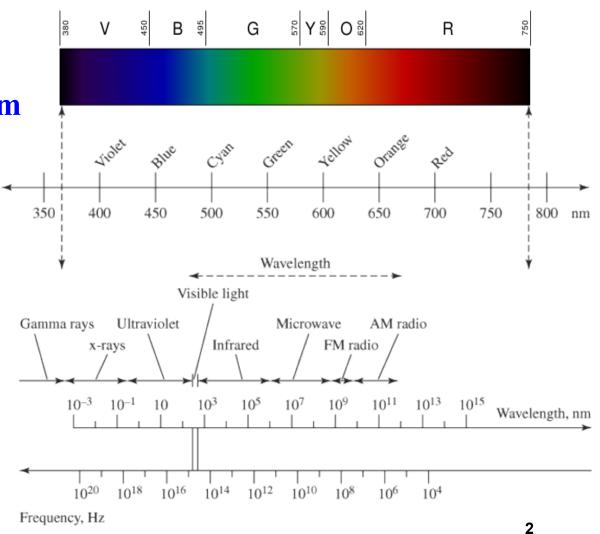
Department of Computer Science National Tsing Hua University

CS 5263: Wireless Multimedia Networking Technologies and Applications

Color Models

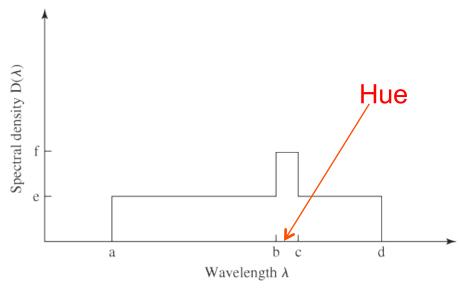
Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Prof. Mohamed Hefeeda at Simon Fraser University for sharing his course materials


Colors & Color Models

Color is composed of electromagnetic waves

• Humans: visible

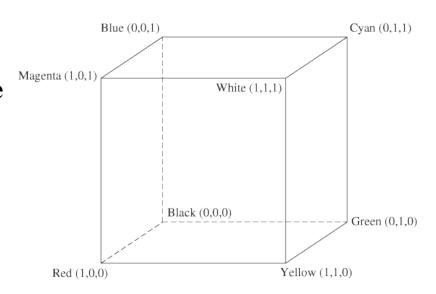

colors: 370 - 780 nm

Frequency spectrum

Colors

- Pure color has a single wavelength
 - Could be generated for example by laser
- Typically, we see a combination of wavelengths
 - Spectral analysis shows contribution of each wavelength
- A color could be represented by
 - **Hue:** dominant wavelength
 - Wavelength at the spike
 - Saturation: color purity
 - Area under spike over total area
 - Luminance: ~brightness
 - Area under curve (power)

Color Models

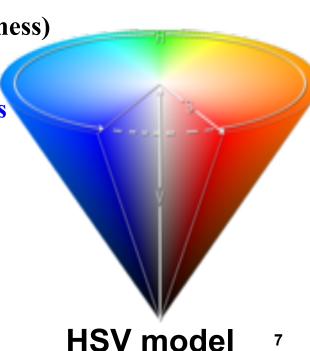

- The hue, saturation, luminance representation is not well suited for computer monitors
 - CRT monitors use three phosphors beams Red, Blue, Green (RGB) of varying intensities
 - LCD: use Red, Blue, Green pixels
- Common method to create wide range of colors is to combine three primary colors
 - Primary = cannot be generated from each other
- RGB are good choices because the color receptors in the eyes are specially sensitive to them

RGB Color Model

- Increasing each component with same ratio → increases brightness
 - (0.64, 0.96, 0.78) is brighter shade of green than (0.32, 0.48, 0.39)
- Grayscale values on the cube's diagonal from (0,0,0) to (1,1,1)
 - Same value for R,G,B

- L = 0.30 R + 0.59 G + 0.11 B
- Eyes are most sensitive to green, and least sensitive to blue

CMY Color Model


- RGB is called additive model
- CMY (Cyan, Magenta, Yellow) are complements of R,G,B
 - C = 1 R; M = 1 G; Y = 1 B

- CMY is a subtractive model, i.e.,
 - The origin of the cube is White (not Black), and
 - (C, M, Y) means how much Red, Green, Blue are subtracted out
- CMY is used in color printer
 - Typically with a fourth color: Black (K) → CMYK
 - To give better clarity and save ink, because
 - (1,1,1) results in muddy brown not true black

