Department of Computer Science National Tsing Hua University

CS 5263: Wireless Multimedia Networking Technologies and Applications

Video Quality Metrics

Instructor: Cheng-Hsin Hsu

Outline

- Overview on Video Quality Metrics
- Tools for Calculating Video Quality and Conducting Simulations/Experiments
- A Sample Application
 - Joint Packet Scheduling and Stream Adaptation in Multihomed Video Streaming

Overview of Video Quality Metrics

Visual Impairments Caused by Packet Loss

Packet Loss Rate %

Quality of Experience and Quality of Service

- QoE: Subjective measurements of users' experience
 - What a user (customer) wants? ← about human beings
- QoS: Objective measurements of the delivered service
 - How good is the received content? ← about content
- We refer to them as subjective and objective quality metrics

- Subjective Metrics
 - Hire people to score individual videos
 - Expensive, cannot be realtime ← E.g., cable TV systems cannot use subjective metrics to recover from network congestion
 - Not reproducible ← rerunning the experiments leads to different results
- Objective Metrics
 - Algorithms to analyze content, or infer video quality based on network conditions ← Cheap
 - Can be deployed in live networks for realtime monitoring
 - Reproducible

- Voice Mean Opinion Score (MOS)
 - Users grade voice quality from 1 to 5
 - Above 4 is good quality
 - Various variations with difference score ranges
- Video ITU-R BT.500
 - Several modes are defined
 - E.g., Double Stimulus Impairment Scale (DSIS): first show the full-quality video, then show the impaired one. Viewers are informed the order. Viewers are asked to score the impaired video.

Objective Metrics (1/2)

Packet Based Metrics

- Use network measurements and (optionally) codec properties to infer the degraded video quality
- Low complexity and work without original videos
- Example V-Factor
 - V = f(QER, PLR, R)
 - QER: codec quality
 - PLR: packet loss ratio
 - R: video complexity
 - Adopted by Sprint

Source: http://www.dsp-ip.com

8

Objective Metrics (2/2)

- Content Based Metrics
 - Compute the quality level using the video itself
 - Used in research labs for, e.g., comparing video codec performance
- Classified into three groups
 - Full reference: assuming both original and impaired videos are available ← less practical, but widely used in research labs
 - Reduced reference: original videos are analyzed and a summary is compared against the impaired video
 - No reference: metrics that do not need original videos ← ideal metrics

Full Reference Metrics

- Most quality metrics consider Y-component (luminance) only
- MSE (mean-square-error) and PSNR (peak signalto-noise ratio) are pixel based metrics

$$MSE = \frac{1}{M} \times \sum_{i=1}^{M} (x_i - y_i)^2$$
$$PSNR(dB) = 10\log_{10} \sum_{i=1}^{M} \frac{255^2}{(x_i - y_i)^2}$$

Problems with MSE/PSNR

- MSE/PSNR does not map to user-perceived quality all the time

MSE=0, original picture

MSE=225, MSSIM=0.949

MSE=225, MSSIM=0.688

Structural Similarity Index (SSIM)

- New metric proposed in 2004, which measures the similarity between the original and impaired images (extension for videos have also been proposed)
- Designed to address the limitations of MSE/PSNR
- Between [0, 1], where 1 indicates (iff) two images are identical

Structural Similarity Index (SSIM)

Source: Wang et al., IEEE Trans. Image Processing, 2004

Examples of SSIM

Source: https://ece.uwaterloo.ca/~z70wang/research/ssim/

Performance Comparison

Source: https://ece.uwaterloo.ca/~z70wang/research/ssim/

Useful Tools

Tools to Compute Video Quality (1/2)

00100101111010	1001110011001101 MIPEG-	2
MSU Vide Version	eo Quality Measurer 3.0 / Easy way of codecs com Not for usage	ment Tool parison in companies
Step 1: File selection		Browse
ngina nie (avi, avs, yuv, onp).	Open with AVISynth Advanced	Preview
Processed (compressed):		Browse
Comparative analysis	Open with AVISynth Advanced	Preview
Second processed (another codec):		Browse
Advanced	Open with AVISynth Advanced	Preview
Use mask file:		Browse
Use black mask	Open with AVISynth Advanced	Preview
Step 2: Metric Selection		
3SSIM (CUDA)	✓ Settings Onl	line metric info
Color component Y-YUY CU-YUY CY-YUY		B-RGB
Step 3: Output Selection		-1-2
Save CSV file	Advanced	
Save metric visualization video / in	nage	
	Advanced	
Save bad frames		
Save bad frames	GRAF	PHICS & MEDIA LAB
More options		VIDEO GROUP

