Introduction and Tools

Cheng-Hsin Hsu

National Tsing Hua University
Department of Computer Science

Parts of the course materials are courtesy of Prof. Chun-Ying Huang

CS5432 Advanced UNIX Programming

) final_project

Denoising Video signals using first order estimation & Kalman filter

Help

Screen1

— Data

Screen 2

acquire data from camera

=lofx]

Open avi file

Record Frames m

— Replay

Original | Noisy I

Fitered l

; Info

Video Name : Ioise_free\gﬂower.aui

Dim: | 352x240@150

— Pixel evaluation

I T 13) 800
Noisy Pixel G Noi
Filtered Pixel 700 e msi\ddeaussianmoise
I
| N &0k mean Yanance
add noise | | 00 0.03
500
— Filtering
400 — Kalman_fitter Cross correlation
300 Apply Fiter [[1 | 100
Option Time index
200 covariance P| gain K l R(X(n.m.t))l
... 100+
we | _pow || v |
D -
150 1] 02 0.4 06 0.8

— Minor screen1
Filtered Sample

~— Minor screen 2
Noisy Sample

= Export

X Y

| 40 | 40
Wite GIF File

gererate | I enter file name
Write image

enter file name for image

My First Computer

I._
Ll

=

Y
—

WORLD!D®

Y
—

v
—ra

PR
L7 0

1
1

Y
—

bl
=

Guess what is the architecture and language?

3.

My First GUI (All Utilities Run erm)

— \ —

h bin/pppup
bin/ppbup

£59
n/pppUR

- make it 10 times easier to program in than X or MS-WINDOWS

Check. MGR is much easier to program than X, or at least it is for me.
Try writing "hello world" using only X1ib!

- make it run faster than X or MS-WINDOWS

As I said above, the SPARC port doesn’t seem to use any graphics
accelarator, so these thing has to be worked upon. But MGR *is* fast
on everyday routines such as repositioning windows, moving things et

cetera.
- make it more efficient and take up less RAM than X or MS-WINDOWS j
Check. Easy. v]]
- make it 10 times easier to learn than X or MS-WINDOWS I directory

Do you mean easier for the end user to learn the user interface or

easier to learn how to program? M
:48:19 1996

1896

(i11) P 12:34:59 1996
MR Buffer Size Mode File P
________ B — E
. gnuwindow.text 13626 Text Susr/home/mc/ gnuwindow. text B
*% *Buffer List* 151 Buffer Menu BRI TIcwl [=E 15
IDEAS 4950 Fundamental /usr/home/mc/Jfrobozz:~: ps ux
kom-buf.960813 111012 Fundamental /usr/home/mc/iUSER PID %CPU ®MEM ~ S2 RSS TT STAT START TIME COMMAND
% iis 457 Dired by name /usr/home/mc/Aqme 135 0.0 0.0 192 0 co I¥ Aug 12 0:03 -zsh (zsh)
systemspec.text 63393 Text /fusr/home/mc/gme 443 0.0 1.5 24 208 p3 RN Aug 12 0:24 clock2
g~ 6030 Dired by name /usr/home/mc/nc 445 0.0 1.9 32 264 p5S S N Aug 12 2:22 mgrload
% RMAIL 150377 RMAIL Jusr/home/me/Hmc 452 0.0 0.0 184 0 p6 I¥ Aug 12 0:00 fusr/local/bin/zsh
*% RMAIL-summary 2466 RMAIL Summary mc 712 0.0 0.0 5048 0 p6 I¥ Aug 12 11:24 emacs -nw
kom-buf.960812 11877 Fundamental = /usr/home/mc/Kmc 438 0.0 0.0 184 0 p0 I¥ Aug 12 0:00 fusr/local/bin/zsh
* *goratch* 0 Lisp Interaction mc 444 0.0 0.6 36 80 pd4 SN Aug 12 0:25 mgrbiff
¥ Klom* 38653 Fundamental mc 439 0.0 0.0 148 0 plI¥ Aug 12 0:00 ify -s
adresser 2620 Fundamental /usr/home/mc/4mc 441 0.0 1.3 24 188 p2 S Aug 12 0:59 mgreyes
% mgr 880 Dired by name /usr/home/mc/qmc 25295 0.0 3.2 216 452 p7 R 19:06 0:00 ps ux
Configfile 1028 Fundamental /usr/home/mc/idmc 502 0.0 0.0 184 0 p8 I¥ Aug 12 0:00 fusr/local/bin/zsh
% mgr.el 47717 Emacs-Lisp /usr/gnu/1ib/gmc 26033 0.0 0.0 188 0 pa I¥ Aug 12 0:00 fusr/local/bin/zsh
% VYersions 1913 Dired by name /usr/home/mc/me 471 0.0 2.8 200 3% p7 S Aug 12 0:02 fusr/local/bin/zsh
test menu.c 2380 C Jusr/home/mc/mc 301 0.0 0.0 16 07 IW Aug 12 0:08 screenblank
% doc 1014 Dired by name /usr/home/mc/qne 715 0.0 0.0 24 07 IW Aug 12 0:00 fusr/gnu/libexec/emacs/
% eget 1445 Dired by name /usr/home/mc
kod 293 Dired by name /usr/home/mcAMC 9301 0.0 0.0 104 0p9 I¥ Aug 13 0:00 fusr/uch/ftp -1 -n -g

-Emacs: *Buffer List* (Buffer Menu)-

frobozz:~: screendump mgrscreen.raster

Guess what is the architecture?

