
2017 Android of WMNTAA
Debug and Test

Debug
● Logcat
● Debugger
● Track object allocation

Logcat
● Overview
● API
● Example

Overview
The system log shows system messages while you debug your app. These
messages include information from apps running on the device. If you want to use
the system log to debug your app, make sure your code writes log messages and
prints the stack trace for exceptions while your app is in the development phase.

API
● Log.v() : Verbose
● Log.d() : Debug
● Log.i() : Info
● Log.w() : Warning
● Log.e() : Error
● Log.wtf() : What a Terrible Failure

Example

Debugger
● Overview
● Debug types
● Work with breakpoints
● View and configure breakpoints
● Inspect variables
● View and change resource value display format

Overview
Android Studio includes a debugger that enables you to debug apps running on
the Android Emulator or a connected Android device.

Debug Type
● Auto

○ Select if you want Android Studio to automatically choose the best option for the code you are
debugging. For example, if you have any C or C++ code in your project, Android Studio
automatically uses the Dual debug type. Otherwise, Android Studio uses the Java debug type.

● Java
○ Select if you want to debug only code written in Java—the Java debugger ignores any

breakpoints or watches you set in your native code.

Debug Type
● Native

○ Select if you want to use only LLDB to debug your code. When using this debug type, the Java
debugger session view is not available. By default, LLDB inspects only your native code and
ignores breakpoints in your Java code. If you want to also debug your Java code, you should
switch to either the Auto or Dual debug type.

● Dual
○ Select if you want to switch between debugging both Java and native code. Android Studio

attaches both the Java debugger and LLDB to your app process, one for the Java debugger
and one for LLDB, so you can inspect breakpoints in both your Java and native code without
restarting your app or changing your debug configuration.

Work with breakpoints
● Locate the line of code where you want to pause execution, then either click

the left gutter along that line of code or place the caret on the line and press
Control+F8 (on Mac, Command+F8).

● If your app is already running, you don't need to update it to add the
breakpoint—just click Attach debugger to Android proccess . Otherwise,
start debugging by clicking Debug .

Work with breakpoints
● When your code execution reaches the breakpoint, Android Studio pauses

execution of your app. You can then use the tools in the Debugger tab to
identify the state of the app:

○ To examine the object tree for a variable, expand it in the Variables view. If the Variables
view is not visible, click Restore Variables View .

○ To evaluate an expression at the current execution point, click Evaluate Expression .
○ To advance to the next line in the code (without entering a method), click Step Over .
○ To advance to the first line inside a method call, click Step Into .
○ To advance to the next line outside the current method, click Step Out .
○ To continue running the app normally, click Resume Program .

View and configure breakpoints
To view all the breakpoints and configure breakpoint settings, click View
Breakpoints on the left side of the Debug window.

Inspect variables
● To add a variable or expression to the Watches list, follow these steps:

○ Begin debugging.
○ In the Watches pane, click Add .
○ In the text box that appears, type the name of the variable or expression you want to watch

and then press Enter.
○ To remove an item from the Watches list, select the item and then click Remove .
○ You can reorder the elements in the Watches list by selecting an item and then clicking Up

or Down .

View and change resource value display format
● In debug mode, you can view resource values and select a different display

format. With the Variables tab displayed and a frame selected, do the
following:

○ In the Variables list, right-click anywhere on a resource line to display the drop-down list.
○ In the drop-down list, select View as and select the format you want to use.

View and change resource value display format
● The available formats depend on the data type of the resource you selected.

You might see any one or more of the following options:
○ Class: Display the class definition.
○ toString: Display string format.
○ Object: Display the object (an instance of a class) definition.
○ Array: Display in an array format.
○ Timestamp: Display date and time as follows: yyyy-mm-dd hh:mm:ss.
○ Auto: Android Studio chooses the best format based on the data type.
○ Binary: Display a binary value using zeroes and ones.
○ MeasureSpec: The value passed from the parent to the selected child. See MeasureSpec.
○ Hex: Display as a hexadecimal value.
○ Primitive: Display as a numeric value using a primitive data type.
○ Integer: Display a numeric value of type Integer.

Track object allocation
● Overview
● Android Monitor

Overview
Android Studio lets you track objects that are being allocated on the Java heap
and see which classes and threads are allocating these objects. This enables you
to see the list of objects allocated during a period of interest. This information is
valuable for assessing memory usage that can affect application performance.

Android Monitor
● Start your app as described in Run Your App in Debug Mode, and then select

View > Tool Windows > Android Monitor (or click Android Monitor in
the window bar).

● In the Android Monitor window, click the Monitors tab.
● At the top of the window, select your device and app process from the

drop-down lists.
● In the Memory panel, click Start Allocation Tracking .
● Interact with your app on the device.
● Click the same button again to Stop Allocation Tracking.

Challenge
1. Use Log.wtf() to print some logging messages.
2. Create an arrayList and add an item into the list once 1 sec in a infinit loop.

Add this list to Watches list to see how it changes and track the memory
allocation in Android Monitor

Test
● Local unit tests
● Instrumented tests
● Add a new test
● Run a test

Local unit tests
● These are tests that run on your machine's local Java Virtual Machine (JVM).

Use these tests to minimize execution time when your tests have no Android
framework dependencies or when you can mock the Android framework
dependencies.

Instrumented tests
● These are tests that run on a hardware device or emulator. These tests have

access to Instrumentation APIs, give you access to information such as the
Context of the app you are testing, and let you control the app under test from
your test code. Use these tests when writing integration and functional UI
tests to automate user interaction, or when your tests have Android
dependencies that mock objects cannot satisfy.

Add a new test
● To create either a local unit test or an instrumented test, you can create a new

test for a specific class or method by following these steps:
○ Open the Java file containing the code you want to test.
○ Click the class or method you want to test, then press Ctrl+Shift+T (⇧⌘T).
○ In the menu that appears, click Create New Test.
○ In the Create Test dialog, edit any fields and select any methods to generate, and then click

OK.
○ In the Choose Destination Directory dialog, click the source set corresponding to the type of

test you want to create: androidTest for an instrumented test or test for a local unit test. Then
click OK.

Add a new test
● Be sure you specify the test library dependencies in your app module's

build.gradle file:

Run a test
● To run a test, proceed as follows:

○ Be sure your project is synchronized with Gradle by clicking Sync Project in the toolbar.
○ Run your test in one of the following ways:

■ In the Project window, right-click a test and click Run .
■ In the Code Editor, right-click a class or method in the test file and click Run to test

all methods in the class.
■ To run all tests, right-click on the test directory and click Run tests .

Challenge
● Run a local test and an instrumented test.
● Use Context in the instrucmented test.

