
Chapter	4	
Files	and	Directories	

CS5432	Advanced	UNIX	Programming	 1	

Cheng-Hsin	Hsu	
Na#onal	Tsing	Hua	University	

Department	of	Computer	Science	
	

Parts	of	the	course	materials	are	courtesy	of	Prof.	Chun-Ying	Huang	

Outline	

•  IntroducIon	
•  File	InformaIon	
•  File	Permissions	
•  File	Systems	
•  Directory	OperaIons	
•  Device	Special	Files	

Files	and	Directories	 2	

Filename	
•  Any	characters	except	slash	(/)	and	null	(\0)	

–  Compared	to	Windows	

•  Usually	up	to	255	characters	(the	PATH_MAX	constant)	
•  Every	directory	contains	two	filenames	

–  Single	dot	(.),	and	
–  Double	dots	(..)	
–  Even	in	the	root	directory	

•  Filenames	are	independent	of	language	encodings	
–  It	is	interpreted	by	the	user	terminals	ß	for	different	languages	

Files	and	Directories	 3	

Pathname	

•  A	sequence	of	one	or	more	filenames	
•  Absolute	pathname	–	with	a	leading	slash	

– /usr/bin/gcc
•  RelaIve	pathname	–	without	a	leading	slash	or	
with	a	dot	
–  Suppose	the	current	working	directory	is	/usr	
– All	the	followings	points	to	the	same	file	

•  bin/gcc
•  ./bin/gcc
•  ../usr/bin/gcc

Files	and	Directories	 4	

Directory	
•  Working	Directory	

–  Every	process	has	a	working	directory	
–  Also	called	the	current	working	directory	(cwd)	
–  Can	be	changed	using	the	chdir(2)	funcIon	ß	will	it	affect	the	

cwd	of	the	shell?	

•  Home	Directory	
–  The	iniIal	working	directory	when	a	user	logged	in	
–  Obtained	from	the	/etc/passwd	file	

Files	and	Directories	 5	

root:x:0:0:root:/root:/bin/bash

bear:x:1000:1000:Cheng-Hsin Hsu,,,:/home/bear:/bin/bash

File	InformaIon	

Files	and	Directories	 6	

stat,	fstat,	and	lstat(2)	FuncIons	

	 Return	informaIon	about	a	file	
	 Synopsis	
◦  int stat(const char *path, struct stat *buf);
◦  int fstat(int fd, struct stat *buf);
◦  int lstat(const char *path, struct stat *buf);
◦ Returns:	0	if	OK,	-1	on	error	

	 stat	and	lstat	are	basically	equivalent,	except	lstat	
does	not	follow	a	symbolic	link	ß	do	a	ls	–l	/var	
◦  It	returns	the	informaIon	of	the	symbolic	link	itself	

	 fstat	do	the	same	thing	for	an	opened	file	

Files	and	Directories	 7	

Common	File	InformaIon	

	 File	type	and	permissions	
	 Number	of	hard	links	
	 User	ID	and	group	ID	
	 Device	number	(of	the	containing	file	system)	
	 Device	number	for	special	files	
	 File	size	
	 Block	size	and	number	of	used	blocks	
	 Timestamps:	access,	modificaIon,	and	change	

Files	and	Directories	 8	

The	stat	Structure	
•  struct	stat	{	

	dev_t					st_dev;									/*	ID	of	device	containing	file	*/	
	ino_t					st_ino;									/*	inode	number	*/	
	mode_t				st_mode;								/*	protection	*/	
	nlink_t			st_nlink;							/*	number	of	hard	links	*/	
	uid_t					st_uid;									/*	user	ID	of	owner	*/	
	gid_t					st_gid;									/*	group	ID	of	owner	*/	
	dev_t					st_rdev;								/*	device	ID	(if	special	file)	*/	
	off_t					st_size;								/*	total	size,	in	bytes	*/	
	blksize_t	st_blksize;					/*	blocksize	for	filesystem	I/O	*/	
	blkcnt_t		st_blocks;						/*	number	of	512B	blocks	allocated	*/	
	time_t				st_atime;							/*	time	of	last	access	*/	
	time_t				st_mtime;							/*	time	of	last	modification	*/	
	time_t				st_ctiem;							/*	time	of	last	status	change	*/	

};	

Files	and	Directories	 9	

Lef	as	exercise:	check	the	latest	Linux	kernel	code	to		
see	how	is	it	different	from	this	legacy	version?	