CS5432 Advanced UNIX Programming

My First Desktop at Work

workspace Menu

Cards
Files
Folders

Help
Hosts
Links
Mail
Tools

Applications

" 1% application Manager
@ audio Control

% Jaudio and Video

fl calculator

. [Elcalendar

. & Icon Editor

« [+]lmage Viewer

windows

-]low Clock

zZAdd 1tem to Menu...
zgjCustomize Menu...

[#]Shapshot
Al Text Editor

2 Lock Display
@i Log out...

= Text Note
S{Voice Note

|

Mail

Text Editor - (UNTITLED)
File Edit Format Options

I

—
< | G/ 00

Q Flnich&z1iel

_ NnstlNesn]

/:; I%:I_;\I
@ 2l =)

- ~ |
& | W0 %
(s

~ ~

o

[
cpu disk Iﬂl

|

CS5432 Advanced UNIX Programming

CLI versus GUI

e

e Advantages of CLI
— Faster and easier for experts (not beginners)
— Scripting for automations

— Easier to be run in batches, either by remote users
or as cron jobs

— More precise than mouse/GUI

* Disadvantages of CLI
— Some applications (Photoshop?) are impossible
— Learning curves are steep

CS5432 Advanced UNIX Programming 6

WHAT IS UNIX

UNIXIs ..

— \ —

* A multi-user, multi-tasking operating system

* Machine independent system built on C
(instead of Assembly)

e Software development environment
— With plenty of utilities f,-f; 3

e Created in 1969 at Bell i-E e
Labs in Murray Hill, NJ

CS5432 Advanced UNIX Programming 8

UNIX Philosophy

* Short names for utilities: e.g., 1ist versus 1s
* Each utility does one thing well, and one thing only

e Allow users to pipe each utility’s output to another

utility’s input to accomplish complicated tasks
— Count how many times my students mentioned my
name in their theses
* 3grep -1 bear */*/*.tex */*/*/* . tex | wc -1

e $find . -name '*.tex' -exec grep -i bear {} \;

— You are only limited by your imagination

e Get a utility working first, then make it better

Why UNIX

e

Portability

Productivity € Scripts that automates the executions of
tasks that can alternatively done by human one-by-one <

tedious!
Multi-tasking and distributed processing < TCP/IP

o3 S° N puppy©’
o D o O L B
: %)

ubunt entoo linuX xanciros debian < Novell \
UNIX & cC g \\
=sco % Cygwin
f} © N xoeex
ESD 2 @chrome azj; kubuntu

b g
SUSE sabayon @ bk "':"1:1'”
,,,,,,,,,,,,,, & anoxoI3
Si Trubg”™ "l 0)7 7 —
) ,_4 # Mac c \ ' freeBSD

MEPIS 7 A fedora O/ redhat
> 2 === J.li$’ > .
Q@ 0 A e me 2

CS5432 Advanced UNIX Programming 10

History of Unix-Like Systems

L

sam—

Ur d PDP-7 tiNg SYStem

F e—

1971 10 1973

1974 to 1975

1978

1979

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

1990
1991

1992

1993
1994
1995
1996
1997

1998

1999
2000

2001 to 2004
2005

2006 to 2007
2008
2009
2010
2011

2012 10 2013

\W

[I Mixed/Shared Source

PWB/Unix . Closed Source

BSD

[

' NET/2

NetBSD
0.8to 1.0

4.4 to
4.4 lite2

NetBSD
11ltol.2

OpenBSD
1.0to2.2

OpenBSD
NetBSD 2.3to5.x

FECERD 1.3 to 6.x

Mac 0S X 3.3to9.x
10.0 t0 10.9.x
(Darwin)

OpenSolaris
and
derivatives

Linux
3.x

CS5432 Advanced UNIX Programming

197110 1973

1974 10 1975

1978
1979

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

1990
1991

1992

1993
1994

1995
1996
1997

1998

1999
2000
2001 to 2004

2005
2006 to 2007
2008
2009
2010

z.cam/unix/
11

Prepare Your Linux Environment

J— e, —

* Virtual machines: VMWare Player, VirtualBox,
Parallels

— Dual network interfaces: NAT and host-only

e Recommend Ubuntu (Debian) packages
— gcc, g++, gdb, make
— manpages-dev, manpages-posix, manpages-posix-
dev

— #sudo apt-get install gcc g++ gdb make
manpages—-dev manpages-posix manpages-
posix—-dev

ABOUT THE COURSE

Course Format
— = > .

