Department of Computer Science National Tsing Hua University

CS 5263: Wireless Multimedia Networking Technologies and Applications

Video Quality Metrics

Instructor: Cheng-Hsin Hsu

Outline

- Overview on Video Quality Metrics
- Tools for Calculating Video Quality and Conducting Simulations/Experiments
- A Sample Application
 - Joint Packet Scheduling and Stream Adaptation in Multihomed Video Streaming

Overview of Video Quality Metrics

Visual Impairments Caused by Packet Loss

Quality of Experience and Quality of Service

- QoE: Subjective measurements of users' experience
 - What a user (customer) wants? ← about human beings
- QoS: Objective measurements of the delivered service
 - How good is the received content? ← about content
- We refer to them as subjective and objective quality metrics

Quality Metrics

Subjective Metrics

- Hire people to score individual videos
- Expensive, cannot be realtime ← E.g., cable TV systems cannot use subjective metrics to recover from network congestion
- Not reproducible ← rerunning the experiments leads to different results

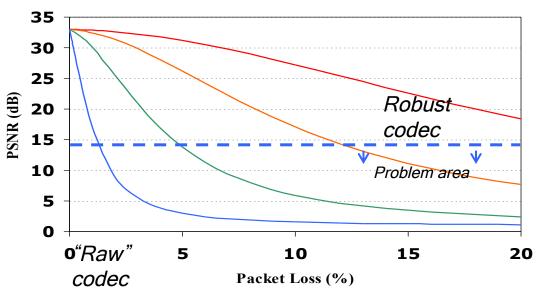
Objective Metrics

- Algorithms to analyze content, or infer video quality based on network conditions ← Cheap
- Can be deployed in live networks for realtime monitoring
- Reproducible

Subjective Metrics

- Voice Mean Opinion Score (MOS)
 - Users grade voice quality from 1 to 5
 - Above 4 is good quality
 - Various variations with difference score ranges

- Video ITU-R BT.500
 - Several modes are defined
 - E.g., Double Stimulus Impairment Scale (DSIS): first show the full-quality video, then show the impaired one. Viewers are informed the order. Viewers are asked to score the impaired video.


Objective Metrics (1/2)

Packet Based Metrics

- Use network measurements and (optionally) codec properties to infer the degraded video quality
- Low complexity and work without original videos

Example V-Factor

- V = f(QER, PLR, R)
- QER: codec quality
- PLR: packet loss ratio
- R: video complexity
- Adopted by Sprint

Source: http://www.dsp-ip.com

Objective Metrics (2/2)

Content Based Metrics

- Compute the quality level using the video itself
- Used in research labs for, e.g., comparing video codec performance

Classified into three groups

- Full reference: assuming both original and impaired videos are available ← less practical, but widely used in research labs
- Reduced reference: original videos are analyzed and a summary is compared against the impaired video
- No reference: metrics that do not need original videos ← ideal metrics

Full Reference Metrics

- Most quality metrics consider Y-component (luminance) only
- MSE (mean-square-error) and PSNR (peak signalto-noise ratio) are pixel based metrics

$$MSE = \frac{1}{M} \times \sum_{i=1}^{M} (x_i - y_i)^2$$

$$PSNR(dB) = 10log_{10} \sum_{i=1}^{M} \frac{255^2}{(x_i - y_i)^2}$$

Problems with MSE/PSNR

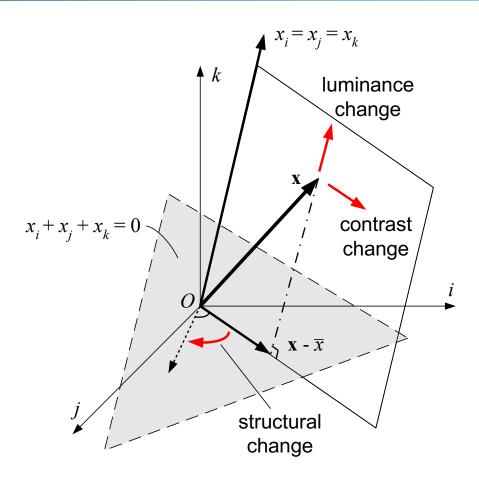
- MSE/PSNR does not map to user-perceived quality all the time