File	Types	

•  Regular	file	
•  Directory	file	
•  Block	special	file	
•  Character	special	file	
•  FIFO	
•  Socket	
•  Symbolic	link	

Files	and	Directories	 10	

File	Permissions	

Files	and	Directories	 11	

UIDs	and	GIDs	Associated	with	a	Process	

	 Real	user	ID	and	real	group	ID	
◦ UID	and	GID	–	Who	we	really	are	
◦  Taken	from	the	password	file	when	login	

	 EffecIve	user	ID	and	effecIve	group	ID	
◦  EUID	and	EGID	
◦ Used	for	file	access	permission	checks	

	 Saved	set-user-ID	and	saved	set-group-ID	
◦  SUID	and	SGID	
◦  Saved	by	the	exec	funcIon	
◦  The	effecIve	user	ID	and	effecIve	group	ID	when	a	program	is	
executed	

Files	and	Directories	 12	

RelaIonships	Between	UIDs/GIDs	
•  Normally,	the	EUID	equals	the	UID	and	the	EGID	equals	

the	GID	
•  EUID	and	EGID	can	be	set	by	the	running	program	using	
setuid(2)	and	setgid(2),	respecIvely	ß	won’t	
affect	shell	process	

•  Special	permission	set	with	SUID	and	SGID	
–  If	a	program	P	owned	by	UserA	has	a	SUID	permission	
–  Any	one	who	executes	the	program	P	will	be	automaIcally	
setuid	to	UserA	

–  SGID	does	similar	to	SUID,	but	is	applied	to	group	id	
–  Only	root	is	able	to	set	SUID/SGID	permissions	for	a	file	

Files	and	Directories	 13	

ApplicaIons	of	SUID	and	SGID	

•  An	example	–	The	passwd	program	
–  The	program	used	to	change	user’s	password	

–  Changing	a	user	password	requires	to	modify	the	/etc/
shadow	file,	which	is	only	accessible	to	the	superuser	

–  With	the	SGID	permission,	a	user	is	able	to	run	the	passwd	
program	with	root’s	permission	(EUID=0)	

Files	and	Directories	 14	

$ ls -la /usr/bin/passwd
-rwsr-xr-x 1 root root 32988 2008-12-08 17:17 /usr/bin/passwd

File	Access	Permissions	(1/3)	

•  A	file	is	always	associated	with	a	user	ID	(the	owner)	and	
a	group	ID	

•  9-bit	permissions	
–  user-read,	user-write,	user-execute	
–  group-read,	group-write,	group-execute	
–  other-read,	other-write,	other-execute	
–  Permissions	are	usually	represented	in	octal	

•  For	example,	0755	
•  Convert	0755	to	binary:		111 101 101

Files	and	Directories	 15	

$ ls -la /bin/bash
-rwxr-xr-x 1 root root 725136 2008-05-13 02:48 /bin/bash

File	Access	Permissions	(2/3)	

•  Rules	
–  We	can	only	access	files	in	a	directory	with	valid	execute	
permissions	

–  We	can	open	a	file	for	read	if	we	have	valid	read	permissions	
–  We	can	open	a	file	for	write	and	truncate	if	we	have	valid	write	
permissions	

–  To	delete	an	exisIng	file	in	a	directory,	we	only	need	valid	write	
and	execute	permissions	of	the	directory	

–  An	executable	must	have	valid	execute	permissions	

Files	and	Directories	 16	

File	Access	Permissions	(3/3)	

•  File	access	test	precedence	
–  If	the	EUID	of	the	process	is	0,	access	is	allowed	
–  If	the	EUID	of	the	process	equals	the	owner	ID	of	the	file,	access	
is	allowed	if	the	appropriate	user	access	permission	bits	are	set		

–  If	the	EGID	or	supplementary	GIDs	of	the	process	equals	the	
group	ID,	access	is	allowed	if	the	appropriate	group	access	
permission	bits	are	set	