 Time: Mondays 3:30 p.m. - 5:20 p.m., Thursdays 2:20 -
3:10 p.m.

* Location: EECS 132
e Office hour: Thursdays 3:30 p.m.- 4:20 p.m., Delta 643

* TA: Chen-Nien Mao (gloiremao AT gmail.com), Delta
713

e Labs (weekly assignment demo): Tuesdays 7:00 - 9:00
p.m. at EECS 328.

e Website:
http://nmsl.cs.nthu.edu.tw/index.php/courses

CS3330 Scientific Computing 14

Prerequisites and Textbook

e \

* Prerequisites:

— Introduction to programming: must know C

— Operating systems : heard of Inter-Process
Communications (IPC)

* Textbook: W. Richard Stevens and Stephen A. Rago,

"Advanced Programming in the

UNIX Environment," 3rd ed., Addison Wesley

— Safari version:
http://proguest.safaribooksonline.com/ba

Advanced
oldpmﬁnam

ming/unix/9780321638014

— Please read the book, even though | may
not be able to cover everything in lectures

g\ the UNIX

‘\“l' NVironment

CS3330 Scientific Computing

Grading Policy

* Weekly assignments (55% + 5% Bonus): 12 times, 5% each
— Assignments are given on the last slide of each topic
— Students turn in their assignments during weekly labs

— The TA grades assignments during labs
— Scores will be announced on iLMS

— No make-up demos unless approved by the instructor before
the lab session.

— Late submissions within one week are subject to 50% penalty;
submission beyond one week won’t be graded.

 Midterms (30% Bonus): Two times, 15% each
* Final Exam (15%)

* No curving.....

CS3330 Scientific Computing 16

Tentative Schedules

\ /
Week Mondays 3:30-5:20 Thursdays 2:20-3:10 Sam_p le
Solutions
1: Sep 11 Introduction, 1. Fundamental tools and shell Holidays (No Lecture)

programming

2: Sep 28 1. Fundamental tools and shell programming

3: Sep 25 2. Files and directories
4: Oct 2 3. File I/O and standard /O

5: Oct 9 Holidays (No Lecture)
6: Oct 16 Midterm Exam #1 (Units 1-3)

7: Oct 23 4. System data files and information

8: Oct 30 5. Process environment
9: Nov 6 6. Process control
10: Nov

13 7. Signals
11: Nov
20 8. Threads
12:2';“" Midterm Exam #2 (Units 4-8)
13: Dec 4 10. Advanced I/O
14: Dec s
11 11. Inter-process communications
15:12“ 12. Network I/0
16: Dec .
25 13. Terminals

17: Jan 1 Holidays (No Lecture)
18: Jan 8 Final Exam (Units 9-13)

2. Files and directories

3. File /0 and standard 1/0
Conference Travel (No Lecture)
4. System data files and
information

Conference Travel (No Lecture)
5. Process environment

6. Process control

7. Signals

8. Threads
9. Daemon processes

9. Daemon processes
10. Advanced I/O

11. Inter-process communications
12. Network 1/0

13. Terminals

Guest Speaker

17

Questions So Far?

4

"

If not, let’s have a break

INTRODUCTION TO UNIX
ENVIRONMENT

UNIX Architecture

: applications
Various shells

Linux prefers bash

Linux Kernel

library routines

GNU
Applications

GNU C Library
(glibc)
Micro C Library
(uclibc)

Linux system calls

— http://man7.org/linux/man-pages/man2/syscalls.2.html

CS5432 Advanced UNIX Programming

20

System and Library Calls

\

e System calls: entry points into kernel-space

code

* Library calls: shared user-space functions

® o
OPEN(2)

bear — bear@ubuntu: ~ — ssh bear@10.211.55.4 — 54x18
Linux Programmer's Manual OPEN(2)

NAME

open, openat, creat - open and possibly cre-

ate a file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_
ode);

int creat(const char *pathname, mode_t mode);

page open(2) line 1 (press h for help or q to quit)

®@0e@
FOPEN(3)

bear — bear@ubuntu: ~ — ssh bear@10.211.55.4 — 54x18
Linux Programmer's Manual FOPEN(3)
NAME
fopen,
tions

fdopen, freopen - stream open func-

SYNOPSIS
#include <stdio.h>

-~
4

FILE *fopen(const char *path, const char *mode

FILE *fdopen(int fd, const char *mode);

FILE *freopen(const char *path, const char *moc
e, FILE *stream);

page fopen(3) line 1 (press h for help or q to quit)

CS5432 Advanced UNIX Programming

_/

21

Popular Shells

Name Path FreeBSD 8.0 | Linux 3.2.0 | Mac OSX 10.6.8 | Solaris 10
Bourne shell /bin/sh . . copy of bash .
Bourne-again shell | /bin/bash optional . . .

