
Introduction	and	Tools

CS5432	Advanced	UNIX	Programming 1

Cheng-Hsin Hsu
National	Tsing	Hua	University

Department	of	Computer	Science

Parts	of	the	course	materials	are	courtesy	of	Prof.	Chun-Ying	Huang

CS3330	Scientific	Computing 2

My	First	Computer

CS5432	Advanced	UNIX	Programming 3

Guess	what	is	the	architecture	and	language?

My	First	GUI	(All	Utilities	Run	in	XTerm)

CS5432	Advanced	UNIX	Programming 4
Guess	what	is	the	architecture?

My	First	Desktop	at	Work

CS5432	Advanced	UNIX	Programming 5

CLI	versus	GUI

• Advantages	of	CLI
– Faster	and	easier	for	experts	(not	beginners)
– Scripting	for	automations
– Easier	to	be	run	in	batches,	either	by	remote	users	
or	as	cron jobs

– More	precise	than	mouse/GUI
• Disadvantages	of	CLI

– Some	applications	(Photoshop?)	are	impossible
– Learning	curves	are	steep

CS5432	Advanced	UNIX	Programming 6

WHAT	IS	UNIX

CS5432	Advanced	UNIX	Programming 7

UNIX	is	..

• A	multi-user,	multi-tasking	operating	system
• Machine	independent	system	built	on	C	
(instead	of	Assembly)

• Software	development	environment
– With	plenty	of	utilities

• Created	in	1969	at	Bell	
Labs	in	Murray	Hill,	NJ

CS5432	Advanced	UNIX	Programming 8

UNIX	Philosophy

• Short	names	for	utilities:	e.g.,	list versus	ls
• Each	utility	does	one	thing	well,	and	one	thing	only
• Allow	users	to	pipe	each	utility’s	output	to	another	
utility’s	input	to	accomplish	complicated	tasks
– Count	how	many	times	my	students	mentioned	my	
name	in	their	theses

• %grep -i bear */*/*.tex */*/*/*.tex | wc –l

• %find . -name '*.tex' -exec grep -i bear {} \;

– You	are	only	limited	by	your	imagination

• Get	a	utility	working	first,	then	make	it	better
CS5432	Advanced	UNIX	Programming 9

Why	UNIX

• Portability
• Productivity	ß Scripts that	automates	the	executions	of	
tasks	that	can	alternatively	done	by	human	one-by-one	ß
tedious!

• Multi-tasking	and	distributed	processing	ß TCP/IP

CS5432	Advanced	UNIX	Programming 10

History	of	Unix-Like	Systems

CS5432	Advanced	UNIX	Programming 11
Source:	https://www.levenez.com/unix/

Prepare	Your	Linux	Environment

• Virtual	machines:	VMWare Player,	VirtualBox,	
Parallels
– Dual	network	interfaces:	NAT	and	host-only	

• Recommend	Ubuntu	(Debian)	packages
– gcc,	g++,	gdb,	make
– manpages-dev,	manpages-posix,	manpages-posix-
dev

– #sudo apt-get install gcc g++ gdb make
manpages-dev manpages-posix manpages-
posix-dev

CS5432	Advanced	UNIX	Programming 12

ABOUT	THE	COURSE

CS5432	Advanced	UNIX	Programming 13

Course	Format
• Time:	Mondays	3:30	p.m.	- 5:20	p.m.,	Thursdays	2:20	-
3:10	p.m.

• Location:	EECS	132
• Office	hour:	Thursdays	3:30	p.m.- 4:20	p.m.,	Delta	643
• TA:	Chen-Nien Mao	(gloiremao AT	gmail.com),	Delta	
713

• Labs	(weekly	assignment	demo):	Tuesdays	7:00	- 9:00	
p.m.	at	EECS	328.