–  If	the	appropriate	other	access	permission	bits	are	set,	access	is	
allowed	

•  Access	is	allowed	if	one	of	the	above	checks	passes	ß	
sequenIally	

Files	and	Directories	 17	

Ownership	of	New	Files	and	Directories	

	 The	user	ID	of	a	new	file	is	set	to	the	EUID	of	the	creaIng	
process	
	 The	group	ID	of	a	new	file	can	be	set	either	by:	
◦  The	EGID	of	the	creaIng	process,	or	
◦  The	GID	of	the	parent	directory	

	 The	choice	of	group	ID	depends	on	the	OS	…	
◦  FreeBSD	5.2.1/Mac	OS	X	10.3	–	by	the	parent	directory	
◦  Linux	–	depends	on	a	mount	opIon	(grpid)	
◦  If	grpid	is	set	or	directory	has	SGID	–	by	the	parent	directory	
◦  Otherwise	–	by	the	EGID	of	the	creaIng	process	

Files	and	Directories	 18	

The	access(2)	FuncIon	
•  Check	accessibility	of	a	file	
•  From	a	real	user’s	perspecIve	
•  Synopsis	

–  int access(const char *path, int mode);
–  Returns:	0	if	OK,	-1	on	error	

•  The	mode	can	be	the	bitwise	OR	of	the	following	
constants	
–  R_OK, W_OK, X_OK	–	Test	for	read,	write,	and	execute	
permissions	

–  F_OK	–	Test	for	the	existence	of	the	file	

Files	and	Directories	 19	

An	Example	for	access(2)	FuncIon	

Files	and	Directories	 20	

#include "apue.h"
#include <fcntl.h>

int main(int argc, char *argv[]) {

 if (argc != 2)
 err_quit("usage: a.out <pathname>");
 if (access(argv[1], R_OK) < 0)
 err_ret("access error for %s", argv[1]);
 else
 printf("read access OK\n");
 if (open(argv[1], O_RDONLY) < 0)
 err_ret("open error for %s", argv[1]);
 else
 printf("open for reading OK\n");
 exit(0);

}

An	Example	for	access(2)	FuncIon	(Cont’d)	

21	

$ ls -l a.out
-rwxrwxr-x 1 sar 15945 Nov 30 12:10 a.out
$./a.out a.out
read access OK
open for reading OK
$ ls -l /etc/shadow
-r-------- 1 root 1315 Jul 17 2002 /etc/shadow
$./a.out /etc/shadow
access error for /etc/shadow: Permission denied
open error for /etc/shadow: Permission denied
$ sudo su - become superuser
Password: enter superuser password
chown root a.out change file's user ID to root
chmod u+s a.out and turn on set-user-ID bit
ls -l a.out check owner and SUID bit
-rwsrwxr-x 1 root 15945 Nov 30 12:10 a.out
exit go back to normal user
$./a.out /etc/shadow
access error for /etc/shadow: Permission denied
open for reading OK

Files	and	Directories	

The	umask(2)	FuncIon	

•  Sets	the	file	mode	creaIon	mask	for	the	process		
•  Synopsis	

–  mode_t umask(mode_t cmask);
–  Returns:	previous	file	mode	creaIon	mask	

•  Changing	the	umask	of	a	process	doesn't	affect	the	
umask	of	its	parent	

•  See	examples	in	the	next	page	

Files	and	Directories	 22	

The	umask(2)	FuncIon	(Cont’d)	

23	

$ umask first print the current file mode creation mask
002
$./a.out
$ ls -l foo bar
-rw------- 1 sar 0 Dec 7 21:20 bar
-rw-rw-rw- 1 sar 0 Dec 7 21:20 foo
$ umask see if the file mode creation mask changed
002

#define RWRWRW (S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH)
int main(void) {

 umask(0);
 if (creat("foo", RWRWRW) < 0)
 err_sys("creat error for foo");
 umask(S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH);
 if (creat("bar", RWRWRW) < 0)
 err_sys("creat error for bar");

}

Files	and	Directories	

FuncIons	to	Set	File	Modes	and	Ownerships	

•  File	modes	
–  int chmod(const char *path, mode_t mode);
–  int fchmod(int fd, mode_t mode);