HSV and **HLS** Color Models

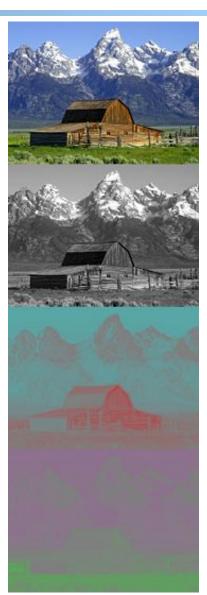
- We mentioned before that a color can be represented by its
 - Hue (essential color)
 - Saturation (purity of color)
 - Luminance (or value or lightness or brightness)
- → HSV (also called HSB) color model
- Usually used in computer graphics applications
- HLS is similar to HSV
- Non linear transformations from RGB to HSV (or HLS) and vice versa

Luminance & Chrominance Color Models

- Yet another method to represent color
 - Put all luminance information in one value (Y)
 - All color (chrominance) information in other two (IQ)
- Why?
 - More convenient for television broadcast (in early days)
 - All black & white info in one value (luminance) →
 - same transmission for black & white and color TVs
 - Allows us to treat components differently
 - Humans more sensitive to Y than IQ
- YIQ used for TV in North America (NTSC)
- YUV for TV in Europe (PAL)
- YCbCr (similar to YUV): Used in JPEG and MPEG

YIQ Model

- Y: weighted sum of R,G,B
 - Brightness in the image
 - Black & white image


I & Q add the color aspects

Original image

Y Component

I Component

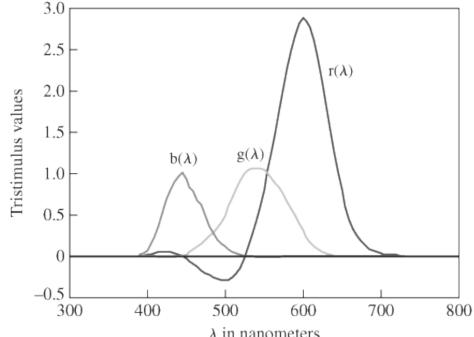
Q Component

Luminance & Chrominance Color Models

■ YIQ ←→ RGB using linear transformation

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Note: Values in matrix depend on the choice of the primaries for RGB

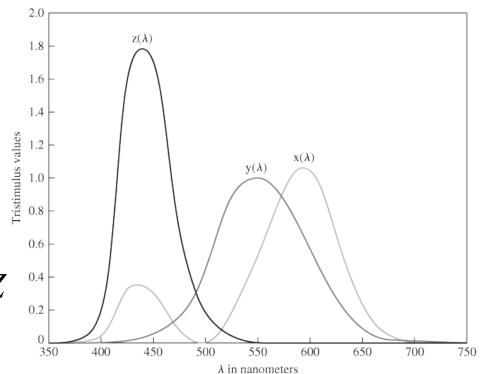

CIE XYZ Model and Color Gamut

- RGB does not capture all visible colors
 - Some visible colors cannot be produced by adding RGB components

 3.0

$$C(\lambda) = r(\lambda)R + g(\lambda)G + b(\lambda)B$$

- Color matching experiment
 - Produce pure colors
 - Ask observers to vary r, g, b mix till match
 - Some visible (pure) colors $\frac{300}{\lambda}$ $\frac{400}{\lambda}$ $\frac{500}{\lambda}$ $\frac{600}{\lambda}$ in nanometers could not be matched unless we added R to them, i.e., subtract R from the mix

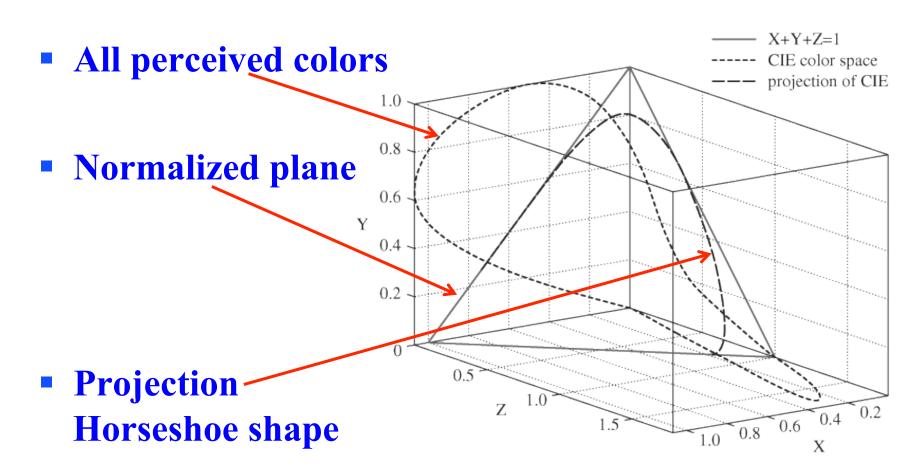

CIE XYZ Model and Color Gamut

- This means systems that use RGB model (e.g., monitors)
 may not able to produce all visible colors
- Similarly for systems that use CMYK model (e.g., color printers)
- → some colors can be produced on monitors but not on printers and vice versa
- Color Gamut (or scope): is the range of colors that can be produced (displayed or printed)
- CIE: Commission Internationale de l'Eclairage (illumination in French)
 - Goal: define a model to represent <u>ALL</u> colors
 - Used to compare color gamut of different color models