MSE=225, MSSIM=0.949

MSE=225, MSSIM=0.688

MSE=0, original picture

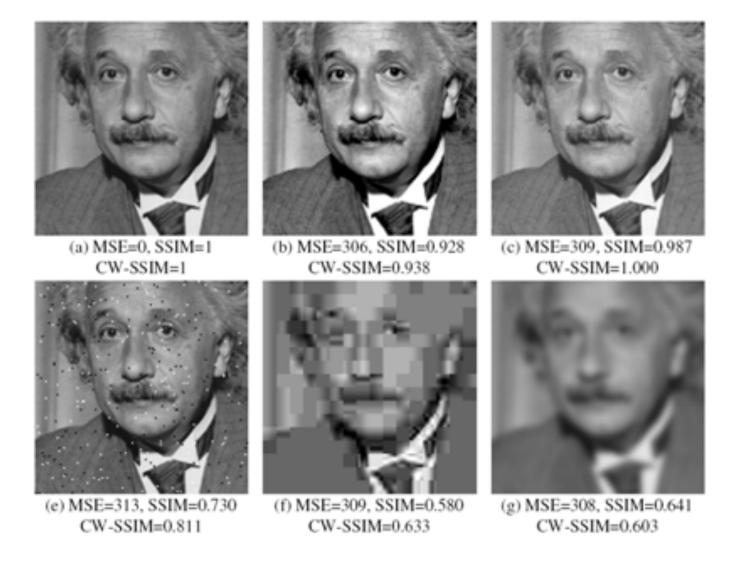
MSE=225, MSSIM=0.723


Structural Similarity Index (SSIM)

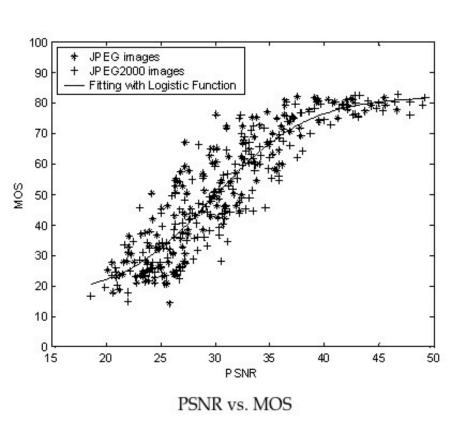
 New metric proposed in 2004, which measures the similarity between the original and impaired images (extension for videos have also been proposed)

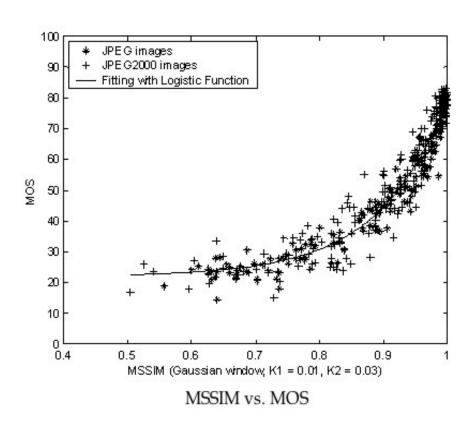
Designed to address the limitations of MSE/PSNR

 Between [0, 1], where 1 indicates two images are identical


Structural Similarity Index (SSIM)

$$SSIM(x, y) = l(x, y) \cdot c(x, y) \cdot s(x, y)$$


Source: Wang et al., IEEE Trans. Image Processing, 2004


Examples of SSIM

Source: https://ece.uwaterloo.ca/~z70wang/research/ssim/

Performance Comparison

Useful Tools

Tools to Compute Video Quality (1/2)