•  File	ownerships	
–  int chown(const char *path, uid_t owner, gid_t
group);

–  int fchown(int fd, uid_t owner, gid_t group);
–  int lchown(const char *path, uid_t owner, gid_t
group);

–  Note:	lchown	will	not	follow	symbolic	links	ß	commonly	seen	
in	many	of	the	funcIons	menIoned	in	this	chapter	

Files	and	Directories	 24	

The	SIcky	Bit	

	 Can	be	used	on	an	executable	or	a	directory	
	 For	an	executable	with	the	sIcky	bit,	the	system	
◦  Caches	the	executable	in	swap	area	afer	execuIon	ß	actually	the	
text	porIon	of	it	

◦  Increases	performance	of	loading	the	executable	

	 For	a	directory	with	the	sIcky	bit	
◦ A	file	in	the	directory	can	be	only	deleted	or	renamed	by	…	
◦  The	user	owns	the	file	
◦  The	user	owns	the	directory	
◦  The	superuser	

◦ Usually	set	for	global	accessible	directories,	such	as	/tmp	

Files	and	Directories	 25	

Revisit	Special	File	Permissions	

•  setuid	
	-rwsr-xr-x 1 root root 54256 Mar 29 2016 /usr/bin/passwd

•  setgid	
 -rwxr-sr-x 1 root mail 14856 Dec 7 2013 /usr/bin/dotlockfile

•  sIcky	bit	
drwxrwxrwt 10 root root 4096 Oct 24 13:42 /tmp

CS5432	Advanced	UNIX	Programming	 26	

File	Systems	

Files	and	Directories	 27	

Disk	Drives,	ParIIons,	and	File	System	

Files	and	Directories	 28	

Cylinder	Group's	i-nodes	and	Data	Blocks	

•  i-node	–	describe	(meta)	informaIon	about	a	file	
–  type,	permission,	data	blocks,	Imestamps,	reference	counts,	…,	
etc.	

•  i-node	are	ofen	indexed	using	a	posiIve	integer	number	
•  Some	i-node	numbers	has	special	purpose	

–  0	–	reserved,	or	does	not	exist	
–  1	–	list	of	bad/defecIve	blocks	
–  2	–	root	directory	of	a	parIIon	

Files	and	Directories	 29	

i-nodes	and	Data	Blocks	

•  Two	filenames	can	point	to	the	same	i-node	ß	Why?	

Files	and	Directories	 30	

Sample	Cylinder	Group	Before	CreaIng	a	Dir	

Files	and	Directories	 31	

Sample	Cylinder	Group	AAer	CreaIng	a	Dir		

Files	and	Directories	 32	

Reference	Counts	

•  The	number	of	pointers	that	points	to	an	i-node	
•  Common	file	operaIons	to	work	with	reference	counts	

–  Link,	unlink,	and	remove	
•  Usually	a	newly	created	file	has	a	reference	count	of	1	

–  Pointed	by	the	containing	directory	
•  A	reference	count	increases	on	being	link(2)’ed	

–  Create	a	hard-link	
–  Hard	links	must	reside	in	the	same	parIIon	

•  A	reference	count	decreases	on	being	unlink(2)’ed	
•  What	is	the	ref.	count	of	i-node	1267	in	previous	slide?	

Files	and	Directories	 33	

link,	unlink,	remove,	and	rename	

•  Synopsis	
– int link(const char *existingpath,
const char *newpath);

– int unlink(const char *pathname);
– int remove(const char *pathname);
– int rename(const char *oldname,
const char *newname);

–  Returns:	0	if	OK,	-1	on	error	
•  Relevant	Commands	

–  ls	-l 	#	long	lisIng	format,	check	the	reference	count	
–  ls	-ls 	#	show	file	sizes	in	1KB	blocks	
–  ls	-li 	#	show	i-node	numbers	

Files	and	Directories	 34	

Symbolic	links	

•  It	is	also	called	sof-links	(in	contrast	to	hard-links)	
•  The	ln(1)	–s	command	
•  The	size	of	a	symbolic	link	is	the	length	of	its	target’s	

name	

Files	and	Directories	 35	

$ mkdir foo make a new directory
$ touch foo/a create a zero-length file
$ ln -s ../foo foo/testdir create a symbolic link
$ ls -l foo
total 0
-rw-r----- 1 sar 0 Jan 22 00:16 a
lrwxrwxrwx 1 sar 6 Jan 22 00:16 testdir -> ../foo

In	the	above	example,	the	foo/testdir	symbolic	link	causes	a	
loop!	