CIE XYZ Color Model

- CIE defines three virtual primaries (X, Y, Z) from which all colors can be composed by positive amounts
- Color given by

$$C(\lambda) = x(\lambda)X + y(\lambda)Y + z(\lambda)Z$$



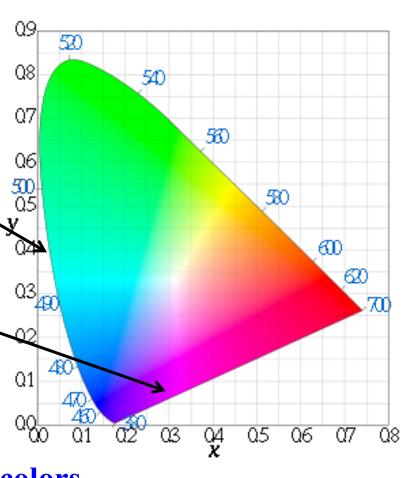
- X, Y, Z are constants defined by CIE
- For simplicity, we normalize:

$$x'(\lambda) = \frac{x(\lambda)}{x(\lambda) + y(\lambda) + z(\lambda)}; \ y'(\lambda) = \frac{y(\lambda)}{x(\lambda) + y(\lambda) + z(\lambda)}; \ z'(\lambda) = \frac{z(\lambda)}{x(\lambda) + y(\lambda) + z(\lambda)}$$

CIE XYZ Color Model

■ Thus, we have: $x'(\lambda) + y'(\lambda) + z'(\lambda) = 1$

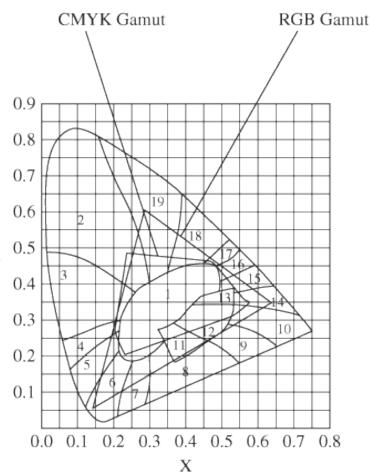
CIE Chromaticity Diagram


Projection on X,Y →
 CIE Chromaticity Diagram

- Represents all visible colors at unit energy

 On the curved edge, fully saturated (pure, spectral) colors

 On straight line base, colors that cannot be produced by a single wavelength (nonspectral)


 A line joining any two colors represents colors that can be created by combining these two colors

RGB vs. CMYK on Chromaticity Diagram

 RGB range is larger, but it does not fully contain CMYK

 Note: exact gamut depends on the specific constants used for RGB & CMYK

- 1. Illuminant Area
- 2. Green
- 3. Blue Green
- 4. Green Blue
- 5. Blue
- 6. Blue Purple
- 7. Purple
- 8. Purple Red
- 9. Red Purple
- 10. Red
- 11. Purple Pink
- 12. Pink
- 13. Orange Pink
- 14. Red Orange
- 15. Orange
- 16. Yellow Orange
- 17. Yellow
- 18. Yellow Green
- 19. Green Yellow

RGB ←→ CIE XYZ

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 3.24 & -1.54 & -0.50 \\ -0.97 & 1.88 & 0.04 \\ 0.06 & -0.20 & 1.06 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Again depends on the specific constants for RGB

Color Models: Summary

- Different methods for representing colors
 - Additive (three primary colors: R, G, B)
 - Used in digital cameras, monitors, TVs
 - Subtractive (three primary colors: C, M, Y Plus K)
 - Good for printers
 - Luminance & Chrominance: YIQ, YUV, YCbCr
 - Luminance component (Y) and two chrominance components
 - YIQ & YUV used in B&W and color TV (same signal)
 - YCbCr used in JPEG and MPEG compressions
 - HSV & HSL: Hue, Saturation, Value (or Lightness)
 - Usually used in computer graphics applications
 - **CIE XYZ:**
 - Theoretical, comprehensive, used for comparing gamut