• Website:	
http://nmsl.cs.nthu.edu.tw/index.php/courses

CS3330	Scientific	Computing 14

Prerequisites	and	Textbook
• Prerequisites:

– Introduction	to	programming:	must	know	C
– Operating	systems	:	heard	of	Inter-Process	
Communications	(IPC)

• Textbook:	W.	Richard	Stevens	and	Stephen	A.	Rago,	
"Advanced	Programming	in	the	
UNIX	Environment,"	3rd	ed.,	Addison	Wesley
– Safari	version:	
http://proquest.safaribooksonline.com/book/program
ming/unix/9780321638014

– Please	read	the	book,	even	though	I	may
not	be	able	to	cover	everything	in	lectures

CS3330	Scientific	Computing 15

Grading	Policy
• Weekly	assignments	(55%	+	5%	Bonus):	12	times,	5%	each

– Assignments	are	given	on	the	last	slide	of	each	topic
– Students	turn	in	their	assignments	during	weekly	labs	
– The	TA	grades	assignments	during	labs
– Scores	will	be	announced	on	iLMS
– No	make-up	demos	unless	approved	by	the	instructor	before
the	lab	session.	

– Late	submissions	within	one	week	are	subject	to	50%	penalty;	
submission	beyond	one	week	won’t	be	graded.	

• Midterms (30%	Bonus):	Two	times,	15%	each
• Final	Exam	(15%)	
• No	curving…..

CS3330	Scientific	Computing 16

Tentative	Schedules

CS5432	Advanced	UNIX	Programming 17

18

Questions	So	Far?

If	not,	let’s	have	a	break

INTRODUCTION	TO	UNIX	
ENVIRONMENT

CS5432	Advanced	UNIX	Programming 19

UNIX	Architecture

CS5432	Advanced	UNIX	Programming 20

• Linux	system	calls
– http://man7.org/linux/man-pages/man2/syscalls.2.html

Linux Kernel

kernel

system calls
shell

library routines

applications

GNU C Library
(glibc)

Micro C Library
(uclibc)

Various shells
Linux prefers bash

GNU
Applications

System	and	Library	Calls

• System	calls:	entry	points	into	kernel-space	
code

• Library	calls:	shared	user-space	functions	

CS5432	Advanced	UNIX	Programming 21

Popular	Shells

CS5432	Advanced	UNIX	Programming 22

Sample	Difference bash tcsh

Variable x=12
set	x=12

set	x=3

Environment	Variable export	z=15 setenv z	15

PATH export PATH=/a:/b set	path=(/a /b)

Startup	File ~/.profile ~/.cshrc

Booting	Process
• OS	loader	(e.g.,	grub)	loads	a	kernel	and	an	
(optional)	RAM	disk	image	into	the	memory

• Kernel	initializes	hardware	components
• Kernel	launches	the	first	process

– /sbin/init, /etc/init, /bin/init, and then try
/bin/sh ßuntil	one	of	them	works

• The	init process	brings	up	the	rest	of	everything
– Mount	file	systems
– Set	up	networks
– Launch	services
– Provide	the	login	prompt

CS5432	Advanced	UNIX	Programming 23

First	Impression

CS5432	Advanced	UNIX	Programming 24

Second	Impression

CS5432	Advanced	UNIX	Programming 25

File	System	Architecture
• Hierarchical	arrangement	of	directories	and	files
• Everything	starts	from	the	"root	directory"	(/)
• The	"mount"	program	ß try	it,	also	df
• Filenames	(and	commands)	are	case-sensitive

– Hierarchical	File	System	(HFS) on	OSX	by	default	is	case	
insensitive	ß an	exception

CS5432	Advanced	UNIX	Programming 26

Hard Disk #0

Partition #2

Partition #1

Partition #0

Linux
points of view

/

/usr/local

/tmp

Windows
points of view

C:\

D:\

E:\

Common	Directory	Structure

CS5432	Advanced	UNIX	Programming 27

Basic	UNIX	Commands

CS5432	Advanced	UNIX	Programming 28

• ls:	list	files
• mkdir:	make	directory
• cd:	change	directory
• pwd:	print	working	directory
• rmdir:	remove	directory
• cp:	copy	file/directory
• mv:	move
• rm:	remove
• cat:	concatenate	and	print

• less (or	more):	page	
splitter

• echo:	print	a	string
• date:	print	or	set	the	

date	and	time
• env:	print	out	all	

environment	variables
• touch:	change	file	time
• tar:	archive	tool

More	UNIX	Commands
• There	are	many UNIX	commands,	and	it	is	impossible	to	cover	all	of	them	
• Built-in	commands:	Provided	by	login	shells
• Other	commands:	Binaries	installed	by	the	system	administrators