- MSU Video Quality Measurement Tool
 - MSU Graphics and Media Lab, Moscow State University
 - Supports 20 quality metrics: including variations of PSNR, SSIM, and VQM (another popular metric we didn't discuss)
 - Supports 20 video file formats
 - Comes with academic/commercial versions
 - http://graphics.cs.msu.ru/

Tools to Compute Video Quality (2/2)

VQM (Video Quality Metric)

- A U.S. national standard (ANSI T1.801.03-2003), and an international ITU Recommendations (ITU-T J.144, and ITU-R BT.1683, in 2004)
- Public tool available
- http://www.its.bldrdoc.gov/vqm/

SSIM

- Matlab implementation at Prof. Wang's utility page
- https://ece.uwaterloo.ca/~z70wang/research/ssim/

MSE/PSNR

- PSNRStatic comes with JSVM software
- Write your own

Other Resources for Evaluation

Video Traces

- Arizona State: http://trace.eas.asu.edu/, long video sequences coded in SVC, AVC, MPEG-4, MPEG-2, and MDC coders
- TU Berlin http://www.tkn.tu-berlin.de/research/trace/ltvt.html, long video sequences coded in MPEG-4 and H.263

Video Sequences

- Xiph Open-source Video Production http://media.xiph.org/, pointing to many other links for Raw video sequences

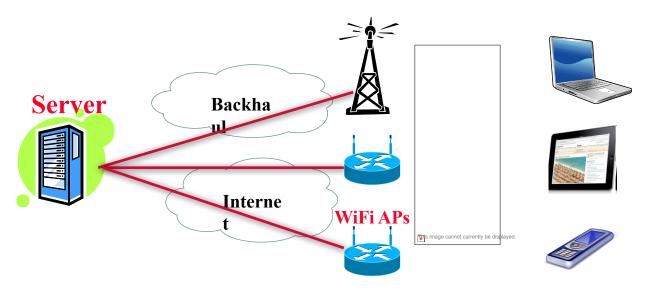
Codecs

- AVC Reference Coder http://iphome.hhi.de/suehring/tml/
- SVC Reference Coder http://ip.hhi.de/imagecom_G1/savce/downloads/SVC-Reference-Software.htm
- X264 Coder http://www.videolan.org/developers/x264.htm
- Nokia's 3D Coder/Decoder http://research.nokia.com/research/mobile3D

Other Resources for Evaluation

Streaming Tools

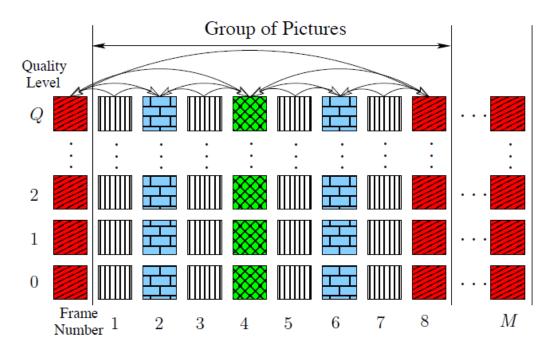
- Darwin Open-source Version of QuickTime Server <u>http://dss.macosforge.org/</u>
- VLS VideoLAN's Streaming Server http://www.videolan.org/vlc/streaming.html
- VLC VideoLAN's Player http://www.videolan.org/vlc/
- Live555 Streaming Library http://www.live555.com/liveMedia/


Misc

- Matlab Central's File Exchange http://www.mathworks.com/matlabcentral/

Multihomed Video Streaming – A Sample Project using Objective Video Quality as Optimization Criterion

Offloading Traffic from Cellular Networks


- Video streaming has high bandwidth requirements
- However, T-mobile and AT&T recently reported more than 50 times of data traffic increase [Open Mobile Summit '09]

- This is called multihoming, which is attractive to
 - ISPs, such as T-Mobile, for lower transit cost
 - Subscribers for better quality-of-service

Dynamic Network Coditions

- □ Problem: access networks are heterogeneous and dynamic
- Employ scalable video: frames are coded into multiple layers
 - incremental quality improvement
 - complicated interdependency due to prediction

