Memory layout

e Shared libraries

e Memory allocation

* setjmp and longjmp

* Process resource limits

Process Environment

Process Start

* The main function
* Synopsis
— int main(int argc, char *argv[]);
—int main(int argc, char *argv[], char
*envp[]);

Process Termination

E—— EE— e
 Normal process termination in five ways

— Return from main

— Calling exit

— Calling _exit or _Exit

— Return of the last thread from its start routine

— Calling pthread_exit from the last thread
* Abnormal process termination in three ways

— Calling abort

— Receipt of a signal

— Response of the last thread to a cancellation request
* Execution of a main function looks like

— exit(main(argc, argv));

Process Environment

atexit and exit Functions

 Manual cleanups on exit
— int atexit(void (*function)(void));
— Register up to 32 customized functions (textbook)
* Linux has extended this restrictions
e Exit functions
— exit
 Call atexit registered functions

e Performed a clean shutdown of the standard I/O library
 fclose() all streams, remove tmpfile()

— exitand _Exit
* Terminate immediately

Process Environment

Start and Termination of a C Program

/ _//

exXitr—-———"—"—"—" " mmm m m m m m m m m m — — — o —— — — — == = 1
or | I
. |
_Ex1it, user I
- . - |
, functions exit handler .
| - |
' =) . I
exitl Z = I

- v
or - . |
o exit handler [

Ex‘lg main exit exit :us‘,er OCESS
| function function | process
I |

bt

- - %o
1 I e aystandard [/O| |
| - Ex1 cleanup |
. Csiat or ,
| start-up _ Exit |
I routine |
| |
| |
R e 4

exec
kernel

Process Environment 6

Environment Variables

e

* The environment variables

— Usually in the form of: name=value (no spaces around =)

— Relevant commands: env, export (bash)

— Use S to read a specific environment variable in a shell

* List of environment variable functions

Function

ISO C

POSIX.1

FreeBSD
8.0

Linux
3.2.0

Mac OS X
10.6.8

Solaris 10

getenv

putenv

XSI

setenv

unsetenv

clearenv

Process Environment

Environment List

* Access environment variables directly
— int main(int argc, char *argv[], char *envp[]);
— extern char **environ;

environment environment environment
P()inter llbt Strings
environ: - —————p» HOME=/home /sar\ 0

——— PATH=:/bin: /usr/bin\0

—— SHELL=/bin/bash\0

———— = USER=sar\0

—t—p LOGNAME=sar\ 0

NULL

Process Environment

Environment Functions

* Prototypes of functions to manipulate

environment variables
#tinclude <stdlib.h>

char *getenv(const char *name);
int putenv(char *string);

int setenv(const char *name, const char *value, int overwrite);

int unsetenv(const char *name);
int clearenv(void);

Process Environment 9

Environment List Operations

_—

e

* Delete an entry

— This is simple, just free a string and move all subsequent pointers
down one

 Modify an entry
— If new-size > old-size, just overwrite the old one

— If new-size > old-size, allocate a new space the new variable and
make the pointer point to the new location

 Add an entry
— Add for the 1t time, allocate a new space for the entire list

— Add for non-1%t time, reallocate a larger space for the entire list

Process Environment 10

Common Environment Variables (1/3)

/

—

Variable =B S HIEK Description
8.0 3.2.0 | X10.6.8 P

COLUMNS
DATEMASK

HOME
LANG
LC_ALL

LC_COLLATE

LC_CTYPE

LC_MESSAGES

Process Environment

XSI

Terminal width

getdate(3) template file
pathname

Home directory
Name of locale

Name of locale

Name of locale for
collation

Name of locale for
character classification

Name of locale for
messages

11

Common Environment Variables (2/3)

—

/

FreeBSD Linux Mac OS
FOSVAE X 10.6.8 m

Name of locale for

LC_MONETARY
monetary editing

Name of locale for numeric

LC NUMERIC ° ° ° ° ° .