– Often	placed	in	standard	locations:	/bin,	/sbin,	/usr/bin,	/usr/sbin,	
/usr/local/bin,	/usr/local/sbin

– Binaries	are	searched	according	the	directories	listed	in	the	PATH
environment

• Linux	standard	base	(LSB)
– What	tools	and	libraries	are	mandatory	for	a	Linux	operating	system
– https://en.wikipedia.org/wiki/Linux_Standard_Base

• (Linux)	Filesystem Hierarchy	Standard	(FHS),	is	one	part	of	the	LSB
– Recommended	locations	to	placed	your	files
– https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

CS5432	Advanced	UNIX	Programming 29

Conventions	in	Documents

• Run	command	as	a	regular	user
– % command	…	(sometimes	we	use	$ instead	of	%)

• Run	command	as	a	privileged	user	(super	user,	or	
root)
– # command	…	(don’t	be	confused	with	comments)

• Related	to	command	arguments
– Square	brackets	[]:	optional	part,	e.g.,	cat	[filename]
– Dots	…:	multiple	arguments	are	allowed,	e.g.,	cat	[file	…]
– Dash	- or	--:	options	for	a	command,	e.g.,

• Part	of	options	for	the	ls command:	-a,	--all,	--color,	-F,	…
• Single	dash	options	may	be	aggregated:	-aF

CS5432	Advanced	UNIX	Programming 30

Redirection	and	Pipe
• Redirection

– Outputs	of	a	command	can	be	stored	in	a	file
• %	echo	Hello,	World!	>	a.txt
• %	echo	Hello,	World!	>>	a.txt

– File	content	can	be	used	as	inputs	to	a	command
• %	cat	<	a.txt

• Pipe
– Outputs	of	a	command	can	be	inputs	of	another	command

• %	echo	Hello,	World!	|	cat
• %	cat	hello.c |	less

– Pipe	can	be	chained
• %	echo	Hello,	World!	|	tr a-z	A-Z	|	cat

CS5432	Advanced	UNIX	Programming 31

Manual	Pages	are	Your	Friends
• The	man(1)	command

– The	command	you	must	know	in	the	UNIX	world!
• Manual	pages	for	commands,	system	calls,	library	functions,	

kernel	routines,	…
• Basic	usage

– $ man [section] page ß man 2 open

– $ man -k regexp ß man –k prints

• Convention	– page(section)
– Examples:
ls(1),	man(1), read(2), crypt(3),	tty(4),	shadow(5),	
printf(1),	printf(3),	…

CS5432	Advanced	UNIX	Programming 32

Man(ual) Page	Sections
1. Executable	programs	or	shell	commands
2. System	calls	(functions	provided	by	the	kernel)
3. Library	calls	(functions	within	program	libraries)
4. Special	files	(usually	found	in	/dev)
5. File	formats	and	conventions	eg /etc/passwd
6. Games
7. Miscellaneous	(including	macros	and	

conventions)
8. System	administration	commands	(only	for	root)
9. Kernel	routines	[Non	standard]

CS5432	Advanced	UNIX	Programming 33

FUNDAMENTAL	UNIX	
PROGRAMMING	PRACTICES

CS5432	Advanced	UNIX	Programming 34

"Hello World”

CS5432	Advanced	UNIX	Programming 35

• Compile	and	run	"Hello,	World."	in	the	UNIX	environment
– $ gcc hello.c // this generates a.out
– $./a.out
– $ gcc hello.c -o hello // this generates hello
– $./hello

#include <stdio.h>

int main() {
printf("Hello, World.\n");
return 0;

}

Return	from	the	main()	Function
• Return	value	of	the	main()	function

– It	is	actually	a	one	byte	value
– Return	zero:	the	value	indicates	'True',	or	no	problem
– Return	non-zero	values:	the	values	indicate	'False',	or	error
– Can	be	used	to	determine	program	execution	status

• Read	return	values	from	your	program
– Run	'echo $?'	immediately	right	after	your	program	
execution

• Try	it	yourself….
– return	-999;
– echo	$?	ß what	do	you	get?
– WHY?

