Department of Computer Science National Tsing Hua University

CS 5263: Wireless Multimedia Networking Technologies and Applications

Network-Adaptive Media Transport

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Prof. Mohamed Hefeeda at Simon Fraser University for sharing his course materials

Outline

- Introduction
- Rate Distortion Optimized Framework
 - Basic Framework
 - Receiver Driven Streaming
- Rich Acknowledgements
- Multiple Deadlines
- Dependant Packet Delay
- Congestion Distortion Optimized Streaming
- Conclusion

Introduction

- Internet Packet Delivery
 - Loss
 - Throughput
 - Delay

 Challenge: Maximize quality of audio and video considering transmission rate and latency constraints

Multimedia Streaming Systems

Client Application

- Error detection and concealment

Transport Mechanism

- Congestion control by retransmission and packet drops

Encoder

- Rate scalable coding

Media Server

- Intelligent transport by sending the right packet at the right time

Rate Distortion Optimized Framework

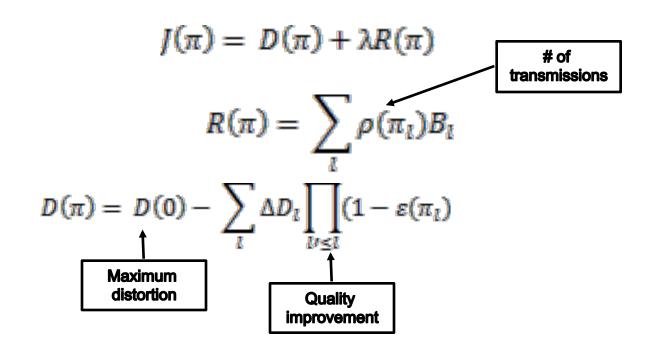
Framework has been propose by Chou and Miao

- Goal: Compute which packets to send and when to minimize the reconstructed distortion
 - To maximize the video quality

Basic Framework

 Media Server has media streams packetized into data units

 Framework chooses optimal set of data units to transmit at successive transmission opportunities


Scheduler decides based on an entire optimized plan

Variables

- Data unit: 1
- Size : *B(l)*
- Deadline:
 - The maximum arrive time to be useful for decoding
- ΔD_{i} : distortion reduction
 - The decrease rate of distortion if *l* is decoded
- \blacksquare N: transmission opportunities
- π : transmission policy
 - It has N binary vector $\pi(l)$ for each data unit l
- ε(I): error probability
 - data unit / received late or not at all
- **■** *P(l)* :
 - number of times packet has been sent

Basic Framework

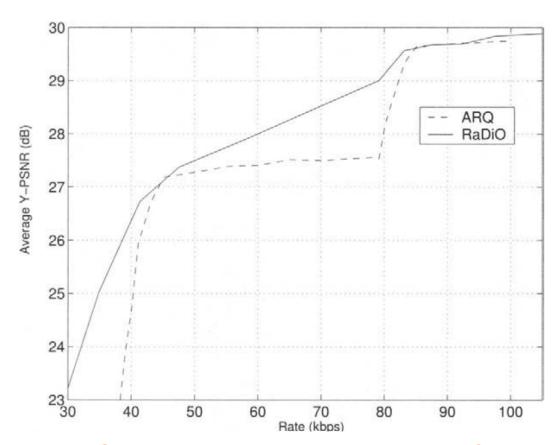
- Policy π wants to find the best tradeoff between expected transmission rate and distortion construction
- Formally, minimize Lagrangian function:

Needs of RaDiO Framework

- Packet loss and delay are considered independently
 - Packet Loss
 Bernoulli Function
 - Delay Shifted τ-distribution
- Exhaustive Search is not useful. The search space grows exponentially