Symbolic	Links	(Cont’d)	

•  Symbolic	links	is	able	to	point	to	an	nonexistence	file	

Files	and	Directories	 36	

$ ln -s /no/such/file myfile create a symbolic link
$ ls myfile
myfile ls says it's there
$ cat myfile so we try to look at it
cat: myfile: No such file or directory
$ ls -l myfile try -l option
lrwxrwxrwx 1 sar 13 Jan 22 00:26 myfile -> /no/such/file

Treatments	of	Symbolic	Links	
by	Various	FuncIons	

Files	and	Directories	 37	

Func@on	
Not	follow	
symbolic	
link	

Follow	
symbolic	
link	

Func@on	
Not	follow	
symbolic	
link	

Follow	
symbolic	
link	

access	 •	 open	 •	

chdir	 •	 opendir	 •	

chmod	 •	 pathconf	 •	

chown	 •	 readlink	 •	

creat	 •	 remove	 •	

exec	 •	 rename	 •	

lchown	 •	 stat	 •	

link	 •	 truncate	 •	

lstat	 •	 unlink	 •	

symlink	and	readlink	
	 Synopsis	
◦  int symlink(const char *actualpath, const char
*sympath);

◦  Returns:	0	if	OK,	-1	on	error	
◦  ssize_t readlink(const char *path, char *buf, size_t
bufsize);

◦  Returns:	number	of	bytes	placed	in	the	buffer,	-1	on	error	

	 symlink	create	a	symbolic	link	sympath	points	to	the	actualpath	
◦  sympath	and	actualpath	need	not	reside	in	the	same	file	system	

	 readlink	reads	the	targeted	pathname	of	the	given	symbolic	link	
path	
◦  The	funcIon	combines	open,	read,	and	close.	

Files	and	Directories	 38	

File	Times	

Files	and	Directories	 39	

Field	 Descrip@on	 Example	 ls(1)	op@on	

st_aIme	 last	access	Ime	 read	 -u	

st_mIme	 last	modificaIon	Ime	(file	content)	 write	 default	

st_cIme	 last	change	Ime	(i-node)	 chmod,	chown	 -c	

Files	and	Directories	 40	

Effect	of	various	funcIons	on	the	access,	
modificaIon,	and	change	Imes	

FuncIon	
Referenced	
file	or	dir	

Parent	
directory	 FuncIon	

Referenced	
file	or	dir	

Parent	
directory	

a	 m	 c	 a	 m	 c	 a	 m	 c	 a	 m	 c	

[f]chmod	 •	 pipe	 •	 •	 •	

[f]chown	 •	 read	 •	

creat	(new)	 •	 •	 •	 •	 •	 remove	
(file)	

•	 •	 •	

creat	(trunc)	 •	 •	 remove	
(dir)	

•	 •	

exec	 •	 rename	 •	 •	 •	

lchown	 •	 rmdir	 •	 •	

link	 •	 •	 •	 [f]truncate	 •	 •	

mkdir	 •	 •	 •	 •	 •	 unlink	 •	 •	 •	

mkfifo	 •	 •	 	•	 •	 •	 uIme	 •	 •	 •	

open	(new)	 •	 •	 •	 •	 •	 write	 •	 •	

open	(trunc)	 •	 •	

uIme	FuncIon:	Update	Time	
	 Synopsis	
◦  int utime(const char *filename, const struct utimbuf
*times); ß 1 sec resolution

◦  Returns:	0	if	OK,	-1	on	error	
◦  futimens(…) 	ß	for	higher	resoluIon!	