C shell /bin/csh link to tcsh optional link to tcsh .
Korn shell /bin/ksh optional optional . .
TENEX C shell /bin/tcsh . optional . .

Figure 1.2 Common shells used on UNIX systems

Sample Difference bash tcsh
Variable x=12 set x=3

set x=12
Environment Variable export z=15 setenv z 15
PATH export PATH=/a:/b set path=(/a /b)
Startup File ~/.profile ~/.cshrc

CS5432 Advanced UNIX Programming 22

Booting Process

* OS loader (e.g., grub) loads a kernel and an
(optional) RAM disk image into the memory

* Kernel initializes hardware components

* Kernel launches the first process
— /sbin/init, /etc/init, /bin/init, and then try
/pin/sh €< until one of them works
* The init process brings up the rest of everything
— Mount file systems
— Set up networks
— Launch services
— Provide the login prompt

First Impression
— —

® O @) bear — bear@ubuntu: /boot/grub — ssh bear@10.211.55.4 — 50x15 8 TS =QOQOROLD R
B o 302am

Cheng-Hsins-Mac-mini:~ bear$ ssh bear@10,211,55.4
bear@10,211,55.4's password:

Cheng-Hsin Hsu

ubuntu® 16.04 LTS

CS5432 Advanced UNIX Programming

Second Impression
e

Ubuntu Linux BE{OQOF ®LBEH

@00 bear — bear@ubuntu: ~ — ssh bear@10.211.55.4 — 50x15
ty B) 304AM %

Cheng-Hsins-Mac-mini:~ bear$ ssh bear@10,211.55.4
bear@®10,211,55.4's password:
Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 4.4.0-31-

generic x86_64)

;.

)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical . com
* Support: https://ubuntu.com/advantage

136 packages can be updated.
47 updates are security updates.

@
7
B
n
a)
#

i
r~

Last login: Sun Sep 11 12:54:18 2016 from 10,211.5

5.2
3

CS5432 Advanced UNIX Programming

File System Architecture

* Hierarchical arrangement of directories and files
* Everything starts from the "root directory" (/)

* The "mount" program < try it, also df

* Filenames (and commands) are case-sensitive

— Hierarchical File System (HFS) on OSX by default is case
insensitive € an exception

 Linux: Hard Disk #0 Windows
points of view points of view
/ < Partition #0 > i\
/usr/local <ij Partition #1 [:>> D:\

/tmp Partition #2 E:\

CS5432 Advanced UNIX Programming 26

Common Directory Structure

/

/ (root)

(dev?cves) (system files) yrams)// \ (Ilblanes) (use?echs)

include fred helen
(plogra ms) (Ilbranes) (headers) (us‘e N (user)
vi stdio.h hello.c

CS5432 Advanced UNIX Programming 27

Basic UNIX Commands

— e — S —
1s: list files * less (ormore): page
mkdir: make directory splitter
cd: change directory * echo: print a string
pwd: print working directory ¢ date: print or set the
rmdir: remove directory date and time
cp: copy file/directory e env: print out all
mv: move environment variables
rm: remove touch: change file time

cat: concatenate and print

tar: archive tool

CS5432 Advanced UNIX Programming 28

More UNIX Commands

* There are many UNIX commands, and it is impossible to cover all of them
* Built-in commands: Provided by login shells
 Other commands: Binaries installed by the system administrators

— Often placed in standard locations: /bin, /sbin, /usr/bin, /usr/sbin,
Jusr/local/bin, /usr/local/sbin

— Binaries are searched according the directories listed in the PATH
environment

* Linux standard base (LSB)
— What tools and libraries are mandatory for a Linux operating system
— https://en.wikipedia.org/wiki/Linux Standard Base

* (Linux) Filesystem Hierarchy Standard (FHS), is one part of the LSB

— Recommended locations to placed your files
— https://en.wikipedia.org/wiki/Filesystem Hierarchy Standard

CS5432 Advanced UNIX Programming 29

Conventions In Documents

e

* Run command as a regular user
— % command ... (sometimes we use S instead of %)

* Run command as a privileged user (super user, or
root)

— # command ... (don’t be confused with comments)

* Related to command arguments

— Square brackets []: optional part, e.g., cat [filename]
— Dots ...: multiple arguments are allowed, e.g., cat [file ...]

— Dash - or --: options for a command, e.g.,

* Part of options for the Is command: -a, --all, --color, -F, ...
* Single dash options may be aggregated: -aF

CS5432 Advanced UNIX Programming

30

Redirection and Pipe

e Redirection

— OQOutputs of a command can be stored in a file
* % echo Hello, World! > a.txt
* % echo Hello, World! >> a.txt

— File content can be used as inputs to a command
* % cat < a.txt

* Pipe
— OQOutputs of a command can be inputs of another command

* % echo Hello, World! | cat
* % cat hello.c | less

— Pipe can be chained
* % echo Hello, World! | tr a-z A-Z | cat

CS5432 Advanced UNIX Programming

31

Manual Pages are Your Friends

* The man(1) command
— The command you must know in the UNIX world!