CS5432	Advanced	UNIX	Programming 36

More	about	Return	Values
#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]) {

return atoi(argv[1]);

}

• Compile	it	with	gcc test.c -o return

• What	does	this	program	do?
• What’s	the	problem	with	this	code?

CS5432	Advanced	UNIX	Programming 37

Boolean	OR	and	AND
• Shell’s	short-cut	branch

– Break	an	evaluation	when	the	final result is	known
• Boolean	OR	(||)	– Stop	evaluation	when	a
condition	is	true
– $./return 0 || echo 'A'
– $./return 1 || echo 'B'

• Boolean	AND	(&&)	– Stop	evaluation	when	a	
condition	is	false
– $./return 0 && echo 'C'
– $./return 1 && echo 'D’

• How about $./return 0 | echo 'A'

CS5432	Advanced	UNIX	Programming 38

Arguments

CS5432	Advanced	UNIX	Programming 39

• What	will	be	the	outputs?
– $./args
– $./args a b c d
– $./args "a b c d"
– $./args 'a b c d'

– $./args "home = $HOME”

– $./args 'home = $HOME’

– $./args 12

int main(int argc, char *argv[]) {
int i;
for(i = 0; i < argc; i++)

printf("'%s' ", argv[i]);
printf("\n");
return 0;

}

Handle	Options

• The	getopt(3)	and	getopt_long(3)	style	options
• Used	by	many	UNIX	utilities
• getopt(3)	reads	dash	plus	single	character	options	
(short	options)
– Options	can	be	aggregated
– For	example,	-a	-b	is	equivalent	to	-ab

• getopt_long(3)	also	reads	double-dash	plus	key	
word	options	(long	options)
– For	example,	--all,	--color

CS5432	Advanced	UNIX	Programming 40

Getopt(3)

CS5432	Advanced	UNIX	Programming 41

– argc:	the	argc parameter	received	by	the	main	function
– argv:	the	argv parameter	received	by	the	main	function
– optstring:	list	of	valid	option	characters	(usually	colons	and	alphabets)
– Add	a	colon	(:)	right	after	an	option	character	indicates	that	the	

option	requires	an	additional	argument
– Common	return	value	of	getopt(3)

• -1:	No	more	options
• Colon	(:)	or	question	mark	(?):	Invalid	option	encountered

– Global	variables
• optind:	An	integer	stores	the	number	of	arguments	consumed	by	getopt(3)
• optarg:	A	string	points	to	the	additional	argument	of	the	current	option	(if	:	is	

given)

int getopt(int argc, char * const argv[], const char *optstring);

UNIX	Time	Representations

CS5432	Advanced	UNIX	Programming 42

• Wall	clock	time:	time_t:	
– Number	of	seconds	elapsed	from	00:00:00,	January	1st,	1970	UTC	(the	

"epoch")
– It	is	often	a	32-bit	signed	integer
– Will	be	overflowed	after	03:14:07	January	19th,	2038	– The	year	2038	

problem!

• High	precision	time:	struct timeval,	in	microsecond	unit
– Basically	time_t plus	a	microsecond	precision	timestamp

• CPU	time:	clock_t,	in	CPU-ticks	unit
– CLOCKS_PER_SEC	constant
– POSIX	requires	CLOCKS_PER_SEC	to	be

1,000,000	independent	of	the	actual
clock	resolution

From	select(2):

struct timeval {
long tv_sec; // s
long tv_usec; // ms

};

UNIX	Time	Representations	(cont.)

CS5432	Advanced	UNIX	Programming 43

• time(3)	function:	Get	time	in	time_t format

• gettimeofday(2)	function:	Get	time	in	struct timeval format

– tz is	obsoleted,	it	should	be	NULL

• clock(3)	function:	Get	time	in	clock_t format

time_t time(time_t *t);

int gettimeofday(struct timeval *tv,	struct timezone *tz);

clock_t clock(void);

Measure	Program	Performance

CS5432	Advanced	UNIX	Programming 44

• A	simple	metric:	Program	running	time
• A	simple	example:	the	time	command

• Real	time,	user	time,	and	sys	time
• How	to	get	these	numbers	in	programs?

– gettimeofday(3):	get	wall	clock	time	in	microsecond	precision	
(in	timeval format)

– clock(3):	get	CPU	ticks	(user	+	sys)
– getrusage(3):	get	CPU	time	(in	timeval format)

$ time sleep 10
real 0m10.003s
user 0m0.000s
sys 0m0.003s

Measure	Program	Performance	(cont.)