	 Time	uImbuf	data	structure	

	 Change	the	access	Ime	and	modificaIon	Ime	of	a	file	
	 If	#mes	is	NULL,	the	access	Ime	and	modificaIon	Ime	is	set	to	
the	current	Ime	

Files	and	Directories	 41	

struct utimbuf {
 time_t actime;
 time_t modtime;

};

Directory	OperaIons	

Files	and	Directories	 42	

mkdir	and	rmdir	FuncIons	
	 Synopsis	
◦ int mkdir(const char *pathname, mode_t
mode);

◦ int rmdir(const char *pathname);		
◦  Returns:	0	if	OK,	-1	on	error	

	 Create	or	remove	a	directory	
	 When	removing	a	directory	…	
◦  If	a	directory	is	not	empty,	the	funcIon	fails	
◦  If	a	directory	is	empty	and	no	process	has	the	directory	open,	
it	is	removed	and	freed	

◦  If	a	directory	is	empty,	but	a	process	has	opened	the	directory,	
it	is	removed	but	not	freed	
◦  No	new	file	can	be	created	in	the	to-be-removed	directory	
◦  It	is	freed	when	the	process	close	the	directory	ß	Similar	to	unlink!	

Files	and	Directories	 43	

Reading	Directories	
	 Access	permissions	for	directories	
◦ Read:	must	have	read	and	execute	permission	
◦  Create/write:	must	have	write	and	execute	permission	

	 Synopsis	
◦ DIR *opendir(const char *name);
◦ Returns:	pointer	to	the	directory	if	OK,	NULL	on	error	
◦ struct dirent *readdir(DIR *dir);
◦ Returns:	pointer	to	a	dirent	structure	if	OK,	NULL	on	reaching	EOF	
or	error	

◦ int closedir(DIR *dir);
◦ Returns:	0	if	OK,	-1	on	error	

Files	and	Directories	 44	

readdir	FuncIon	

	 The	dirent	structure	

	 The	data	returned	by	readdir()	may	be	overwrisen	by		
subsequent	calls	to	readdir()	for	the	same	directory	
stream.	

Files	and	Directories	 45	

struct dirent {
 ino_t d_ino; /* inode number */
 off_t d_off; /* offset to the next dirent */
 unsigned short d_reclen; /* length of this record */
 unsigned char d_type; /* type of file */
 char d_name[256]; /* filename */

};

Seek	in	an	Opened	Directory	

•  Synopsis	
– void rewinddir(DIR *dir);
– off_t telldir(DIR *dir);
–  Returns:	current	locaIon	of	the	opened	dir	

– void seekdir(DIR *dir, off_t
offset);

•  rewinddir	resets	the	posiIon	of	the	directory	stream	to	
the	beginning	

•  seekdir	set	the	locaIon	in	the	directory	stream		

Files	and	Directories	 46	

A	Sample	Program	–	Filename	EnumeraIon	

•  Enumerate	all	files	and	directories	in	a	given	directory	
•  Usage	

–  ./a.out {directory_name}

Files	and	Directories	 47	

chdir,	fchdir,	and	getcwd	FuncIons	
	 Every	process	has	a	current	working	directory	
◦  The	current	working	directory	is	inherited	from	the	parent	
◦  The	current	working	directory	for	each	process	is	independent	

	 The	default	working	directory	for	a	user	is	his	home	directory	
(configured	in	the	/etc/passwd	file)	
	 Current	working	directory	can	be	changed	
	 Synopsis	
◦  int chdir(const char *path);
◦  int fchdir(int fd);
◦  Returns:	0	if	OK,	1	on	error	
◦  char *getcwd(char *buf, size_t size);		
◦  Returns:	buf	if	OK,	NULL	on	error	

Files	and	Directories	 48	

$	pwd	
/usr/lib	
$	mycd	
chdir	to	/tmp	succeeded	
$	pwd	
/usr/lib		

Device	Special	Files	

Files	and	Directories	 49	

Device	Special	Files	

•  Every	file	system	is	known	by	its	major	and	minor	device	
numbers,	encoded	in	the	system	type	dev_t	
–  The	major	number	idenIfies	the	device	driver	
–  The	minor	number	idenIfies	the	specific	sub	device	
–  The	major	number	can	be	extracted	by	the	macro	major(dev_t)	
–  The	minor	number	can	be	extracted	by	the	macro	minor(dev_t)	

