2017 Android of WMNTAA

App components

App components

Activity

Service

Broadcast receiver
Content provider

App components

e App components are the essential building blocks of an Android app. Each
component is an entry point through which the system or a user can enter
your app. Some components depend on others.

Activity

e Activity Lifecycle
e Create an Activity

Activity Lifecycle

User navigates

to the

activity

ﬂppproema .|

__/

Apps with hi

gher priority

need mamory

onCreate()

v

onStart()

v

onResumel)

v

P— .,
.l/ \.

nnlng

Another activity comes

into the foreground

onPause()

|
The activity is
no longer visible

v

onStop()
1

v

onDeastroy()

B
p

Activity
shut down

B

-+

User returns
to the activity

L

onRestart()

User navigates
to the activity

J

The activity is finishing or
being destroyed by the system

=ty

Create an Activity

Declare activities
Declare intent filters
Declare permissions
Start an Activity

Service

e Overview
e Service Lifecycle
e (Create a Service

Overview

A Service is an application component that can perform long-running
operations in the background, and it does not provide a user interface.
Another application component can start a service, and it continues to run in
the background even if the user switches to another application.
Additionally, a component can bind to a service to interact with it and even
perform interprocess communication (IPC). For example, a service can
handle network transactions, play music, perform file 1/O, or interact with a
content provider, all from the background.

T, ..-'—'\.

(Call to \ Call to "I
Service Lifecycle) -
onCreate() onCreate()
onStartCommand() onBind()
ST -
\ j,- . service
The service is stopped All clients unbind by calling
by itself or & client unbindService()
L
onUnbind()
onDeastroy() onDestroy()
.-"/ R‘-. ,-"/ .‘-‘\.I
f Service l'I (Service I|
shut down .\ shut down /
- J T e
Unbounded Bounded

service service

Create a Service

e Declaring a service in the manifest
e Creating a started service
e Starting a service

Declaring a service in the manifest

<manifest ... >

<application ... >
<service android:name=".ExampleService" />

</application>
</manifest>

Creating a started service

e onStartCommand()
o The system invokes this method by calling startService() when another component (such as
an activity) requests that the service be started.

e onBind()

o The system invokes this method by calling bindService() when another component wants to
bind with the service (such as to perform RPC). However, if you don't want to allow binding,
you should return null.

e onCreate()

o The system invokes this method to perform one-time setup procedures when the service is

initially created (before it calls either onStartCommand() or onBind()).

e onDestroy()
o The system invokes this method when the service is no longer used and is being destroyed.

Creating a started service

public class HelloService extends Service {
private Looper mServicelLooper;
private ServiceHandler mServiceHandler;

// Handler that receives messages from the thread
private final class ServiceHandler extends Handler {
public ServiceHandler(Looper looper) {
super(looper);
}
@Override
public void handleMessage(Message msg) {
// Normally we would do some work here, like download a file.
// For our sample, we just sleep for 5 seconds.
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
// Restore interrupt status.
Thread.currentThread().interrupt();
}
// Stop the service using the startId, so that we don't stop
// the service in the middle of handling another job
stopSelf(msg.argl);

Creating a started service

@Override

public void onCreate() {
// Start up the thread running the service. Note that we create a
// separate thread because the service normally runs in the process's
// main thread, which we don't want to block. We also make it
// background priority so CPU-intensive work will not disrupt our UI.
HandlerThread thread = new HandlerThread("ServiceStartArguments",

Process. THREAD_PRIORITY_BACKGROUND) ;

thread.start();

// Get the HandlerThread's Looper and use it for our Handler
mServiceLooper = thread.getLooper();
mServiceHandler = new ServiceHandler(mServicelLooper);

Creating a started service

@0verride
public int onStartCommand(Intent intent, int flags, int startId) {
Toast.makeText(this, "service starting", Toast.LENGTH_SHORT).show();

// For each start request, send a message to start a job and deliver the
// start ID so we know which request we're stopping when we finish the job
Message msg = mServiceHandler.obtainMessage();

msg.argl = startld;

mServiceHandler.sendMessage(msg);

// If we get killed, after returning from here, restart
return START_STICKY;

@Override

public IBinder onBind(Intent intent) {
// We don't provide binding, so return null
return null;

@0verride
public void onDestroy() {
Toast.makeText(this, "service done", Toast.LENGTH_SHORT).show();
}
}

Starting a service

You can start a service from an activity or other application component by passing
an Intent (specifying the service to start) to startService(). The Android system
calls the service's onStartCommand() method and passes it the Intent.

Intent intent = new Intent(this, HelloService.class);
startService(intent);

Broadcast receiver

e OQOverview
e Receiving broadcasts
e Sending broadcasts

Overview

e Android apps can send or receive broadcast messages from the Android
system and other Android apps, similar to the publish-subscribe design
pattern. These broadcasts are sent when an event of interest occurs. For
example, the Android system sends broadcasts when various system events
occur, such as when the system boots up or the device starts charging.

e Apps can also send custom broadcasts, for example, to notify other apps of

something that they might be interested in (for example, some new data has
been downloaded).