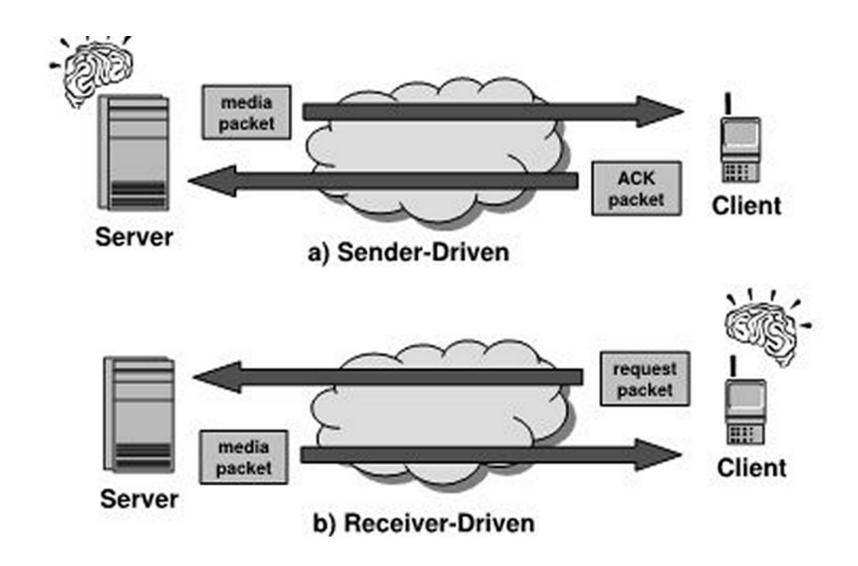
ISA Algorithm

- The radio framework uses conjugate direction search
- The Iterative Sensitivity Algorithm minimizes the Lagrangian function
 - The policy for $\pi(l)$ is optimized while others are fixed.
 - It runs for every l in round robin fashion in order for π to achieve a (local) minimum


ISA Algorithm (cont.)

$$J_l(\pi_l) = \varepsilon(\pi_l) + \lambda' \rho(\pi_l)$$

where $\mathcal{X} = \frac{\lambda B_l}{S_l}$ is the rate distortion tradeoff multiplier


- B_k is the data unit size
- is the sensitivity of overall distortion to error probability of data unit *I*

Performance Comparison

RaDiO improves video streaming performance

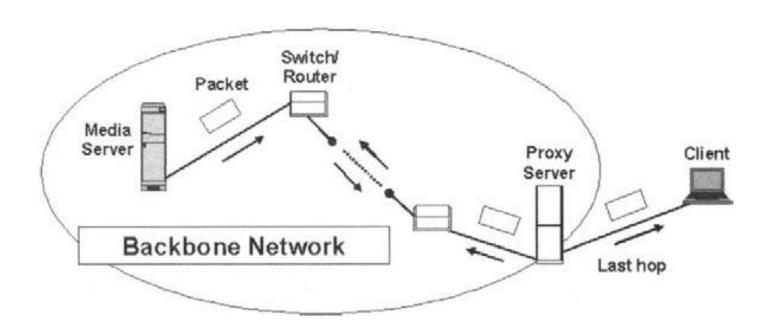
Receiver versus Sender Driven Streaming

Receiver Driven Streaming

 Transmitting many video and audio make the server become computationally overwhelmed.

Shift Computation to the client as much as possible

Strategy


- Client will be provided with information about size, distortion reduction values, interdependencies of data.
 - Such R-D overhead is small ← several bytes versus KB of video data
- It computes optimized schedule and compute sequence of requests that specify data units.

Hybrid Solution

 Combining sender driven and receiver driven approach can be used to R-D optimized algorithm to diverse network topologies.

Example: Using radio framework in a proxy between network backbone and last hop link.

Architecture

Proxy Driven RaDiO Streaming

Benefits

Proxy uses hybrid of sender and receiver streaming.

 It improves the end-to-end performance. The traffic caused by retransmission of lost packets is not traversed to server and stays in last hop