- editing
@ T Name-of locale for'

- date/time formatting
LINES . . J J . Terminal height
LOGNAME o o o o o Login name
RV XS| fmtmsg(3) message

components to process
NLSPATH Sequence of templates for

message catalogs

Process Environment 12

Common Environment Variables (3/3)

—

/

FreeBSD Linux Mac OS
FOSVAE X 10.6.8 m

List of path prefixes to

PATH search for executable file

PWD Absolute pathnarr.\e of
current working directory

SHELL Name of user’s preferred
shell

TERM °]] ° ° Terminal type

TMPDIR Pathr.lame of dlrectory for
creating temporary files

TZ ° ° ° ° ° Time zone information

Process Environment 13

Memory Layout of a Program

e \

* Text segment
— Machine instructions
* I|nitialized data segment
— int maxcount = 100;
e Uninitialized data segment (bss)
— long sum[1000];
* Stack
— Local variables, function call states
* Heap

— Dynamic allocated memory

Process Environment

_/

high address

low address

uninitialized data
(bss)

initialized data

text

}

)

command-line arguments
and environment variables

initialized to
zero by exec

read from
program file
by exec

14

Read Sizes of an Executable Binary

e \ —_—

* The size (1) command

$ size /usr/bin/gcc /bin/sh

text data bss dec hex filename
203913 2152 2248 208313 32db9 /usr/bin/gcc
704028 19268 19736 743032 b5678 /bin/sh

Process Environment 15

Shared Libraries

* Most UNIX systems today support shared libraries

e Shared libraries remove the common library routines
from the executable file

* Maintain a single copy of the library routine somewhere
in memory that all processes reference

— Reduce the size and memory requirement of each executable
file
— But It may add some runtime overhead
* Another advantage of shared libraries

— Library functions can be replaced with new versions without
having to relink every program that uses the library

— But it might also be a security flaw

Process Environment 16

Compile Static and Dynamic Program

— \ —_—

* Asimple program that just print “Hello, World!”

$ gcc hl.c -o hl
$ gcc h2.c -o h2 -static
$ 1s -1a hl h2
-rwxrwxr-x 1 bear bear 9564 Mar 13 11:48 hl
-rwxrwxr-x 1 bear bear 878192 Mar 13 11:48 h2
$ size hl h2

text data bss dec hex filename

896 264 8 1168 490 h1l

499650 1928 6948 508526 7c26e h2

Process Environment 17

Library Injection

* Functions referenced to shared libraries can be
overridden
— The LD_PRELOAD environment variable
— Usage:
LD_PRELOAD=/path/to/the/injected-shared-object {program}

* Library injection does not work with suid/sgid
executables

Process Environment

18

Library Injection Example

e Suppose we are going to hijack the getuid() function
— This is commonly used in tools like fake-root
 The original program (getuid.c)

int main() {
printf("UID = %d\n", getuid());
return 0;

. Thb injected library (injectl.c)

#include <stdio.h>
#include <sys/types.h>

uid_t getuid(void) {

fprintf(stderr, "injected getuid, always return 0\n");
return 0;

Process Environment

19

Library Injection Example (Cont’d)

— \ —_—

* Compile the programs and the libraries

$ gcc -o getuid -Wall -g getuid.c
$ gcc -o injectl.so -shared -fPIC injectl.c -1dl

— The first command produces the getuid program
— The second commands generates the injectl.so (shared) library

* Run the example

$./getuid # no injection

UID = 1000

$ LD PRELOAD=./injectl.so ./getuid # injected
injected getuid, always return ©

UID = 0

Process Environment 20

More on Library Injection

* But we still want the original function to work properly
 We have to locate the original function

#include <dlfcn.h>

void *dlopen(const char *filename, int flag);
char *dlerror(void);

void *dlsym(void *handle, const char *symbol);
int dlclose(void *handle);

* You may have to link with -1d1 option

Process Environment 21

Revised Library Injection Example

— \ —_—

 We would like to know the real UID internally (inject2.c)

#tinclude <dlfcn.h>
#tinclude <stdio.h>

#include <sys/types.h>
static uid t (*old getuid)(void) = NULL; /* function pointer */

uid t getuid(void) {
if(old getuid == NULL) {
void *handle = dlopen("libc.so.6", RTLD_LAZY);
if(handle != NULL)
old getuid = dlsym(handle, "getuid");
}
fprintf(stderr, "injected getuid, always return 0\n");

if(old getuid != NULL)
fprintf(stderr, "real uid = %d\n", old getuid());
return 0;