MSU Video Quality Measurement Tool

- MSU Graphics and Media Lab, Moscow State University
- Supports 20 quality metrics: including variations of PSNR, SSIM, and VQM (another popular metric we didn't discuss)
- Supports 20 video file formats
- Comes with academic/commercial versions
- http://graphics.cs.msu.ru/

Tools to Compute Video Quality (2/2)

VQM (Video Quality Metric)

- A U.S. national standard (ANSI T1.801.03-2003), and an international ITU Recommendations (ITU-T J.144, and ITU-R BT.1683, in 2004)
- Public tool available
- http://www.its.bldrdoc.gov/vqm/
- SSIM
 - Matlab implementation at Prof. Wang's utility page
 - <u>https://ece.uwaterloo.ca/~z70wang/research/ssim/</u>
- MSE/PSNR
 - PSNRStatic comes with JSVM software
 - Write your own

Other Resources for Evaluation

Video Traces

- Arizona State: <u>http://trace.eas.asu.edu/</u>, long video sequences coded in SVC, AVC, MPEG-4, MPEG-2, and MDC coders
- TU Berlin <u>http://www.tkn.tu-berlin.de/research/trace/ltvt.html</u>, long video sequences coded in MPEG-4 and H.263

Video Sequences

- Xiph Open-source Video Production <u>http://media.xiph.org/</u>, pointing to many other links for Raw video sequences

Codecs

- AVC Reference Coder http://iphome.hhi.de/suehring/tml/
- SVC Reference Coder <u>http://ip.hhi.de/imagecom_G1/savce/downloads/SVC-Reference-Software.htm</u>
- X264 Coder <u>http://www.videolan.org/developers/x264.htm</u>
- Nokia's 3D Coder/Decoder <u>http://research.nokia.com/research/mobile3D</u>

Other Resources for Evaluation

Streaming Tools

- Darwin Open-source Version of QuickTime Server http://dss.macosforge.org/
- VLS VideoLAN's Streaming Server <u>http://www.videolan.org/vlc/streaming.html</u>
- VLC VideoLAN's Player http://www.videolan.org/vlc/
- Live555 Streaming Library <u>http://www.live555.com/liveMedia/</u>
- Misc
 - Matlab Central's File Exchange http://www.mathworks.com/matlabcentral/

Multihomed Video Streaming – A Sample Project using Objective Video Quality as Optimization Criterion

Offloading Traffic from Cellular Networks

- Video streaming has high bandwidth requirements
- However, T-mobile and AT&T recently reported more than 50 times of data traffic increase [Open Mobile Summit '09]

- This is called multihoming, which is attractive to
 - ISPs, such as T-Mobile, for lower transit cost
 - Subscribers for better quality-of-service

Dynamic Network Coditions

- Problem: access networks are heterogeneous and dynamic
- Employ scalable video: frames are coded into multiple layers
 - incremental quality improvement
 - complicated interdependency due to prediction

Challenges and Problem Statement

- Determine streaming rate on each access network is hard [Hsu ISM'10]
 - streaming at a rate close to end-to-end network capacity leads to congestion, and late packets
 - streaming at a low rate wastes available resources
 - need a network model to proactively prevent congestion
- Packets of scalable streams have complex interdependency
 - need a video model to predict expected quality
- The problem: determine (i) what video packets to send, (ii) over which network interface, and (iii) at what rate, so that the overall streaming quality is maximized

Notations

□ Scalability

- Client: *u*=1,...,*U*
- Temporal: Different frames with inter-frame prediction $m=1,...,M_u$
- Spatial: Quality layers $q=0,...,Q_u$
- Multihoming: networks *n*=1,...,N
- Network Abstraction Layer Unit (NALU) : $g_{u,m,q}$