Rich Acknowledgements

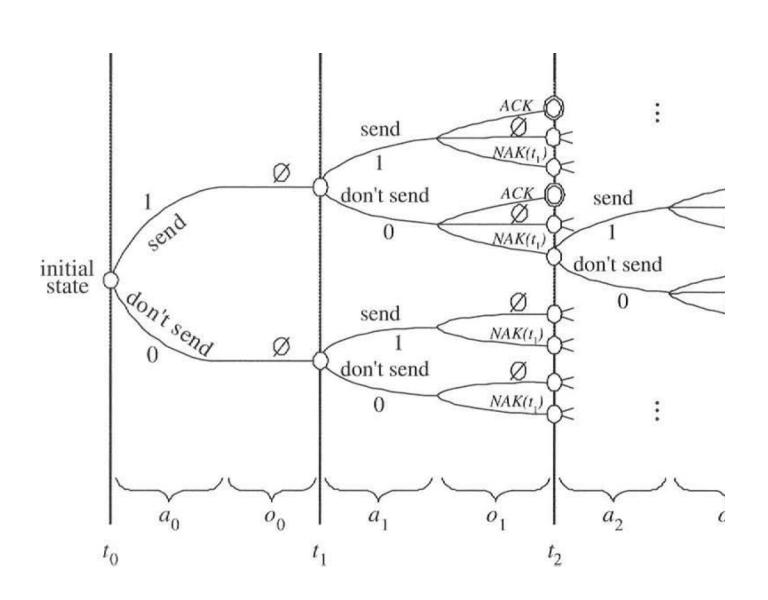
Instead of sending ACK for each received packet, send the state of received packets periodically that ACKs received packets and NACKs lost packets.

Needs changes in the basic framework

Markov Decision Process

- Transmission policy of a data unit can be modeled by Markov Decision Process.
- At time t(i), server makes observation o(i) and takes action a(i) which is send or don't send.
- The sequence of $\langle o(i) \rangle$, a(i) > forms a Markov decision tree.

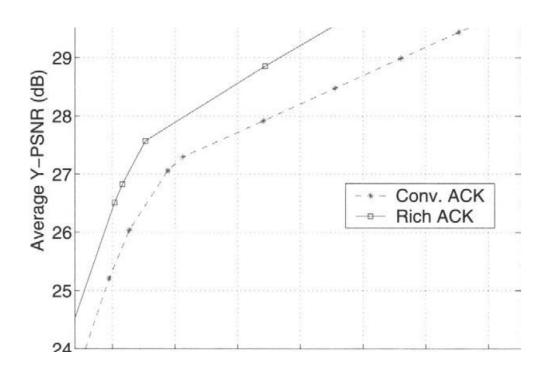
Actions and Observations


Possible actions :

- Send
- Don't send

Possible observations :

- $-\emptyset$ no relevant feedback has arrived
- ACK feedback packet acknowledged received data unit
- NACK feedback packet indicate lost data unit


Markov Decision Tree

Optimization Algorithm

• Optimization algorithm calculates the probabilities through each path given the policy and find the best tradeoff between expected number of transmission p(l) and loss probability e(l)

Versus Conventional Acknowledgement

Sample results from QCIF foreman

Reasons of Improvements

 Effect of lost ACK packet is mitigated because subsequent feedback packets contain same information

Less ambiguity for server by having NACKs

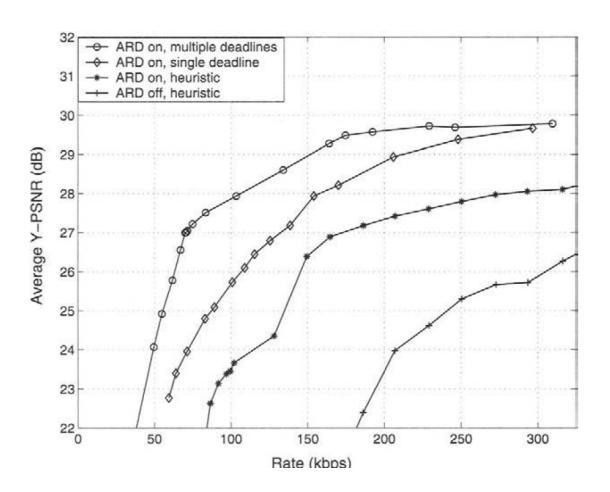
Multiple Deadlines

• Instead of discarding the frame arrive later than the associated deadline, we consider that frame will be useful for decoding other frames or at least itself.

Accelerated Retroactive Decoding (ARD)

Example:

- We have a set of frames IBBBP. If frame p arrives later than deadline, it still can help in decoding the next B frames.
- Decoders that allow Accelerated Retroactive Decoding (ARD)