}

Process Environment 22

Revised Library Injection Example (Cont’d)

— \ —_—

 Compile the programs and the libraries (again)

$ gcc -o getuid -Wall -g getuid.c
$ gcc -o inject2.so -shared -fPIC inject2.c -1d1l

— The first command produces the getuid program
— The second commands generates the inject2.so (shared) library

* Run the example

$./getuid # no injection

UID = 1000

$ LD _PRELOAD=./inject2.so ./getuid # injected
injected getuid, always return 0

real uid = 1000

UID = ©

Process Environment 23

Determine Library Injection Possibility

— \ —

* No SUID/SGID enabled
* Not a statically linked binary

* Examples of the dynamic/static linked hello-world example

— The file command
$ file hl h2
hl: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared
libs), for GNU/Linux 2.6.24, BuildID[shal]=e32f@8cfbdda94d57273829c2bfd535d8fbe626d, not
stripped
h2: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), statically linked, for
GNU/Linux 2.6.24, BuildID[shal]=2748d80822e76d183d0ef5633c0Ob784527727c7a, not stripped

— The 1dd command
¢ 1dd h1l h2

hl:
linux-vdso.so.1 => (Ox00007ffe7d3d5000)
libc.so.6 => /1ib/x86_64-1inux-gnu/libc.so.6 (0x00007f1bc2150000)
/1ib64/1d-1inux-x86-64.s50.2 (0x00007f1bc2515000)
h2:
not a dynamic executable

Process Environment 24

Determine Library Injection Possibility

— —{Contd) —

* Use symbols from a shared library

e The nm command

* Example: static VS dynamic linked symbols

$ gcc -o getuid -Wall -g getuid.c # dynamically linked
$ gcc -o getuid s -Wall -g getuid.c -static # statically linked
$ nm getuid | grep getuid

U getuid@@GLIBC 2.2.5 # getuid is unknown
$ nm getuid s | grep getuid
0000000000433590 W getuid # getuid is known (but weak)
0000000000433590 T _ getuid # the getuid implementation

* Symbols can be stripped using the strip command

Process Environment 25

Memory Allocation

* |SO C memory allocation functions
e void *malloc(size_t size);
— Allocates a specified number of bytes of memory
— The initial value of the memory is indeterminate
* void *calloc(size_t nobj, size t size);
— Allocates space for a specified number of objects of a specified
size
— The space is initialized to all O bits
* void *realloc(void *ptr, size_t newsize);
— Increases or decreases the size of a previously allocated area

— It may involve moving the previously allocated area somewhere
else, to provide the additional room at the end

— The initial value of increased memory is indeterminate

Process Environment 26

Memory Allocation (Cont’d)

_— -

* Allocated memory can be released by free()

* The allocation routines are usually implemented
with the sbrk(2) system call

* This system call expands (or contracts) the heap
of the process

— However, most versions of malloc and free never
decrease their memory size

— The space that we free is available for a later
allocation

— The freed space is usually kept in the malloc pool, not
returned to the kernel

The alloca Function

* A special memory allocation function — alloca

#include <alloca.h>
void *alloca(size t size);
* alloca() allocate memories in stack frames of the current
function call

* So you don’t have to free() the memory — it is released
automatically after the execution of the current function
returns

 May be not supported by your system, but modern UNIXes
supports the function (Linux, FreeBSD, Mac OS X, Solaris)

* Pros: might be faster (than malloc), no need to free, easier to
work with setjimp/longjmp

e Cons: Portability

Process Environment

28

setimp and longjmp Function

* The reserved keyword "goto" can be used only
in the same function

 We cannot goto a label that is in another
function

* |[nstead, we must use the setjmp and longjmp
functions to perform this type of branching

Typical Program Skeleton for Command

Processing

_—
void do_line(char *);
void cmd_add(void);
int get_token(void);

int main(void) {

char 1ine [MAXLINE];

while (fgets(line, MAXLINE,

do_Tine(11ine);

case TOK_ADD: cmd_add(); break;