* Manual pages for commands, system calls, library functions,
kernel routines, ...

* Basic usage
— $ man [section] page € man 2 open
— $ man -k regexp € man -k prints

* Convention —page (section)

— Examples:

1s(1l),man(1l), read(2), crypt(3),tty(4), shadow(5),
printf (1), printf (3), ..

CS5432 Advanced UNIX Programming 32

Man(ual) Page Sections

— —_— —

1. Executable programs or shell commands

2. System calls (functions provided by the kernel)

3. Library calls (functions within program libraries)

4. Special files (usually found in /dev)

5. File formats and conventions eg /etc/passwd

6. Games

7. Miscellaneous (including macros and
conventions)

8. System administration commands (only for root)

9. Kernel routines [Non standard]

FUNDAMENTAL UNIX
PROGRAMMING PRACTICES

"Hello World”

##tinclude <stdio.h>

int main() {
printf("Hello, World.\n");

return 0;
}
e Compile and run "Hello, World." in the UNIX environment
— $ gcc hello.c // this generates a.out
— $./a.out
— $ gcc hello.c -o hello // this generates hello
— $./hello

CS5432 Advanced UNIX Programming

35

Return from the main() Function

e \ —

e Return value of the main() function
— It is actually a one byte value
— Return zero: the value indicates 'True’, or no problem
— Return non-zero values: the values indicate 'False’, or error
— Can be used to determine program execution status
* Read return values from your program

— Run'echo $?'immediately right after your program
execution

* Tryityourself....
— return -999;

— echo S? € what do you get?
— WHY?

CS5432 Advanced UNIX Programming 36

More about Return Values

/ _

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {

return atoi(argv([l]);

}

* Compile it with gcc test.c -o return
 What does this program do?
* What's the problem with this code?

CS5432 Advanced UNIX Programming

37

Boolean OR and AND

e

e Shell’s short-cut branch
— Break an evaluation when the final result is known
* Boolean OR (| |) — Stop evaluation when a
condition is true
—$./return © || echo 'A’
—$%$./return 1 || echo 'B'
 Boolean AND (&&) — Stop evaluation when a
condition is false
—% ./return 0 && echo 'C'
—% ./return 1 & & echo 'D’
 How about $./return © | echo 'A’

CS5432 Advanced UNIX Programming

38

Arguments

—— —
int main(int argc, char *argv[]) {
int i;
for(i = @; i < argc; i++)
printf("'%s' ", argv[i]);
printf("\n");
return 9;
}
 What will be the outputs?
— $./args — $./args "home = SHOME”
- 5 ./args a b c d — $./args 'home = SHOME’
- S ./args "a b c d" 5 ./args 12
— S$./args 'a b ¢ d'

CS5432 Advanced UNIX Programming 39

Handle Options

e

* The getopt(3) and getopt long(3) style options
* Used by many UNIX utilities

e getopt(3) reads dash plus single character options
(short options)
— Options can be aggregated

— For example, -a -b is equivalent to -ab

e getopt long(3) also reads double-dash plus key
word options (long options)
— For example, --all, --color

Getopt(3)

int getopt(int argc, char * const argv[], const char *optstring);

— argc: the argc parameter received by the main function
— argv: the argv parameter received by the main function
— optstring: list of valid option characters (usually colons and alphabets)

— Add a colon (:) right after an option character indicates that the
option requires an additional argument
— Common return value of getopt(3)
* -1: No more options
* Colon (:) or question mark (?): Invalid option encountered
— Global variables

* optind: An integer stores the number of arguments consumed by getopt(3)

» optarg: A string points to the additional argument of the current option (if : is
given)

CS5432 Advanced UNIX Programming 41

UNIX Time Representations

Wall clock time: time_t:
— Number of seconds elapsed from 00:00:00, January 1st, 1970 UTC (the
"epoch")
— Itis often a 32-bit signed integer

— Will be overflowed after 03:14:07 January 19th, 2038 — The year 2038
problem!

High precision time: struct timeval, in microsecond unit
— Basically time_t plus a microsecond precision timestamp

_ . , _ From select(2):
CPU time: clock_t, in CPU-ticks unit

— CLOCKS_PER_SEC constant struct timeval {

— POSIX requires CLOCKS_PER_SEC to be long tv_sec; // s
1,000,000 independent of the actual long tv_usec; // ms
clock resolution };

CS5432 Advanced UNIX Programming

42

UNIX Time Representations (cont.)

— \ —_—

* time(3) function: Get time in time_t format

time_t time(time_t *t);

» gettimeofday(2) function: Get time in struct timeval format

int gettimeofday(struct timeval *tv, struct timezone *tz);

— tzis obsoleted, it should be NULL

e clock(3) function: Get time in clock t format

clock_t clock(void);

CS5432 Advanced UNIX Programming 43

Measure Program Performance
— —_— _
 Asimple metric: Program running time
* Asimple example: the time command

$ time sleep 10
real Om10.003s
user Om0.000s
SyS Om0.003s

* Real time, user time, and sys time

* How to get these numbers in programs?