Formulation

- Need changes in the formulation :
 - We have to add the error probability for each deadline

$$J_l(\pi_l) = \rho(\pi_l) + \sum_{i \in W_l} v_{t_i} \varepsilon(\pi_l, t_i)$$

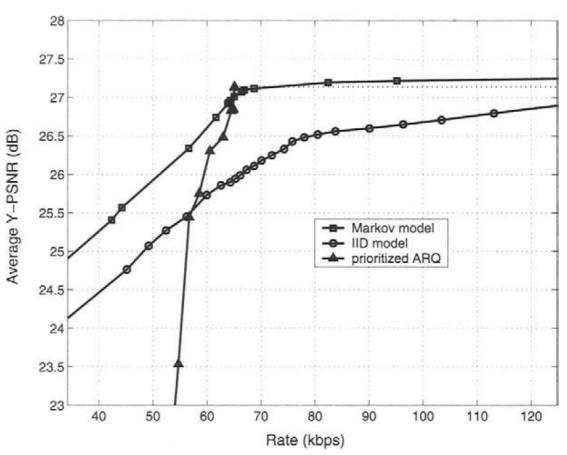
• In the above equation, $v_{t_i} = \frac{S_{l,t_i}}{\lambda B_l}$ is the sensitivity factor that depends on each deadline and is the sensitivity of overall distortion if data unit l arrives in t_i .

Results

ARD ←multiple deadlines

Discussion

 Multiple deadline approach take the benefit of using the information of late arrived packet, therefore they improve PSNR compared to single-deadline scheme.


Dependent Packet Delays

- In the original framework:
 - Packet Delay : Shifted T-distribution
 - Loss : Bernoulli Model
- Packet delays are assumed to be independent of each other which simplifies the calculation of error probability

This is not realistic Suboptimal performance

Problem with i.i.d. Assumption

Rate distortion performance scheduler for Foreman sequence streamed over measured Internet delay trace

Performance of ARD

• In higher rate, heuristic ARD (multi-deadline) outperforms i.i.d. model:

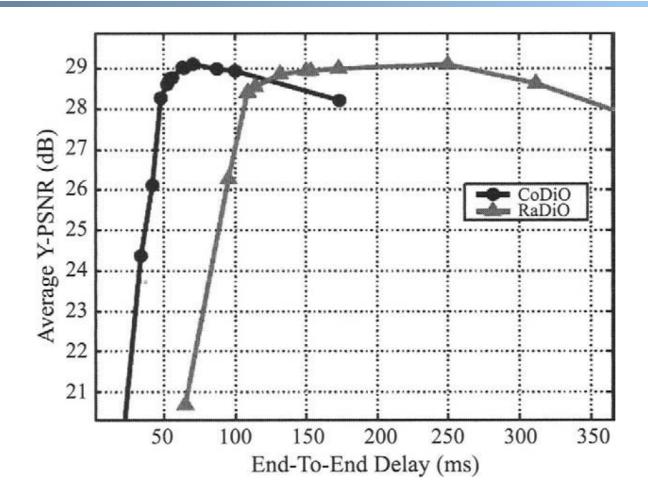
The algorithm mistakenly believes that if a data unit arrives late, other data units will arrive on time or earlier. Therefore, it sends packets multiple times even though packet loss in low (0-14%)

Solution Approach

 Model the delay at successive transmission time slots as a Markov random process.

Feedback packets will inform server about the delay over channel in the recent past.

Congestion Distortion Optimized Streaming


• In RaDiO streaming approach, packet delay is not affected by transmitted packets.

- Delay is a random variable with parameterized distribution that adapts slowly according to feedback information.
 - Media stream transmitted at negligible rate to bandwidth, model is acceptable. But, in higher rates it is not.

Congestion-Aware Streaming

- Congestion distortion optimized streaming (CoDiO)
 - Effects of transmitted packets is considered. It gets an optimal tradeoff between congestion and reconstructed distortion.
 - It assumes a succession of high bandwidth link followed by a bottleneck last hop used by media streams.

Performance Comparison: RaDiO and CaDiO

Performance Comparison of Codio and Radio Streaming for video streaming over a bottleneck link

Observation

- CoDiO outperforms Radio:
 - It transmits packets as late as safely possible. This reduces the congestion in backlog and therefore end-to-end delay.

Conclusion

- To get better quality of audio and video streams, media streaming should be network adaptive
- Media server can decide which packets and when to send to optimized the distortion of decoded video
- Radio Framework proposed to avoid exhaustive search
- There are several extensions to the basic framework which improve performance
 - Rich Acknowledgement
 - Multiple Deadline
 - Dependant Packet Delay
 - Congestion Distortion Optimized Streaming