CS5432	Advanced	UNIX	Programming 45

t0 = get_the_current_timestamp();

// The codes we want to measure ...
Do something ...

t1 = get_the_current_timestamp();

Compute and output (t1 – t0)

Error	Handling

• Check	function	return	values
– (Integer)	Zero	or	positive	values:	return	without	errors
– (Integer)	Negative	values	(usually	-1):	return	with	errors
– (Pointer)	Non-NULL:	return	without	errors
– (Pointer)	NULL:	return	with	errors
– This	is	applicable	for	most	of	the	C	library	functions

• What	kinds	of	error?
– Determine	using	the	errno variable.
– A	global	variable	built	in	C	library

• It	is	not	thread-safe!
• But	not	a	problem	if	your	system	supports	Thread	
Local	Storage	(TLS)

– Check	it	right	after	receiving	an	error	return	value
• List	of	error	codes

– See	errno(3)manual	pages

46CS5432	Advanced	UNIX	Programming

Display	Errors

• Required	headers	and	declarations

• Convert	an	error	number	to	a	human-readable	string
– strerror
– perror

47

#include <stdio.h> // for perror

#include <string.h> // for strerror

#include <errno.h> // errno variable, and defs of error codes

Printf("error = %s\n", strerror(errno));
perror("some prefix");

CS5432	Advanced	UNIX	Programming

Error	Recovery

• Fatal	errors
– No	way	to	recovery
– Show	error	messages,	log,	and	then	exit

• Non-fatal	errors
– May	be	temporary	errors	ß can	be	handled….
– Delay	for	a	short	time	and	then	retry
– Examples

• EAGAIN,	ENFILE,	ENOBUFS,	EWOULDBLOCK,	…

48CS5432	Advanced	UNIX	Programming

GNU	TOOLCHAIN

CS5432	Advanced	UNIX	Programming 49

The	Compiler
• gcc – GNU	C	Compiler
• g++	– GNU	C++	Compiler
• Frequently	used	options

– -S:	do	not	compile,	generate	assembly	only	(output	to	.s)
– -E:	do	not	compile,	perform	preprocessing	only	(output	to	stdout)
– -c:	compile	only,	do	not	link
– -g:	embed	debugging	information
– -Wall:	turn	on	all	warnings
– -l:	link	with	a	library,	e.g.,	-lxxx will	link	with	a	library	named	

libxxx.a
– -I:	add	include	path,	e.g.,	-I/usr/local/include
– -L:	add	library	path,	e.g.,	-L/usr/local/lib

50CS5432	Advanced	UNIX	Programming

Compile	a	Single	Source	Code

• Compile	and	generate	the	executable	binary
– %	g++	hello.cpp (the	output	will	be	a.out)
– %	g++	hello.cpp -o	hello (the	output	will	be	
hello)

• Execute	the	executable
– %		./a.out (or	./hello)
– Do	not	miss	the	./ prefix

• Try	-E	and	-S	options	

51CS5432	Advanced	UNIX	Programming

Compile	Multiple	Source	Code	Files
• Suppose	you	have	s1.cpp,	s2.cpp,	and	s3.cpp
• Strategy	#1

– g++	s1.cpp	s2.cpp	s3.cpp	-o	output (generates	
output)

• Strategy	#2
– g++	-c	s1.cpp (generates	s1.o)
– g++	-c	s2.cpp (generates	s2.o)
– g++	-c	s3.cpp (generates	s3.o)
– g++	s1.o	s2.o	s3.o	-o	output (generates	output)

• Which	one	is	better?

52CS5432	Advanced	UNIX	Programming

Linking	C	and	C++	Files	(1/3)
• Suppose	we	have	two	source	code	files,	a.c and	
b.cpp

• We	then	compile	and	link	the	two	files:
– gcc -c	a.c (generates	a.o)
– g++ -c	b.cpp (generates	b.o)
– g++	-o	test	a.o b.o (does	it	work?)