Challenges and Problem Statement

- □ Determine streaming rate on each access network is hard [Hsu ISM'10]
 - streaming at a rate close to end-to-end network capacity leads to congestion, and late packets
 - streaming at a low rate wastes available resources
 - need a network model to proactively prevent congestion
- Packets of scalable streams have complex interdependency
 - need a video model to predict expected quality
- □ The problem: determine (i) what video packets to send, (ii) over which network interface, and (iii) at what rate, so that the overall streaming quality is maximized

Notations

□ Scalability

- Client: u=1,...,U
- Temporal: Different frames with inter-frame prediction $m=1,...,M_u$

If $g_{u,m,q}$ is sent over network n

- Spatial: Quality layers $q=0,...,Q_u$
- Multihoming: networks n=1,...,N
- Network Abstraction Layer Unit (NALU) : $g_{u,m,q}$

□ Scheduling

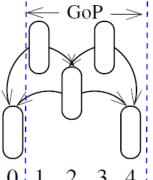
- Deterministic: $x_{u,m,q,n} \in \{0,1\}$
- Randomized: $x_{u,m,q,n} \in [0,1]$

Video Quality Model

$\ \square$ Truncation distortion: capturing loss of a NALU $g_{u,m,q}$

- A packet is decodable if all packets in lower quality (q' < q) layers are received

$$e_{u,m} = \underbrace{\delta_{u,m}} + \sum_{q=0}^{Q_u} \left(1 - \prod_{q' \leq q} x_{u,m,q'}\right) \underbrace{\delta_{u,m,q}}$$
 Additional distortion Distortion if all packets are received If $g_{u,m,q}$ is not decoded


□ Drifting distortion: capturing error propagation

- Inter-frame predictions based on imperfectly reconstructed parent packets, $P_{u,m}$
- Convex increasing function

$$y_{u,m} = \alpha_{u,m} + \sum_{k \in \mathbf{P}_{u,m}} \beta_{u,m,k} e_{u,k}$$

- Parameters: Estimated from actual data

Nonnegative

Network Model

\Box Packet loss probability (p_n) depends on

- Rate: (r_n)
- Available bandwidth (c_n)
- Packet decoding deadline (t_{θ})

□ Model

- M/M/1 model $p_n=e^{-rac{t_0(c_n-r_n)}{lpha_n}}$
- Increasing in c_n , decreasing in r_n
- α_n : linear regression parameter
- accurate in streaming video applications [Zhu et. al '05]

□ Assumption: statistical independence of different networks

- Good approximation using a two-timescale approach [Jiang et al. '10]
- Network converges to steady-state in between scheduling events

Problem Formulation

- \Box Cost minimization problem \leftarrow a cost function of distortion (MSE)
 - Accounts for service differentiation and fairness among users and frames

$$\min_{x} \qquad \qquad C(\mathbf{d}) \qquad \qquad \text{Cost function (increasing, convex)}$$
 s.t. $r_n = \sum_{u=1}^{U} \frac{F_u}{M_u} \sum_{m=1}^{M_u} \sum_{q=0}^{Q_u} s_{u,m,q} x_{u,m,q,n}, \qquad \qquad \text{Rate}$
$$p_n = \qquad e^{-t_0(c_n-r_n)/\alpha_n}, \qquad \qquad \text{Loss probability}$$

$$x_{u,m,q} = \qquad \sum_{n=1}^{N} (1-p_n) x_{u,m,q,n}, \qquad \qquad \\ e_{u,m} = \qquad \hat{\delta}_{u,m} + \sum_{q=0}^{Q_u} (1-\prod_{q' \leq q} x_{u,m,q'}) \delta_{u,m,q}, \qquad \qquad \text{Not convex}$$

$$y_{u,m} = \qquad \alpha_{u,m} + \sum_{k \in P_{u,m}} \beta_{u,m,k} e_{u,k}, \qquad \qquad \\ d_{u,m} = \qquad e_{u,m} + y_{u,m}, \qquad \qquad \\ \sum_{n=1}^{N} x_{u,m,q,n} \leq 1, \qquad \qquad \\ x_{u,m,q,n} \in \{0,1\}. \qquad \qquad \text{Randomized scheduling}$$