□ Scheduling

If $g_{u,m,q}$ is sent over network n

- Deterministic: $x_{u,m,q,n} \in \{0,1\}$
- Randomized: $x_{u,m,q,n} \in [0,1]$

Video Quality Model

Truncation distortion: capturing loss of a NALU $g_{u,m,q}$

- A packet is decodable if all packets in lower quality (q' < q) layers are received

$$e_{u,m} = \underbrace{\delta_{u,m}}_{l} + \sum_{q=0}^{\infty} \left(1 - \prod_{q' \le q} x_{u,m,q'}\right) \underbrace{\delta_{u,m,q}}_{l,m,q}$$
Additional distortion
Distortion if all packets are received If $g_{u,m,q}$ is not decoded

Drifting distortion: capturing error propagation

- Inter-frame predictions based on imperfectly reconstructed parent packets, $P_{u,m}$

Network Model

\square Packet loss probability (p_n) depends on

- **Rate:** (r_n)
- Available bandwidth (c_n)
- Packet decoding deadline (t_0)

□ Model

- M/M/1 model $p_n = e^{-rac{t_0(c_n-r_n)}{\alpha_n}}$
- Increasing in c_n , decreasing in r_n
- α_n : linear regression parameter
- accurate in streaming video applications [Zhu et. al '05]

Assumption : statistical independence of different networks

- Good approximation using a two-timescale approach [Jiang et al. '10]
- Network converges to steady-state in between scheduling events

Problem Formulation

□ **Cost** minimization problem ← a cost function of distortion (MSE)

- Accounts for service differentiation and fairness among users and frames

$$\begin{split} & \underset{x}{\min} & \overbrace{C(d)}^{n} & \quad \text{Cost function (increasing, convex)} \\ \text{s.t.} \quad r_n = & \sum_{u=1}^{U} \frac{F_u}{M_u} \sum_{m=1}^{M_u} \sum_{q=0}^{Q_u} s_{u,m,q} x_{u,m,q,n}, & \quad \text{Rate} \\ p_n = & e^{-t_0(c_n - r_n)/\alpha_n}, & \quad \text{Loss probability} \\ x_{u,m,q} = & \sum_{n=1}^{N} (1 - p_n) x_{u,m,q,n}, & \\ e_{u,m} = & \hat{\delta}_{u,m} + \sum_{q=0}^{Q_u} (1 - \prod_{q' \leq q} x_{u,m,q'}) \delta_{u,m,q}, & \quad \text{Not convex} \\ y_{u,m} = & \alpha_{u,m} + \sum_{k \in \boldsymbol{P}_{u,m}} \beta_{u,m,k} e_{u,k}, & \\ d_{u,m} = & e_{u,m} + y_{u,m}, & \\ & \sum_{n=1}^{N} x_{u,m,q,n} \leq 1, & \\ & x_{u,m,q,n} \in \{0,1\}. & \quad \text{Randomized scheduling} \end{split}$$

Heuristic Algorithm 1/2

SRDO

0. INPUT: P_{\max} is the maximum packet loss rate 1. let $\boldsymbol{x} = \{x_{u,m,q,n} = 0 \mid \forall u, m, q, n\}$ 2. sort $g_{u,m,q}$ on $\frac{\delta_{u,m,q}}{s_{u,m,q}}$ 3. for $\hat{n} = \operatorname{argmin}_{n=1}^{N} p_n$ 4. let $g_{\hat{u},\hat{m},\hat{q}}$ be the next unsent NALU 5. if sending $g_{\hat{u},\hat{m},\hat{q}}$ on \hat{n} causes $p_{\hat{n}} > P_{\max}$ return \boldsymbol{x} 6. else update \boldsymbol{x} with $x_{\hat{u},\hat{m},\hat{q},\hat{n}} = 1$ 7. if no more unsent NALU return \boldsymbol{x}

Heuristic Algorithm 2/2

PRDO

1.	let $\boldsymbol{x} = \{x_{u,m,q,n} = 0 \mid \forall u, m, q, n\}$
2.	forever
3.	if g_d is empty return x
4.	let g_d be all immediately decodable NALGs
5.	for $g_{u,m,q} \in \boldsymbol{g}_d$
6.	for $n = 1$ to N
7.	compute $b_{u,m,q,n}$ based on \boldsymbol{x}
8.	let $\frac{b_{\hat{u},\hat{m},\hat{q},\hat{n}}}{2} \geq \frac{b_{u,m,q,n}}{2} \forall u,m,q,n$
9.	$ \mathbf{if} \ b_{\hat{u}} \ {}_{\hat{m}} \ {}_{\hat{a}} \ {}_{\hat{n}} \ < 0 \ \mathbf{return} \ \boldsymbol{x} $
10.	update x with $x_{\hat{u},\hat{m},\hat{q},\hat{n}} = 1$, update g_d .