— gettimeofday(3): get wall clock time in microsecond precision
(in timeval format)

— clock(3): get CPU ticks (user + sys)
— getrusage(3): get CPU time (in timeval format)

CS5432 Advanced UNIX Programming 44

Measure Program Performance (cont.)

P \ — _ —

t0 = get the_current_timestamp();

// The codes we want to measure ...
Do something ...

tl = get_the_current_timestamp();

Compute and output (tl - t0)

CS5432 Advanced UNIX Programming 45

Error Handling

\

Check function return values

— (Integer) Zero or positive values: return without errors
— (Integer) Negative values (usually -1): return with errors
— (Pointer) Non-NULL: return without errors

— (Pointer) NULL: return with errors

— This is applicable for most of the C library functions

What kinds of error?

— Determine using the errno variable.
— A global variable built in C library

e Itis not thread-safe!

* But not a problem if your system supports Thread
Local Storage (TLS)

— Check it right after receiving an error return value

List of error codes
— See errno (3) manual pages

CS5432 Advanced UNIX Programming

46

Display Errors

* Required headers and declarations

#include <stdio.h> // for perror
#include <string.h> // for strerror

#include <errno.h> // errno variable, and defs of error codes

 Convert an error number to a human-readable string
— strerror

— perror

Printf("error = %s\n", strerror(errno));
perror("some prefix");

CS5432 Advanced UNIX Programming

47

Error Recovery

e \

e Fatal errors
— No way to recovery
— Show error messages, log, and then exit

e Non-fatal errors

— May be temporary errors < can be handled....

— Delay for a short time and then retry
— Examples

* EAGAIN, ENFILE, ENOBUFS, EWOULDBLOCK, ...

CS5432 Advanced UNIX Programming

48

GNU TOOLCHAIN

e

The Compiler

\ —

e gcc— GNU C Compiler
e g++—GNU C++ Compiler

Frequently used options

-S: do not compile, generate assembly only (output to .s)

-E: do not compile, perform preprocessing only (output to stdout)
-C: compile only, do not link

-g: embed debugging information

-Wall: turn on all warnings

-1: link with a library, e.g., - 1xxx will link with a library named
libxxx.a

-I:add include path, e.g., -I/usr/local/include
-L: add library path, e.g., -L/usr/local/1lib

CS5432 Advanced UNIX Programming 50

Compile a Single Source Code

 Compile and generate the executable binary
— % g++ hello.cpp (the output will be a.out)

— % g++ hello.cpp -o hello (the output will be
hello)

e Execute the executable

— % ./a.out (or ./hello)
— Do not miss the ./ prefix

* Try -E and -S options

CS5432 Advanced UNIX Programming 51

e

Compile Multiple Source Code Files

_ —

* Suppose you have sl.cpp, s2.cpp, and s3.cpp
* Strategy #1

— g++ sl.cpp s2.cpp s3.cpp -0 output (generates

output)
* Strategy #2
— g++-csl.cpp (generates Sl.O)
— g++-C s2.cpp (generates s2.0)
— g++ -C S3.cpp (generates s3.0)

— g++s1.0s2.0 s3.0 -0 output (generates output)
 Which one is better?

CS5432 Advanced UNIX Programming 52

Linking C and C++ Files (1/3)

* Suppose we have two source code files, a.c and
b.cpp

b.cpp:
int b(); int b() {
int main() { return -1;
return b(); }

}

* We then compile and link the two files:

— gcc-ca.c (generates a.0)
— g++ -c b.cpp (generates b.o)
— g++ -otesta.o b.o (does it work?)

CS5432 Advanced UNIX Programming 53

Linking C and C++ Files (2/3)

e Let’s check what we have in the object codes
* We can use the nm tool to dump symbols

$ nm a.o $ nm b.o

Ub 0000000000V T _Z1lbv
000000000V T main

* Name mangling
* How to solve this?

CS5432 Advance d UNIX Programming 54

Linking C and C++ Files (3/3)

 We have to modify b.cpp if a function will be
called from a C program

b.cpp:

#ifdef _ cplusplus (only needs for a C++ compiler)

extern "C" { (declare that everything within the scope)
int b(); (should be treated as C symbols, not C++)
}

#endif

int b(int n) {

return n;

} $ nm b.o

) 000000000000000C T b

int b() { 00000000 T Z1bi
return b(-1);

}

CS5432 Advanced UNIX Programming 55

MAKE AND MAKEFILE

Why Make and Makefile

e

* Project management

— Simplify build processes

— Manage project dependencies
* A common scenario

— Build a program with multiple source files
* Steps

— Write rules in a file named Makefile

— Run the make command
* By default, make run the first rule in the makefile

CS5432 Advanced UNIX Programming

57

The make Command

e Simply type ‘make’ in the command prompt
— $ make
— Or alternatively, specify a target rule:
* $ make clean
* Common options

— -C {dir}: switch to the given directory and run the
make command

— -f {makefile}: specify a different filename

— -I {dir}: specify include directory search path
— -Jj {n}:allow simultaneously jobs (commands)
— For the details, see the man page!