•  Recall	the	stat(2)	funcIon,	which	returns	a	file	status	
structure	
–  The	st_dev	and	the	st_rdev	value,	what’s	the	difference?	
–  Let’s	see	an	example	

Files	and	Directories	 50	

An	Example	of	Retrieving	Device	Numbers	

Files	and	Directories	 51	

int main(int argc, char *argv[]) {
 int i;
 struct stat buf;
 for (i = 1; i < argc; i++) {
 printf("%s: ", argv[i]);
 if (stat(argv[i], &buf) < 0) {
 err_ret("stat error");
 continue;
 }
 printf("dev=%d/%d", major(buf.st_dev), minor(buf.st_dev));
 if (S_ISCHR(buf.st_mode) || S_ISBLK(buf.st_mode)) {
 printf(" (%s) rdev = %d/%d",
 (S_ISCHR(buf.st_mode)) ? "character" : "block",
 major(buf.st_rdev), minor(buf.st_rdev));
 }
 printf("\n");
 }
 exit(0);

}

st_dev	and	st_rdev	

•  Every	file	has	a	st_dev	number,	which	indicates	the	
container	file	system	

•  Only	device	files	have	st_rdev	numbers,	which	indicates	
the	device/sub-device	

•  Running	the	example	in	the	previous	slide	

Files	and	Directories	 52	

$./a.out / /dev /home/bear /dev/tty0 /dev/sda2
/: dev = 8/2
/dev: dev = 0/14
/home/chuang: dev = 8/2
/dev/tty0: dev = 0/14 (character) rdev = 4/0
/dev/sda2: dev = 0/14 (block) rdev = 8/2

The	/dev	File	System	

•  Stores	device	special	files	
•  It	can	be	a	real	file	system	

–  Each	device	special	file	is	created	with	the	mknod(1)	
command	

•  It	can	be	a	pseudo	file	system	
–  Device	special	files	are	automaIcally	generated	when	a	device	
driver	is	registered	

Files	and	Directories	 53	

$ ls -la /dev/tty0 /dev/sda* /dev/null
crw-rw-rw- 1 root root 1, 3 2008-12-04 10:02 /dev/null
brw-rw---- 1 root disk 8, 0 2009-02-09 18:39 /dev/sda
brw-rw---- 1 root disk 8, 1 2009-02-09 18:39 /dev/sda1
brw-rw---- 1 root disk 8, 2 2009-02-09 10:39 /dev/sda2
crw-rw---- 1 root root 4, 0 2009-02-09 18:39 /dev/tty0

Common	Device	Special	Files	
	 /dev/hdaN?	–	IDE	disks	and	parIIons	
	 /dev/sdaN?	–	SCSI	or	SATA	disks	and	parIIons	
	 /dev/scdN	–	CD/DVD-ROMs	

	 /dev/syN	–	terminals	
	 /dev/sySN	–	COM	ports	
	 /dev/pts/N	–	pseudo	terminals	

	 /dev/null	
	 /dev/zero	ß	cat	/dev/zero	|	head	-c	12	>	/tmp/zero.bytes	
	 /dev/urandom			ß	head	-c	30	/dev/urandom	>	/tmp/rnd.bytes	

Files	and	Directories	 54	

Assignment	#3	(5%)	
•  (3%)	Write	a	uIlity	like	cp(1),	say	lcp,	that	copies	a	file	

containing	holes,	without	wriIng	the	bytes	of	0	to	the	output	
file.	

•  (2%)	In	SecIon	4.22,	our	version	of	fw,	called	fw8.c,	never	
changes	its	directory.	Modify	this	rouIne	so	that	each	Ime	it	
encounters	a	directory,	it	uses	the	chdir	funcIon	to	change	to	
that	directory,	allowing	it	to	use	the	filename	and	not	the	
pathname	for	each	call	to	lstat.	When	all	the	entries	in	a	
directory	have	been	processed,	execute	chdir("..").	Compare	the	
Ime	used	by	this	version	and	the	version	in	the	text.	

•  Submit	your	lcp.c,	fw8.c,	Makefile,	and	a	readme.txt	files	
through	iLMS.	

•  Due	date:	November	1st	
CS5432	Advanced	UNIX	Programming	 55	