Term-by-Term Convex Approximation

Goal: Obtain a convex superset of the constraint set 1. Term-by-term convex approximation (TTC)

$$\begin{aligned} x_{u,m,q} &\leq \sum_{n=1}^{N} \min(1 - p_n, x_{u,m,q,n}), \\ e_{u,m} &\geq \hat{\delta}_{u,m} + \sum_{q=0}^{Q} (1 - \min_{q' \leq q} x_{u,m,q'}) \delta_{u,m,q}, \end{aligned}$$

- Polynomial number of constraints in U,M,Q,N
- Weak approximation of the probability of successful packet delivery *x*_{*u,m,q*}

Multilinear Convex Approximation

Goal: Obtain a convex superset of the constraint set

- 2. Multilinear convex approximation (MC)
 - Convex envelope of multilinear functions [Sherali '97]
 - Minimum of affine functions
 - Tightest convex approximation
 - Exponential number of constraints in Q,N
 - Constraint on $x_{u,m,q}$ depends exclusively on N, NOT on problem parameters

Hybrid Convex Approximation

Goal: Obtain a convex superset of the constraint set

- 3. Hybrid Convex Approximation (HC)
 - Term-by-term approximation for truncation distortion $e_{u,m}$
 - Multilinear approximation for probability of successful packet delivery $x_{u,m,q}$

$$\begin{aligned} x_{u,m,q} &\leq \sum_{n=1}^{N} \min(1-p_n, x_{u,m,q,n}), \\ e_m &\geq \hat{\delta}_m + \sum_{q=0}^{Q} \delta_{m,q} - \min\{L_m^2(\xi, \bar{\mathbf{x}}) := \sum_{q=0}^{Q} (\sum_{q'=0}^{q-1} \prod_{i \leq q'} \xi(i) \delta_{m,q'} + \sum_{q'=q}^{Q} \prod_{i \leq q', i \neq q} \xi(i) x_{m,q} \delta_{m,q'}) - Q \sum_{q=0}^{Q} \prod_{i \leq q} \xi(i) \delta_{m,q} \\ \text{s.t.} \quad \xi \in \{0,1\}^{Q+1}, L_m^2(\xi, \bar{\mathbf{x}}) \leq \sum_{q=0}^{Q} \bar{x}_{m,q} \delta_{m,q} \quad \forall \bar{\mathbf{x}} \in \{0,1\}^{Q+1}\}, \end{aligned}$$

- Polynomial complexity in *U*,*M*,*Q*, exponential in *N*
- Good trade-off of approximation accuracy vs. complexity for low ${\cal N}$

Solving the Convex Approximations

Properties of our convex approximations

- Non-empty compact set of solutions
- Strong duality
- Non-empty set of dual optimal solutions
- □ These properties are important for the performance of numerical methods [Boyd et al. 04']
- □ We use CVX to solve our convex programs
 - a convex program solvers based on Matlab
 - developed at Stanford

Simulation Setup

- Scheduling period : M = 32
- Number of quality enhancement layers : Q=7
- Number of access networks : N=3
- **Decoding deadline** : $t_0 = 1$ sec
- SVC video streams: Crew, Harbour, City, and Soccer
- Trace-driven simulations (NS-2)
 - Data from subnets at Stanford University and DT Labs Berlin
 - Used Abing to measure end-to-end available bandwidth and round-trip time
 - Run 300 simulations for each setup

Comparison against Current Solutions

- Proposed algorithms are TCP-Friendly
- Proposed algorithms constantly outperform current ones by more than 10 dB

Complexity versus Performance

Convex solution outperforms heuristics in performance

Convex solution has a reasonable time complexity

- Quality metrics are means to quantify the performance of multimedia systems, and can be classified into
 - Subject (tester) versus objective (program)
 - Full reference, no reference, and reduced reference
- Quality metrics play central roles on optimizing multimedia system
 - Simple metrics are preferred for good properties, e.g., convex/concave of MSE/PSNR, for efficient algorithms