53

a.c:

int b();
int main() {

return b();
}

b.cpp:

int b() {
return -1;

}

CS5432	Advanced	UNIX	Programming

Linking	C	and	C++	Files	(2/3)

• Let’s	check	what	we	have	in	the	object	codes
• We	can	use	the	nm tool	to	dump	symbols

• Name	mangling	
• How	to	solve	this?

54

$ nm a.o
U b

0000000000000000 T main

$ nm b.o
0000000000000000 T _Z1bv

CS5432	Advanced	UNIX	Programming

Linking	C	and	C++	Files	(3/3)

• We	have	to	modify	b.cpp if	a	function	will	be	
called	from	a	C	program

55

b.cpp:

#ifdef __cplusplus (only needs for a C++ compiler)
extern "C" { (declare that everything within the scope)
int b(); (should be treated as C symbols, not C++)
}
#endif

int b(int n) {
return n;

}

int b() {
return b(-1);

}

$ nm b.o
000000000000000c T b
0000000000000000 T _Z1bi

CS5432	Advanced	UNIX	Programming

MAKE	AND	MAKEFILE

CS5432	Advanced	UNIX	Programming 56

Why	Make	and	Makefile

• Project	management
– Simplify	build	processes
– Manage	project	dependencies

• A	common	scenario
– Build	a	program	with	multiple	source	files

• Steps
– Write	rules	in	a	file	named	Makefile
– Run	the	make command

• By	default,	make	run	the	first	rule	in	the	makefile

57CS5432	Advanced	UNIX	Programming

The	make	Command
• Simply	type	‘make’	in	the	command	prompt

– $ make
– Or	alternatively,	specify	a	target	rule:	

• $ make clean
• Common	options

– -C {dir}:	switch	to	the	given	directory	and	run	the	
make	command

– -f {makefile}:	specify	a	different	filename
– -I {dir}:	specify	include	directory	search	path
– -j {n}:	allow	simultaneously	jobs	(commands)
– For	the	details,	see	the	man	page!

58CS5432	Advanced	UNIX	Programming

The	Makefile

• Rule	definitions
• Variable	definitions
• Automatic	variables
• Special	rules
• Pattern	rules

59CS5432	Advanced	UNIX	Programming

Rule	Definitions

• General	format
– rulename:	dependencies	(or	prerequisites)
(tab) rules

• Rulename	– the	target	to	be	built
• Dependencies

– Prerequisites	required	to	build	the	target
– Separated	by	spaces

• Rules
– Commands	to	build	the	target

60CS5432	Advanced	UNIX	Programming

Rule	Definitions	(Cont’d)

• Comments:	start	with	a	pond	sign	(#)
• Split	a	single	line	into	multiple	lines:	back	slash	
(\)

61CS5432	Advanced	UNIX	Programming

An	Example

• This	is	not a	good	example
• Both	the	test1.c	and	the	test2.c	files	are	
compiled	if either	one	of	them	is	modified	–
we	will	refine	it	later	…

test: test1.c test2.c # comment
gcc -c test1.c
gcc -c test2.c
gcc -o test test1.o test2.o

62CS5432	Advanced	UNIX	Programming

Variable	definitions

• Common	usage
– Set:	VARNAME=value
– Use:	$(VARNAME)

• Create	variables
– CC = gcc
– CXX = g++
– CFLAGS = -I. -Wall

• Use	the	variables
– $(CC) -c test.c $(CFLAGS)
– A nonexistence variable == an empty string

63CS5432	Advanced	UNIX	Programming

Automatic	Variables

• $@:	The	target	file	name
• $<:	The	name	of	the	first	prerequisite
• $?:	The	name	of	all	prerequisites	that	are	
newer than	the	target

• $^:	The	name	of	all	prerequisites.	Duplicated	
entries	will	be	removed

• $+:	Like	$^,	but	duplicated	entries	will	not be	
removed

64CS5432	Advanced	UNIX	Programming

A	Refined	Example

• This	one	is	better!
• Only	modified	objects	will	be	re-built

GCC = gcc
CFLAGS = -g –Wall

.c.o: # old-fashioned!
$(GCC) –c $< $(CFLAGS)

test: test1.o test2.o
$(GCC) -o test $^

65CS5432	Advanced	UNIX	Programming

Special	Rules

• .SUFFIXES	(old	fashioned!)
– Add	non-default	suffixes	(filename	extensions)
– Example