The Makefile

e

* Rule definitions

e Variable definitions
* Automatic variables
* Special rules

* Pattern rules

CS5432 Advance d UNIX Programming

Rule Definitions

/ \

e General format

— rulename: dependencies (or prerequisites)
(tab) rules

* Rulename —the target to be built

* Dependencies

— Prerequisites required to build the target
— Separated by spaces

* Rules
— Commands to build the target

CS5432 Advanced UNIX Programming

60

Rule Definitions (Cont’d)

« Comments: start with a pond sign (#)
* Split a single line into multiple lines: back slash

(\)

CS5432 Advanced UNIX Programming

61

An Example

test: testl.c test2.c # comment
gcc -c testl.c
gcc -c test2.c
gcc -0 test testl.o test2.o

* This is not a good example

e Both the testl.c and the test2.c files are
compiled if either one of them is modified —
we will refine it later ...

CS5432 Advanced UNIX Programming

62

Variable definitions

* Common usage

— Set: VARNAME=value
— Use: S(VARNAME)

* Create variables

— CC = gcc

— CXX = g++

— CFLAGS = -I. -Wall
e Use the variables

— $(CC) -c test.c $(CFLAGS)
— A nonexistence variable == an empty string

CS5432 Advanced UNIX Programming

63

Automatic Variables

—

e S@: The target file name
* S<: The name of the first prerequisite

e S?: The name of all prerequisites that are
newer than the target

* SA: The name of all prerequisites. Duplicated
entries will be removed

* S+: Like SA, but duplicated entries will not be
removed

CS5432 Advanced UNIX Programming 64

A Refined Example

— \

GCC = gcc
CFLAGS = -g -Wall

.C.0: # old-fashioned!
$(GCC) -c $< $(CFLAGS)

test: testl.o test2.o0
$(GCC) -0 test $

* This one is better!
* Only modified objects will be re-built

CS5432 Advanced UNIX Programming

65

Special Rules

e SUFFIXES (old fashioned!)
— Add non-default suffixes (filename extensions)

— Example

.SUFFIXES: # (remove all)
.SUFFIXES: .asm .inc

* .PHONY

— Targets are not files!

— Example .pHony: all clean

CS5432 Advanced UNIX Programming

66

Pattern Rules — The % Symbol

* The filename between the prefix and the
suffix are called “stem”

e Remember the old-fashioned “.c.0:” rule?

* |tis equivalent to

%.0: %.C

* The new style provides much more flexibilities

CS5432 Advanced UNIX Programming

67

Reference and Example

A complete reference to make and Makefile
— The make manual page
— http://www.gnu.org/software/make/manual/

_OBJ = hellomake.o hellofunc.o

IDIR =../include OBJ = $ (patsubst %,$(ODIR)/%,$(OBJ))
CC=gcc -

CFLAGS=-1$ (IDIR) $ (ODIR) /%.0: %.c $(DEPS)

S(CC) -c -o $@ S$< S (CFLAGS)

ODIR=0bj
LDIR =../lib hellomake: $(OBJ)

cc -o $S@ $” S(CFLAGS) $(LIBS
LIBS=-1m J () 9)

.PHONY: clean
DEPS = hellomake.h

DEPS = $(patsubst %,$(IDIR)/%,$(DEPS)) clean:

rm -f $(ODIR)/*.0 *~ core
S (INCDIR) /*~

CS5432 Advanced UNIX Programming 68

DEBUG WITH GDB

GDB — Quick Introduction

e

e

A command line based (interactive) debugger

* All source codes must be compiled with -g!
— Don’t strip the symbols

* Example #1 scC — gcc
_ S gcc -g test.c CFLAGS = -g -Wall
.C.O: # old-fashioned!
* Example #2 $(GCC) -c $< $(CFLAGS)
— Makefile
test: testl.o test2.0
— See CFLAGS $(GCC) -o test $7

CS5432 Advanced UNIX Programming 70

The First Impression

» S gdb a.out# a.out is the program executable

GNU gdb (GDB) 7.10.1

Copyright (C) 2015 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnhu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_ 64-unknown-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from a.out...done.

(gdb) _

CS5432 Advanced UNIX Programming 71

Compiled without -g Option

» S gdb a.out# a.out is the program executable

GNU gdb (GDB) 7.10.1

Copyright (C) 2015 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnhu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_ 64-unknown-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from a.out...(no debugging symbols found)...done.