Receiving broadcasts

e Manifest-declared receivers
e Context-registered receivers

Manifest-declared receivers

Specify the <receiver> element in your app's manifest.

<receiver android:name=".MyBroadcastReceiver" android:exported="true">
<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED" />
<action android:name="android.intent.action.INPUT_METHOD_ CHANGED" />
</intent-filter>
</receiver>

Manifest-declared receivers

Subclass BroadcastReceiver and implement onReceive(Context, Intent).

public class MyBroadcastReceiver extends BroadcastReceiver {

private static final String TAG = "MyBroadcastReceiver";

@Override

public void onReceive(Context context, Intent intent) {
StringBuilder sb = new StringBuilder();
sb.append("Action: " + intent.getAction() + "\n");
sb.append("URI: " + intent.toUri(Intent.URI_INTENT_SCHEME).toString() + "\n");
String log = sb.toString();
Log.d(TAG, log);
Toast.makeText(context, log, Toast.LENGTH_LONG).show();

Context-registered receivers

1. Create an instance of BroadcastReceiver.
2. Create an IntentFilter and register the receiver by calling
registerReceiver(BroadcastReceiver, IntentFilter).

BroadcastReceiver br = new MyBroadcastReceiver();

IntentFilter filter = new IntentFilter(ConnectivityManager.CONNECTIVITY_ACTION);
intentFilter.addAction(Intent.ACTION_AIRPLANE_MODE_CHANGED) ;
this.registerReceiver(br, filter);

Sending broadcasts

The following code snippet demonstrates how to send a broadcast by creating an
Intent and calling sendBroadcast(Intent).

Intent intent = new Intent();
intent.setAction("com.example.broadcast.MY_NOTIFICATION");
intent.putExtra("data","Notice me senpai!");
sendBroadcast(intent);

Content provider

e OQOverview
e Accessing a provider

Overview

e A content provider presents data

to external applications as one or
more tables that are similar to the [I
tables found in a relational
database. ‘- '

e A row represents an instance of ‘ﬂ_,m

some type of data the provider lJ

collects, and each column in the
row represents an individual piece
of data collected for an instance.

e ST,

Data storage

Accessing a provider

One of the built-in providers in the Android
platform is the user dictionary, which stores the
spellings of non-standard words that the user
wants to keep.

I T e

mapreduce userT en_US

precompiler userl14 200 fr_FR 4
applet user2 225 fr_CA 3
const userl 255 pt_BR 4

int users 100 en_UK 5

Activity or
Fragment

1

¥

:

¥

ContentResolver

'Y

¥

ContentProvider

-

Data storage

Accessing a provider

To get a list of the words and their locales from the User Dictionary Provider, you

call ContentResolver.query()

// Queries the user dictionary and returns results

mCursor = getContentResolver().query(
UserDictionary.Words.CONTENT_URI,
mProjection,
mSelectionClause
mSelectionArgs,
mSortOrder);

// The content URI of the words table
// The columns to return for each row
// Selection criteria

// Selection criteria

// The sort order for the returned rows

Accessing a provider

/*

* This defines a one-element String array to contain the selection argument.
*/

String[] mSelectionArgs = {""};

// Gets a word from the UI
mSearchString = mSearchWord.getText().toString();

// Remember to insert code here to check for invalid or malicious input.

// If the word is the empty string, gets everything

if (TextUtils.isEmpty(mSearchString)) {
// Setting the selection clause to null will return all words
mSelectionClause = null;

mSelectionArgs[@] = "";

} else {
// Constructs a selection clause that matches the word that the user entered.
mSelectionClause = UserDictionary.Words.WORD + " = ?";

// Moves the user's input string to the selection arguments.
mSelectionArgs [@] = mSearchString;

Accessing a provider

// Does a query against the table and returns a Cursor object
mCursor = getContentResolver().query(
UserDictionary.Words.CONTENT_URI, // The content URI of the words table

mProjection, // The columns to return for each row
mSelectionClause // Either null, or the word the user entered
mSelectionArgs, // Either empty, or the string the user entered
mSortOrder); // The sort order for the returned rows

// Some providers return null if an error occurs, others throw an exception
if (null == mCursor) {
/%
* Insert code here to handle the error. Be sure not to use the cursor! You may want to
% call android.util.Log.e() to log this error.
sk
*/
// If the Cursor is empty, the provider found no matches
} else if (mCursor.getCount() < 1) {

/*

* Insert code here to notify the user that the search was unsuccessful. This isn't necessarily
* an error. You may want to offer the user the option to insert a new row, or re-type the

* search term.

*/

} else {
// Insert code here to do something with the results

Challenge

e Use Content provider in a Service to get contacts

e Send broadcast from Service to Activity to notify job done
e Get contact from service with broadcast messages

e Show contacts on Activity

How to get contacts :
https://developer.android.com/quide/topics/providers/contacts-provider.html

https://developer.android.com/guide/topics/providers/contacts-provider.html
https://developer.android.com/guide/topics/providers/contacts-provider.html