• .PHONY
– Targets	are	not	files!
– Example

.SUFFIXES: # (remove all)

.SUFFIXES: .asm .inc

.PHONY: all clean

66CS5432	Advanced	UNIX	Programming

Pattern	Rules	– The	%	Symbol

• The	filename	between	the	prefix	and	the	
suffix	are	called	“stem”

• Remember	the	old-fashioned	“.c.o:”	rule?
• It	is	equivalent	to

• The	new	style	provides	much	more	flexibilities
%.o: %.c

67CS5432	Advanced	UNIX	Programming

Reference	and	Example

• A	complete	reference	to	make	and	Makefile
– The	make	manual	page
– http://www.gnu.org/software/make/manual/

68CS5432	Advanced	UNIX	Programming

IDIR =../include
CC=gcc
CFLAGS=-I$(IDIR)

ODIR=obj
LDIR =../lib

LIBS=-lm

_DEPS = hellomake.h
DEPS = $(patsubst %,$(IDIR)/%,$(_DEPS))

_OBJ = hellomake.o hellofunc.o
OBJ = $(patsubst %,$(ODIR)/%,$(_OBJ))

$(ODIR)/%.o: %.c $(DEPS)
$(CC) -c -o $@ $< $(CFLAGS)

hellomake: $(OBJ)
gcc -o $@ $^ $(CFLAGS) $(LIBS)

.PHONY: clean

clean:
rm -f $(ODIR)/*.o *~ core

$(INCDIR)/*~

DEBUG	WITH	GDB

CS5432	Advanced	UNIX	Programming 69

GDB	– Quick	Introduction

• A	command	line	based	(interactive)	debugger
• All	source	codes	must	be	compiled	with	-g!

– Don’t	strip	the	symbols
• Example	#1

– $	gcc -g test.c
• Example	#2

– Makefile
– See	CFLAGS

GCC = gcc
CFLAGS = -g –Wall

.c.o: # old-fashioned!
$(GCC) –c $< $(CFLAGS)

test: test1.o test2.o
$(GCC) -o test $^

CS5432	Advanced	UNIX	Programming 70

The	First	Impression

• $	gdb a.out #	a.out is	the	program	executable
GNU gdb (GDB) 7.10.1
Copyright (C) 2015 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-unknown-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from a.out...done.
(gdb) _

CS5432	Advanced	UNIX	Programming 71

Compiled	without	-g	Option

• $	gdb a.out #	a.out is	the	program	executable
GNU gdb (GDB) 7.10.1
Copyright (C) 2015 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-unknown-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from a.out...(no debugging symbols found)...done.
(gdb) _

CS5432	Advanced	UNIX	Programming 72

Basic	Commands

• Show	source	codes
– list	[line	#	|	function	|	file:line #	|	file:function]

• Start	to	debug	a	program
– run	[arguments	…]

• Run	the	next	command
– next	(will	not enter	a	function)	
– step (will	enter	a	function)

• Display
– print

CS5432	Advanced	UNIX	Programming 73

Breakpoints

• Set	breakpoints
– break	[line	#	|	function		|	file:line	#	|	file:function]

• Delete	breakpoints
– clear	[line	#	|	function	|	file:line	#	|	file:function]

• Show	breakpoints
– info	breakpoints

• Run	until	a	breakpoint	is	reached
– continue

CS5432	Advanced	UNIX	Programming 74

Sample	Source	Code

• Source	code:	debug.c
#include <stdio.h>

int main() {
int i;
char hello[] = "Hello, World!\n";
char *ph = hello;
for(i = 0; ph[i]!='\0'; i++) {

putchar(ph[i]);
}
return 0;

}

CS5432	Advanced	UNIX	Programming 75

Compile,	Load,	and	Run

$ gcc -g debug.c -o debug
$ gdb debug
(gdb) run
Starting program: /tmp
Hello, World!