\

 What if we encounter an error in
cmd_add and would like to jump back to
the main function for processing the

next line?
) 1=)

bottom of stack higher address

stack frame
formain

/* global pointer for get_token() */
/* process one line of input */

stack frame
forde_line

) 1

/* one case for each command */

stack frame
for cmd add
direction of l

stack growth

lower address
/* rest of processing for this command */

/* fetch next token from Tine pointed to by tok_ptr */

exit(0);
}
char *tok_ptr;
void do_line(char *ptr) {
int cmd;
tok_ptr = ptr;
while ((cmd = get_token()) >
switch (cmd) {
}
}
void
cmd_add(void) {
int token;
; token = get_token();
int get_token(void) {
}

Process Environment

30

The Solution for Jumping Across

e

e Set the jump back position

— int setjmp(jmp_buf env);

— env is usually a global variable — has to be accessed from both the
setjmp side and the longjmp side

— Returns: 0 if called directly, or nonzero if returning from a call to
longjmp
* Jump back

— void longjmp(jmp_buf eny, int val);
* The 'val' will be returned from setjmp
e IfvalisO, it will be replaced by 1

Process Environment

—Functions —

31

Using setjmp and longjmp

e Stack after jumped back

jmp_buf jmpbuffer; bottom of stack higher address

int main(void) {
char 19ne [MAXLINE]: stack frame

if (setjmp(jmpbuffer) != 0)

for main

printf(K

while (fgets(line, MAXLINE,) !
do_T1ine(line);

exit(0);

I
A

direction of l

stack growth

void emd_add(void) { lower address

int token;

token = get_token();

if (token <) /* an error has occurred */
Tongjmp (jmpbuffer, 1);

/* rest of processing for this command */

}

Process Environment 32

Restoration of Variables (1/4)

e

e

* Type of variables
— Automatic, e.g., [auto] int autoVal;, the default
— Register, e.g., register int regVal;, store in register if possible
— Volatile, e.g., volatile int volVal;, store in memory

 What are the values of variables after jumped back?
— It depends

— Most implementations do not try to roll back these automatic
variables and register variables

— The standards say only that their values are indeterminate

— If you have an automatic variable that you do not want to be
rolled back, define it with the volatile attribute

— Variables that are declared global or static are left alone when
longjmp is executed

— In short: variables in register — restored; variables in memory —
kept

Process Environment 33

Restoration of Variables (2/4)

static void fl(int, 1int, int, 1int);

static void f2(void);
static jmp_buf jmpbuffer;
static int globval;
int main(void) {
int autoval;
register int regival;
volatile 1int volaval;
static int statval;
globval = | ; autoval = ’; regival = °; volaval = 4; statval = ;
if (setjmp(jmpbuffer) != 0) %
printf(\n");
printf(.
globval, autoval, regival, volaval, statval);
exit(0);
// Change variables after setjmp, but before 1on?jmp.
$1obva1 = : autoval = ; regival = ; volaval = ; statval = :
l(Cautoval, regival, volaval, statval); /* never returns */
exit(0);
}
static void fl(int 1, int j, int k, int 1) {
printf(\n");
printf(4

, globval, %; j, k, 1);
f20;

static void f2(void) { longjmp(jmpbuffer, 1); }

Process Environment

Restoration of Variables (3/4)

e

e

 Rules for variable restoration

— Variables stored in memory will have values as of the time of calling
longjmp

— Variables in the CPU and floating-point registers are restored to their
values when setjmp was called

* Hence,

— auto variables may be indeterminate, it depends on compiler
implementations

— register variables are restored to the value of “before calling setjmp”
— volatile variable are restored to the value of “before calling longjmp”

Process Environment 35

Restoration of Variables (4/4)

e

—

 Set1,2,3,4,5 - setjmp - Set 95,96,97,98,99 - longjmp - ?

— No optimization: gcc places everything in memory

— Full optimization: auto/register variables are placed in registers

$ gcc fig7.13-testjmp.
$ gcc fig7.13-testjmp.

