
2017 Android of WMNTAA
Native Development Kit (NDK)

NDK
● Overview
● Set up
● Write Native Functions

Overview
● The Native Development Kit (NDK) is a set of tools that allows you to use C

and C++ code with Android, and provides platform libraries you can use to
manage native activities and access physical device components, such as
sensors and touch input.

● The NDK can be useful for cases in which you need to do one or more of the
following:

○ Squeeze extra performance out of a device to achieve low latency or run computationally
intensive applications, such as games or physics simulations.

○ Reuse your own or other developers' C or C++ libraries.

Set up
● Download the NDK and Tools
● Hello World
● Add C/C++ Code to an Existing Project

Download the NDK and Tools
● To compile and debug native code for your app, you need the following

components:
○ The Android Native Development Kit (NDK): a set of tools that allows you to use C and C++

code with Android.
○ CMake: an external build tool that works alongside Gradle to build your native library. You do

not need this component if you only plan to use ndk-build.
○ LLDB: the debugger Android Studio uses to debug native code.

Download the NDK and Tools
● You can install these components using the SDK Manager:

○ From an open project, select Tools > Android > SDK Manager from the main menu.
○ Click the SDK Tools tab.
○ Check the boxes next to LLDB, CMake, and NDK
○ Click Apply, and then click OK in the next dialog.
○ When the installation is complete, click Finish, and then click OK.

NDK Hello World

Add C/C++ Code to an Existing Project
● Create new native source files
● Create a CMake build script
● Link Gradle to your native library

Reference : Add C and C++ Code to Your Project

https://developer.android.com/studio/projects/add-native-code.html#existing-project

Create new native source files
● To create a cpp/ directory with new native source files in the main sourceset

of your app module, proceed as follows:
○ Open the Project pane from the left side of the IDE and select the Project view from the

drop-down menu.
○ Navigate to your-module > src, right-click on the main directory, and select New > Directory.
○ Enter a name for the directory (such as cpp) and click OK.
○ Right-click on the directory you just created and select New > C/C++ Source File.
○ Enter a name for your source file, such as native-lib.
○ From the Type drop-down menu, select the file extension for your source file, such as .cpp.
○ You can add other file types to the drop-down menu, such as .cxx or .hxx, by clicking Edit

File Types . In the C/C++ dialog box that pops up, select another file extension from the
Source Extension and Header Extension drop-down menus and click OK.

○ If you also want to create a header file, check the Create an associated header checkbox.
○ Click OK.

Create a CMake build script
● To create a plain text file that you can use as your CMake build script,

proceed as follows:
○ Open the Project pane from the left side of the IDE and select the Project view from the

drop-down menu.
○ Right-click on the root directory of your-module and select New > File.
○ Enter "CMakeLists.txt" as the filename and click OK.

Create a CMake build script
● Configure your build script by adding CMake commands

Create a CMake build script
● Add command to your CMake build script and specify the path to your

headers:

Link Gradle to your native library
● To manually configure Gradle to link to your native library, you need to add

the externalNativeBuild block to your module-level build.gradle file and
configure it with either the cmake or ndkBuild block:

Write Native Functions
● Load Libraries
● Declaration
● Implement

Load Libraries
● The convention CMake uses to name the file of your library is as follows:

● For example, if you specify "native-lib" as the name of your shared library in
the build script, CMake creates a file named libnative-lib.so. However, when
loading this library in your Java code, use the name you specified in the
CMake build script:

Declaration
● You need to declare the native function with native prefix declaration in the

class where you call that function.

Implement
● The implementation is same as JNI. You just need to follow the NDK naming

rule : Java_package_of_the_class_class_name_function_name.

Challenge
● Write a native function : String func(String s).
● Use “校務資訊系統” as the input.
● Combine “記得要到”, input string, and “填教學問卷調查喔” into a string in the

native function.
● The native function returns the combined string as the output.