Program exited normally.
(gdb)

CS5432	Advanced	UNIX	Programming 76

List	Source	Codes

(gdb) list 1
1 #include <stdio.h>
2
3 int
4 main() {
5 int i;
6 char hello[] = "Hello, World!\n";
7 char *ph = hello;
8 for(i = 0; ph[i]!='\0'; i++) {
9 putchar(ph[i]);
10 }
(gdb)

CS5432	Advanced	UNIX	Programming 77

Set	Breakpoints	and	Run

(gdb) b 8
Breakpoint 1 at 0x8048485: file bug.c, line 8.
(gdb) run
Starting program: /raid/home/chuang/tmp/bug

Breakpoint 1, main () at hello.c:8
8 for(i = 0; ph[i]!='\0'; i++) {
(gdb) n
9 putchar(ph[i]);
(gdb) print i
$1 = 0 # print a variable
(gdb) print ph[i]
$2 = 72 'H‘ # print another variable
(gdb) print putchar(ph[i])
$3 = 72 # run a function, may also consider 'call'
(gdb) print printf("%c\n", ph[i])
HH # note that we are using bufferred I/O
$4 = 2
(gdb)

CS5432	Advanced	UNIX	Programming 78

Debug	a	Crashed	Program

• A buggy	program	… #include	<stdio.h>
#include	<stdlib.h>
#include	<time.h>

void walk(int depth)	{
int	*p	=	0;
printf("%d\n",	depth);
if(rand()%5==0)	*p	=	depth;
else	walk(depth+1);
return;		

}

int main()	{
srand(time(0));
walk(0);
return	0;

}
CS5432	Advanced	UNIX	Programming 79

Debug	a	Crashed	Program

• Run	the	program
$ gcc -g bug.c -o bug
$./bug
0
1
2
3
4
Segmentation fault (core dumped)
$ bear@ubuntu:/tmp$ ls -l bug core
-rwxrwxr-x 1 bear bear 9952 Sep 11 22:10 bug
-rw------- 1 bear bear 393216 Sep 11 22:16 core

CS5432	Advanced	UNIX	Programming 80

Debug	a	Crashed	Program

• Load	the	core	and	show	call	stack
$ gdb bug core
...
Reading symbols from bug...done.
[New LWP 5920]
Core was generated by `./bug'.
Program terminated with signal SIGSEGV, Segmentation fault.
#0 0x000000000040064e in walk (depth=3) at bug.c:8
8 if(rand()%5==0) *p = depth;
(gdb) bt
#0 0x000000000040064e in walk (depth=3) at bug.c:8
#1 0x000000000040065f in walk (depth=2) at bug.c:9
#2 0x000000000040065f in walk (depth=1) at bug.c:9
#3 0x000000000040065f in walk (depth=0) at bug.c:9
#4 0x0000000000400681 in main () at bug.c:15

CS5432	Advanced	UNIX	Programming 81

No	Coredump File?
• You	may	have	to	modify	your	system	configuration	using	

ulimit
– ulimit -c	unlimited

• Or	change	it	permanently	if	you	are	a	sudoer
– Take	Ubuntu	Linux	as	an	example:	/etc/security/limits.conf

/etc/security/limits.conf
#
#Each line describes a limit for a user in the form:
#
#<domain> <type> <item> <value>
#
...
#* soft core 0
* soft core 1000000
#root hard core 100000
#* hard rss 10000
... CS5432	Advanced	UNIX	Programming 82

QUESTION?

CS5432	Advanced	UNIX	Programming 83

Assignment	#1	(5%	Bonus)
• Implement	your	own	light-weight	wc utility,	called	lwc.c,	in	C	(not	

C++)
– (1%)	lwc only	supports	three	options	-l,	-w,	and	–c; lwc assumes	at	

least	one	option	is	provided; lwc only	process	files	(ignore	stdin)
– (3%)	lwc supports	multiple	options;	lwc ignore	the	order	of	options.	

The	no.	lines	is	always	printed	first,	followed	by	the	no.	words	and	
characters.	ß run	wc on	Ubuntu	to	make	sure	that	your	outputs	are	
identical	to	it!

– (1%)	If	an	invalid	option	or	filename	is	given,	lwc prints	the	same	error	
message	wc would	print	to	stderr,	and	return	the	same	non-zero	exit	
status

• Submit	your	lwc.c in	ILMS.	Your	code	must	be	compiled	with	zero	
warning	and	error	on	our	Ubuntu	16.04	LTS,	to	get	any	points

• Due	date:	September	20th

CS5432	Advanced	UNIX	Programming 84