Heuristic Algorithm 1/2

SRDO

- INPUT: P_{max} is the maximum packet loss rate 0.
- let $\mathbf{x} = \{x_{u,m,q,n} = 0 \mid \forall u, m, q, n\}$
- sort $g_{u,m,q}$ on $\frac{\delta_{u,m,q}}{s_{u,m,q}}$ for $\hat{n} = \operatorname{argmin}_{n=1}^{N} p_n$ 2.
- 3.
- let $g_{\hat{u},\hat{m},\hat{q}}$ be the next unsent NALU
- if sending $g_{\hat{u},\hat{m},\hat{q}}$ on \hat{n} causes $p_{\hat{n}} > P_{\text{max}}$ return \boldsymbol{x} 5.
- 6. else update x with $x_{\hat{u},\hat{m},\hat{q},\hat{n}} = 1$
- if no more unsent NALU return x

Heuristic Algorithm 2/2

PRDO

```
let x = \{x_{u,m,q,n} = 0 \mid \forall u, m, q, n\}
2.
          forever
3.
              if g_d is empty return x
4.
              let g_d be all immediately decodable NALGs
5.
              for g_{u,m,q} \in \boldsymbol{g}_d
                   for n=1 to N
6.
                        compute b_{u,m,q,n} based on \boldsymbol{x}
7.
                        let \frac{b_{\hat{u},\hat{m},\hat{q},\hat{n}}}{s_{\hat{u},\hat{m},\hat{q}}} \ge \frac{b_{u,m,q,n}}{s_{u,m,q}} \quad \forall u,m,q,n
8.
9.
                        if b_{\hat{u},\hat{m},\hat{q},\hat{n}} \leq 0 return \boldsymbol{x}
10.
                          update x with x_{\hat{u},\hat{m},\hat{q},\hat{n}} = 1, update g_d.
```

Term-by-Term Convex Approximation

Goal: Obtain a convex superset of the constraint set

1. Term-by-term convex approximation (TTC)

$$x_{u,m,q} \le \sum_{n=1}^{N} \min(1 - p_n, x_{u,m,q,n}),$$

$$e_{u,m} \ge \hat{\delta}_{u,m} + \sum_{q=0}^{Q} (1 - \min_{q' \le q} x_{u,m,q'}) \delta_{u,m,q},$$

- Polynomial number of constraints in U,M,Q,N
- Weak approximation of the probability of successful packet delivery $x_{u,m,q}$

Multilinear Convex Approximation

Goal: Obtain a convex superset of the constraint set

- 2. Multilinear convex approximation (MC)
 - Convex envelope of multilinear functions [Sherali '97]
 - Minimum of affine functions
 - Tightest convex approximation
 - Exponential number of constraints in Q,N
 - Constraint on $x_{u,m,q}$ depends exclusively on N, NOT on problem parameters

Hybrid Convex Approximation

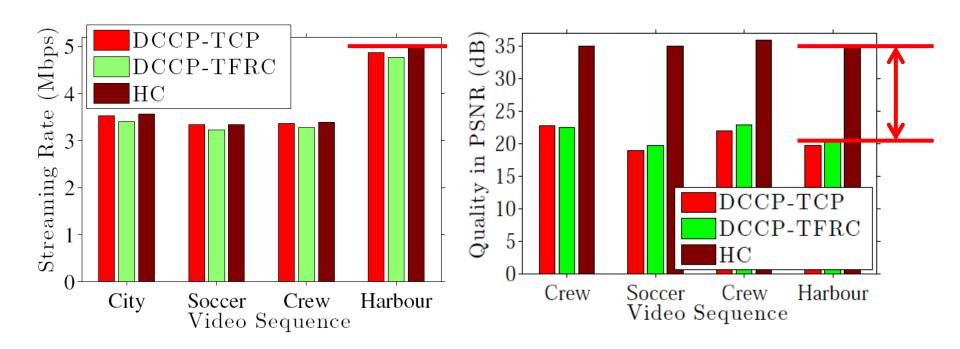
Goal: Obtain a convex superset of the constraint set

