
2017 Android of WMNTAA
Communication, Local Storage and File Access



Communication
● Handler
● Broadcast



Handler
● Overview
● Runnable Task
● Message



Overview
A Handler allows you to send and process Message and Runnable objects 
associated with a thread's MessageQueue. Each Handler instance is associated 
with a single thread and that thread's message queue. When you create a new 
Handler, it is bound to the thread / message queue of the thread that is creating it 
-- from that point on, it will deliver messages and runnables to that message 
queue and execute them as they come out of the message queue.



Runnable Task
● Scheduling tasks is accomplished with the post(Runnable), 

postAtTime(Runnable, long), postDelayed(Runnable, long)



Message
● Scheduling messages is accomplished with the sendEmptyMessage(int), 

sendMessage(Message), sendMessageAtTime(Message, long), and 
sendMessageDelayed(Message, long)

● Override Handler.handleMessage(Message) to process Message objects.



Broadcast
● Intent
● Local Broadcast



Intent
● An intent is an abstract description of an operation to be performed.
● An Intent provides a facility for performing late runtime binding between the 

code in different applications. Its most significant use is in the launching of 
activities, where it can be thought of as the glue between activities. It is 
basically a passive data structure holding an abstract description of an action 
to be performed.



Intent
● The primary pieces of information in an intent are:

○ action -- The general action to be performed, such as ACTION_VIEW, ACTION_EDIT, 
ACTION_MAIN, etc.

○ data -- The data to operate on, such as a person record in the contacts database, expressed 
as a Uri.

■ ex : ACTION_VIEW content://contacts/people/1 -- Display information about the 
person whose identifier is "1".



Local Broadcast
● You know that the data you are broadcasting won't leave your app, so don't 

need to worry about leaking private data.
● It is not possible for other applications to send these broadcasts to your app, 

so you don't need to worry about having security holes they can exploit.
● It is more efficient than sending a global broadcast through the system.



Local Broadcast
● Register

● Send



Local Storage and File Access
● Shared Preference
● Internal Storage
● External Storage
● SQLite Database



Shared Preference
● Overview
● Get a Handle to a SharedPreferences
● Write to Shared Preferences
● Read from Shared Preferences



Overview
● A SharedPreferences object points to a file containing key-value pairs and 

provides simple methods to read and write them. Each SharedPreferences 
file is managed by the framework and can be private or shared.



Get a Handle to a SharedPreferences
You can create a new shared preference file or access an existing one by calling 
one of two methods:

● getSharedPreferences() — Use this if you need multiple shared preference 
files identified by name, which you specify with the first parameter. You can 
call this from any Context in your app.

● getPreferences() — Use this from an Activity if you need to use only one 
shared preference file for the activity. Because this retrieves a default shared 
preference file that belongs to the activity, you don't need to supply a name.



Get a Handle to a SharedPreferences
● getSharedPreferences

● getPreferences



Write to Shared Preferences
● To write to a shared preferences file, create a SharedPreferences.Editor by 

calling edit() on your SharedPreferences.
● Pass the keys and values you want to write with methods such as putInt() and 

putString(). Then call commit() to save the changes.



Read from Shared Preferences
● To retrieve values from a shared preferences file, call methods such as 

getInt() and getString(), providing the key for the value you want, and 
optionally a default value to return if the key isn't present.



Internal storage
● Overview
● Save a File on Internal Storage



Overview
● It's always available.
● Files saved here are accessible by only your app.
● When the user uninstalls your app, the system removes all your app's files 

from internal storage.



Save a File on Internal Storage
● getFilesDir()

○ Returns a File representing an internal directory for your app.

● getCacheDir()
○ Returns a File representing an internal directory for your app's temporary cache files. Be sure 

to delete each file once it is no longer needed and implement a reasonable size limit for the 
amount of memory you use at any given time, such as 1MB. If the system begins running low 
on storage, it may delete your cache files without warning.



Save a File on Internal Storage
● Create a new file

● Cache a file



External Storage
● Overview
● Obtain Permissions for External Storage
● Save a File on External Storage



Overview
● It's not always available, because the user can mount the external storage as 

USB storage and in some cases remove it from the device.
● It's world-readable, so files saved here may be read outside of your control.
● When the user uninstalls your app, the system removes your app's files from 

here only if you save them in the directory from getExternalFilesDir().

External storage is the best place for files that don't require access restrictions and 
for files that you want to share with other apps or allow the user to access with a 
computer.



Obtain Permissions for External Storage
● To write to the external storage, you must request the 

WRITE_EXTERNAL_STORAGE permission in your manifest file.



Save a File on External Storage
● Because the external storage may be unavailable—such as when the user 

has mounted the storage to a PC or has removed the SD card that provides 
the external storage—you should always verify that the volume is available 
before accessing it.

● You can query the external storage state by calling 
getExternalStorageState(). If the returned state is equal to 
MEDIA_MOUNTED, then you can read and write your files.



Save a File on External Storage



Save a File on External Storage
● Public files

○ Files that should be freely available to other apps and to the user. When the user uninstalls 
your app, these files should remain available to the user.

○ For example, photos captured by your app or other downloaded files.

● Private files
○ Files that rightfully belong to your app and should be deleted when the user uninstalls your 

app. When the user uninstalls your app, the system deletes all files in your app's external 
private directory.

○ For example, additional resources downloaded by your app or temporary media files.



Save a File on External Storage
● Example of public files 



Save a File on External Storage
● Example of private files 



SQLite Database
● Overview
● Define a Schema and Contract
● Create a Database Using a SQL Helper
● Put Information into a Database
● Read Information from a Database



Overview
● Saving data to a database is ideal for repeating or structured data, such as 

contact information. 



Define a Schema and Contract
● One of the main principles of SQL databases is the schema: a formal 

declaration of how the database is organized.



Create a Database Using a SQL Helper
Once you have defined how your database looks, you should implement methods 
that create and maintain the database and tables. Here are some typical 
statements that create and delete a table.



Create a Database Using a SQL Helper
A useful set of APIs is available in the SQLiteOpenHelper class.



Create a Database Using a SQL Helper
To access your database, instantiate your subclass of SQLiteOpenHelper.



Put Information into a Database
Insert data into the database by passing a ContentValues object to the insert() 
method



Read Information from a Database
To read from a database, use 
the query() method, passing it 
your selection criteria and 
desired columns. 



Challenge
● Create an app for text files writing and reading.
● Two functions :

○ Create and write text files
○ List text files on UI to read by clicking

● How to store text files :
○ Use database with three columns, ID, NAME, and PATH, to store file information
○ Store text files in internal or external storage

● UI thread is only to update UI. So you should do IO in background.