(gdb) _

CS5432 Advanced UNIX Programming 72

Basic Commands

* Show source codes

— list [line # | function | file:line # | file:function]
e Start to debug a program

— run [arguments ...]

e Run the next command

— next (will not enter a function)
— step (will enter a function)

* Display
— print

CS5432 Advanced UNIX Programming

73

Breakpoints

* Set breakpoints

— break [line # | function | file:line # | file:function]
* Delete breakpoints

— clear [line # | function | file:line # | file:function]
* Show breakpoints

— info breakpoints

* Run until a breakpoint is reached

— continue

CS5432 Advanced UNIX Programming 74

Sample Source Code

e \

* Source code: debug.c

#include <stdio.h>

int main() {
int i;
char hello[] = "Hello, World!\n";
char *ph = hello;
for(i = @; ph[i]!="\0"; i++) {
putchar(ph[i]);
}

return 0;

CS5432 Advanced UNIX Programming

75

Compile, Load, and Run

\

$ gcc -g debug.c -o debug
$ gdb debug

(gdb) run

Starting program: /tmp
Hello, World!

Program exited normally.
(gdb)

CS5432 Advanced UNIX Programming

76

List Source Codes

(gdb) list 1

1 #include <stdio.h>

2

3 int

4 main()

5 int i;

6 char hello[] = "Hello, World!\n";
7 char *ph = hello;

8 for(i = @; ph[i]!="\0"; i++) {
9 putchar(ph[i]);

10 }

(gdb)

CS5432 Advanced UNIX Programming 77

Set Breakpoints and Run

(gdb) b 8
Breakpoint 1 at 0x8048485: file bug.c, line 8.
(gdb) run

Starting program: /raid/home/chuang/tmp/bug

Breakpoint 1, main () at hello.c:8

8 for(i = @; ph[i]!="\0"; i++) {
(gdb) n

9 putchar(ph[i]);

(gdb) print i

$1 = 0 # print a variable

(gdb) print ph[i]

$2 = 72 'Hf # print another variable

(gdb) print putchar(ph[i])

$3 = 72 # run a function, may also consider 'call'’
(gdb) print printf("%c\n", ph[i])

HH # note that we are using bufferred I/0
$4 = 2

(gdb)

CS5432 Advanced UNIX Programming 78

Debug a Crashed Program

— \

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

* A buggy program ...

void walk(int depth) {
int *p = 0;
printf("%d\n", depth);
if(rand()%5==0) *p = depth;
else walk(depth+1);
return;

}

int main() {
srand(time(0));
walk(0);
return O;

}

CS5432 Advanced UNIX Programming

79

Debug a Crashed Program

* Run the program

$ gcc -g bug.c -o bug

$./bug
(%]

4
Segmentation fault (core dumped)

$ bear@ubuntu:/tmp$ 1ls -1 bug core
-rwxrwxr-x 1 bear bear 9952 Sep 11 22:10 bug

-PW------- 1 bear bear 393216 Sep 11 22:16 core

CS5432 Advanced UNIX Programming 80

Debug a Crashed Program

\

e Load the core and show call stack

$ gdb bug core

Reading symbols from bug...done.
[New LWP 5920]
Core was generated by " ./bug’.

Program terminated with signal SIGSEGV, Segmentation fault.
#0 0Ox000000000040064e in walk (depth=3) at bug.c:8
if(rand()%5==0) *p = depth;

8

(gdb) bt

#0
#1
#2
#3
#4

0x000000000040064e
Ox000000000040065f
0x000000000040065f
0x000000000040065f
0x0000000000400681

walk (depth=3) at bug.
walk (depth=2) at bug.
walk (depth=1) at bug.
walk (depth=0) at bug.
main () at bug.c:15

0 N0 00
O O OV

CS5432 Advanced UNIX Programming

81

No Coredump File?

* You may have to modify your system configuration using
ulimit
— ulimit -c unlimited

* Or change it permanently if you are a sudoer
— Take Ubuntu Linux as an example: /etc/security/limits.conf

/etc/security/limits.conf

#

#Each line describes a limit for a user in the form:
#

#<domain> <type> <item> <value>

#

#* soft core 0

* soft core 1000000
#troot hard core 100000

#* hard rss 10000

CS5432 Advanced UNIX Programming 82

QUESTION?

" o)
Assignment #1 (5% Bonus)
* Implement your own light-weight wc utility, called Iwc.c, in C (not
C++)
— (1%) lwc only supports three options -|, -w, and —c; Iwc assumes at

least one option is provided; lwc only process files (ignore stdin)

— (3%) lwc supports multiple options; lwc ignore the order of options.
The no. lines is always printed first, followed by the no. words and
characters. < run wc on Ubuntu to make sure that your outputs are
identical to it!

— (1%) If an invalid option or filename is given, lwc prints the same error
message wc would print to stderr, and return the same non-zero exit
status

e Submit your lwc.c in ILMS. Your code must be compiled with zero
warning and error on our Ubuntu 16.04 LTS, to get any points

 Due date: September 20th

CS5432 Advanced UNIX Programming 84