- 3. Hybrid Convex Approximation (HC)
 - Term-by-term approximation for truncation distortion $e_{u,m}$
 - Multilinear approximation for probability of successful packet delivery $x_{u,m,q}$

$$x_{u,m,q} \leq \sum_{n=1}^{N} \min(1 - p_n, x_{u,m,q,n}),$$

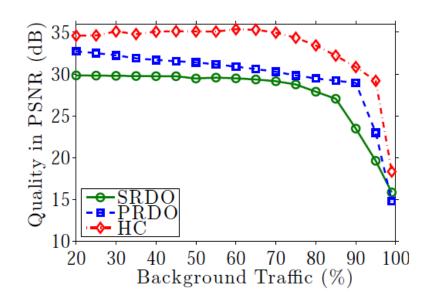
$$e_m \geq \hat{\delta}_m + \sum_{q=0}^{Q} \delta_{m,q} - \min\{L_m^2(\xi, \bar{\mathbf{x}}) := \sum_{q=0}^{Q} (\sum_{q'=0}^{q-1} \prod_{i \leq q'} \xi(i) \delta_{m,q'} + \sum_{q'=q}^{Q} \prod_{i \leq q', i \neq q} \xi(i) x_{m,q} \delta_{m,q'}) - Q \sum_{q=0}^{Q} \prod_{i \leq q} \xi(i) \delta_{m,q}$$
s.t. $\xi \in \{0, 1\}^{Q+1}, L_m^2(\xi, \bar{\mathbf{x}}) \leq \sum_{q=0}^{Q} \bar{x}_{m,q} \delta_{m,q} \ \forall \bar{\mathbf{x}} \in \{0, 1\}^{Q+1}\},$

- Polynomial complexity in U,M,Q, exponential in N
- Good trade-off of approximation accuracy vs. complexity for low N

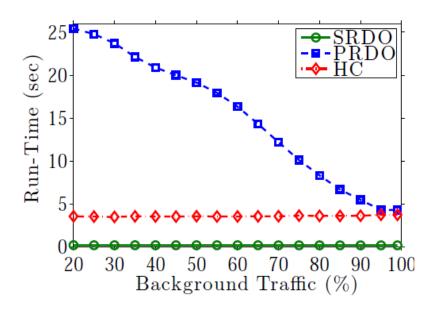

Solving the Convex Approximations

- □ Properties of our convex approximations
 - Non-empty compact set of solutions
 - Strong duality
 - Non-empty set of dual optimal solutions
- □ These properties are important for the performance of numerical methods [Boyd et al. 04']
- □ We use CVX to solve our convex programs
 - a convex program solvers based on Matlab
 - developed at Stanford

Simulation Setup


- Scheduling period : M = 32
- Number of quality enhancement layers : *Q*=7
- Number of access networks : *N*=3
- Decoding deadline : $t_0 = 1$ sec
- SVC video streams: Crew, Harbour, City, and Soccer
- Trace-driven simulations (NS-2)
 - Data from subnets at Stanford University and DT Labs Berlin
 - Used Abing to measure end-to-end available bandwidth and round-trip time
 - Run 300 simulations for each setup

Comparison against Current Solutions



- Proposed algorithms are TCP-Friendly
- Proposed algorithms constantly outperform current ones by more than 10 dB

Complexity versus Performance

Convex solution outperforms heuristics in performance

Convex solution has a reasonable time complexity

Summary

- Quality metrics are means to quantify the performance of multimedia systems, and can be classified into
 - Subject (tester) versus objective (program)
 - Full reference, no reference, and reduced reference

- Quality metrics play central roles on optimizing multimedia system
 - Simple metrics are preferred for good properties, e.g., convex/concave of MSE/PSNR, for efficient algorithms