2017 Android of WMNTAA

Native Development Kit (NDK)

NDK

e Overview
e Setup
e \Write Native Functions

Overview

e The Native Development Kit (NDK) is a set of tools that allows you to use C
and C++ code with Android, and provides platform libraries you can use to
manage native activities and access physical device components, such as
sensors and touch input.

e The NDK can be useful for cases in which you need to do one or more of the

following:
o Squeeze extra performance out of a device to achieve low latency or run computationally
intensive applications, such as games or physics simulations.
o Reuse your own or other developers' C or C++ libraries.

Set up

e Download the NDK and Tools
e Hello World
e Add C/C++ Code to an Existing Project

Download the NDK and Tools

e To compile and debug native code for your app, you need the following

components:
o The Android Native Development Kit (NDK): a set of tools that allows you to use C and C++
code with Android.

o CMake: an external build tool that works alongside Gradle to build your native library. You do
not need this component if you only plan to use ndk-build.
o LLDB: the debugger Android Studio uses to debug native code.

Download the NDK and Tools

e You can install these components using the SDK Manager:

From an open project, select Tools > Android > SDK Manager from the main menu.
Click the SDK Tools tab.

Check the boxes next to LLDB, CMake, and NDK

Click Apply, and then click OK in the next dialog.

When the installation is complete, click Finish, and then click OK.

o O O O O

SDK Platforms SDK Tools ~ SDK Update Sites

Below are the available SDK developer tools. Once i lled, Android Studio will automatically
check for updates. Check "show package details" to display available versions of an SDK Tool.
S N N
& Not nstal..
com.android.support.constraint:constraint-layout-solver:1.0.0-al Installed
Android Auto API Simulators i Not instal...
Android Auto Desktop Head Unit emulator 1 Not instal...
Android SDK Platform-Tools 24-rc3 24.0.0 rc3 Installed
Android SDK Tools 25.1.7 25.1.7 Installed
Android Support Repository 32.0.0 Installed
& I S ; .1 Not nstal..
Documentation for Android SDK 1 Installed
| GPU Debugging tools 1.0.3 Not instal...
Google Play APK Expansion library dl Not instal...
Google Play Billing Library 5 Not instal...
Google Play Licensing Library i Not instal...
Google Play services 30 Not instal...
Google Repository 27 Installed
Google Web Driver 2 Not instal...

Intel x86 Emulator Accelerator (HAXM installer), rev 6.0.1 6.0.1 Installed
& 12.0.2667246 .. Not nsta..

Show Package Details

NDK Hello World

v [Clapp
v [manifests 2 " O
= MainActivit ‘ AppCompatActivit
B3 And roid Manifest.xml y PP P y {
v [java
v [Edbinaron.com.ndk
@ u MainActivity

@Override

onCreate(Bundle savedInstanceState) {
.onCreate(savedInstanceState)

» [Edbinaron.com.ndk setContentView(R. layout.)
> binaron.com.ndk

v Bcpp
& native—lib.cop TextView tv = (TextView) findViewById(R.id.

v [Cxres tv.setText(stringFromINI())
drawable }
> layout
» Edmipmap
» [Edvalues
v (2 Gradle Scripts
(& build.gradle String stringFromJNI()
(= build.gradle
mi gradle-wrapper.properties
proguard-rules.pro { .
Eiitade nropsries System. loadLibrary(
(& settings.gradle
[:ﬁ local.properties
V¥ %% External Build Files
Ei CMakelists.txt (app, ~/workspace/NDK/app/CM4

Add C/C++ Code to an Existing Project

e Create new native source files
e Create a CMake build script
e Link Gradle to your native library

Reference : Add C and C++ Code to Your Project

https://developer.android.com/studio/projects/add-native-code.html#existing-project

Create new native source files

e To create a cpp/ directory with new native source files in the main sourceset

of your app module, proceed as follows:

o Open the Project pane from the left side of the IDE and select the Project view from the
drop-down menu.
Navigate to your-module > src, right-click on the main directory, and select New > Directory.
Enter a name for the directory (such as cpp) and click OK.
Right-click on the directory you just created and select New > C/C++ Source File.
Enter a name for your source file, such as native-lib.
From the Type drop-down menu, select the file extension for your source file, such as .cpp.
You can add other file types to the drop-down menu, such as .cxx or .hxx, by clicking Edit
File Types . In the C/C++ dialog box that pops up, select another file extension from the
Source Extension and Header Extension drop-down menus and click OK.

o If you also want to create a header file, check the Create an associated header checkbox.
o Click OK.

o O O O O O

Create a CMake build script

e To create a plain text file that you can use as your CMake build script,

proceed as follows:
o Open the Project pane from the left side of the IDE and select the Project view from the
drop-down menu.
o Right-click on the root directory of your-module and select New > File.
o Enter "CMakeLists.txt" as the flename and click OK.

Create a CMake build script

e Configure your build script by adding CMake commands

Sets the minimum version of CMake required to build your native library.
This ensures that a certain set of (Make features is available to
your build.

cmake_minimum_required(VERSION 3.4.1)

Specifies a library name, specifies whether the library is STATIC or
SHARED, and provides relative paths to the source code. You can

define multiple libraries by adding multiple add.library() commands,
and CMake builds them for you. When you build your app, Gradle

automatically packages shared libraries with your APK.

add_library(# Specifies the name of the library.
native-1lib

Sets the library as a shared library.
SHARED

Provides a relative path to your source file(s).
src/main/cpp/native-1ib.cpp)

Create a CMake build script

e Add command to your CMake build script and specify the path to your
headers:

add_library(...)

Specifies a path to native header files.
include_directories(src/main/cpp/include/)

Link Gradle to your native library

e To manually configure Gradle to link to your native library, you need to add
the externalNativeBuild block to your module-level build.gradle file and
configure it with either the cmake or ndkBuild block:

android {

defaultConfig {...}
buildTypes {...}

// Encapsulates your external native build configurations.
externalNativeBuild {

// Encapsulates your CMake build configurations.
cmake {

// Provides a relative path to your CMake build script.
path "CMakeLists.txt"
¥

Write Native Functions

e Load Libraries
e Declaration
e Implement

Load Libraries

e The convention CMake uses to name the file of your library is as follows:

liblibrary-name.so

e For example, if you specify "native-lib" as the name of your shared library in
the build script, CMake creates a file named libnative-lib.so. However, when
loading this library in your Java code, use the name you specified in the
CMake build script:

static {
System. loadLibrary(“native-1ib”);

}

Declaration

e You need to declare the native function with native prefix declaration in the
class where you call that function.

String stringFromJNI()

Implement

e The implementation is same as JNI. You just need to follow the NDK naming
rule : Java_package of the class class _name_function_name.

#include
#include

jstring
Java_binaron_com_ndk_MainActivity_stringFromJNI (

IJNIEnvx env
jobject /) {
std::string hello =
1 env—>NewStringUTF(hello.c_str())

Challenge

e \Write a native function : String func(String s).

o Use “iRFFEFZRM as the input.

e Combine “S2FZ X", input string, and “IEEZHZ2[/EFHZEME" into a string in the
native function.

e The native function returns the combined string as the output.