$./tl

in f10):
globval = 95,
after longjmp:
globval = 95,
$./t2

in f10):
globval = 95,

after longjmp:
globval = 95,

autoval

autoval

autoval

autoval

C

96,

96,

96,

2,

../include -0 tl compile without any optimization
../include -0 t2 -0 compile with full optimization

regival = 97, volaval = 98, statval = 99

regival 97, volaval = 98, statval 99

regival = 97, volaval = 98, statval 99

regival = 3, volaval = 98, statval = 99

Process Resource Limits

* Every process has a set of resource limits

* Resource limits are usually initialized by a parent process and
inherited by its child processes

* The getrlimit and setrlimit functions

#include <sys/time.h>

#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlim);

int setrlimit(int resource, const struct rlimit *rlim);

e The rlimit structure

struct rlimit {
rlim_t rlim_cur; /* Soft limit */
rlim_t rlim_max; /* Hard limit (ceiling for rlim_cur) */

}s

Process Environment 37

Partial List of Process Resources

— ——— e s
N S T
RLIMIT_AS
RLIMIT_CORE
RLIMIT_CPU
RLIMIT_DATA
RLIMIT_FSIZE
RLIMIT_MEMLOCK . . J
RLIMIT_NOFILE
RLIMIT_NPROC . . .

RLIMIT_RSS . . .
RLIMIT_SBSIZE .

RLIMIT_STACK
RLIMIT_VMEM J

Process Environment 38

Example to Dump Resource Limits

e

\

$./fig7.16-getrlimit

RLIMIT_AS

RLIMIT_CORE

RLIMIT_CPU

RLIMIT_DATA
RLIMIT_FSIZE
RLIMIT_LOCKS
RLIMIT_MEMLOCK
RLIMIT_NOFILE
RLIMIT_NPROC

RLIMIT_RSS

RLIMIT_STACK

Process Environment

(infinite)
1024000000
(infinite)
(infinite)
(infinite)
(infinite)
65536

1024

96120
(infinite)
8388608

e

* See code fig7.16-getrlimit.c

(infinite)
(infinite)
(infinite)
(infinite)
(infinite)
(infinite)
65536

4096
96120
(infinite)
(infinite)

39

Example to Dump Resource Limits

P \ —

RLIMIT_ CORE The maximum size in bytes of a core file. A limit of O
prevents the creation of a core file.

RLIMIT_MEMLOCK The maximum amount of memory in bytes that a process
can lock into memory using mlock(2).

RLIMIT NOFILE The maximum number of open files per process.

RLIMIT _NPROC The maximum number of child processes per real user
ID.

RLIMIT STACK The maximum size in bytes of the stack.

Process Environment 40

Assignment #5 (5%)

» Different from the prior assignments, this is a paper-based
one. Please write the 10 exercise questions (each worth 0.5
point) of Chapter 7 of the textbook (third edition)

* You are encouraged to discuss. However, copying others’
solutions is prohibited and you may suffer from penalty

* Due date: Nov. 14, please turn in when we have the class on
Monday

* No lab/demo session on Nov. 15th

CS5432 Advanced UNIX Programming 41

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

On an Intel x86 system under Linux, if we execute the program that prints “hello, world”
and do not call exit or return, the termination status of the program—which we can
examine with the shell—is 13. Why?

When is the output from the printfs in Figure 7.3 actually output?

Is there any way for a function that is called by main to examine the command-line

arguments without (a) passing argc and argv as arguments from main to the function or
(b) having main copy argc and argv into global variables?

Some UNIX system implementations purposely arrange that, when a program is executed,
location 0 in the data segment is not accessible. Why?

Use the typedef facility of C to define a new data type Exitfunc for an exit handler
Redo the prototype for atexit using this data type.

If we allocate an array of longs using calloc, is the array initialized to 0? If we allocate an
array of pointers using calloc, is the array initialized to null pointers?

In the output from the size command at the end of Section 7.6, why aren’t any sizes given
for the heap and the stack?

In Section 7.7, the two file sizes (879443 and 8378) don't equal the sums of their respective
text and data sizes. Why?

In Section 7.7, why does the size of the executable file differ so dramatically when we use
shared libraries for such a trivial program?

At the end of Section 7.10, we showed how a function can’t return a pointer to an automatic
variable. Is the following code correct?

int
fl(int val)
{
int num = 0;
int *ptr = #
if (val == 0) {
int val;
val = 5;
ptr = &val;
}
return(*ptr + 1);
}

(55432 Advanced UNIX Programming

42

