
[Tutorial #3] The Lifecycle 
of Activity 

Hua-Jun Hong and Shu-Ting Wang 
 



Overview of Activity Lifecycle 



How Lifecycle Works 
●  While the an activity starts, 

each callback method moves 
the activity state one step 
toward the top 

●  As the user begins to leave 
the activity, the activity state 
is back down the pyramid in 
order to dismantle the activity 

 



Why Lifecycle Important 
●  Implementing your activity lifecycle methods 

properly ensures your app behaves 
○  Does not crash if the user switches to another app 

while using your app 
○  Does not lose the user's progress if they leave your 

app and return to it at a later time 
○  Does not crash or lose the user's progress when the 

screen rotates 



The States of Activity 
●  The activity can only exist in one of the three 

following states 
o  Resumed (Running): the activity is in the foreground, 

and the users can interact with it 
o  Paused: the activity is partially obscured by another 

activity. The paused activity does not receive user input 
and cannot execute any code. 

o  Stopped: the activity is considered in the background 
and not visible to the user. While stopped, the activity 
instance and all its state information is retained 



Starts From the App Icon 
●  When the user selects your 

app icon from the Home 
screen, the system calls the 
onCreate() method for the 
Activity that you've declared to 
be the "launcher" (or "main") 
activity.  

●  This is the activity that serves 
as the main entry point to your 
app's user interface. 

Select App Icon 



Declare the main activity in Android manifest file, 
AndroidManifest.xml 
 

<activity android:name=".MainActivity" 

android:label="@string/app_name"> 

    <intent-filter> 

        <action android:name="android.intent.action.MAIN" /> 

        <category 

android:name="android.intent.category.LAUNCHER" /> 

    </intent-filter> 

</activity> 
 



Create a New Activity 
●  Most apps include several different activities that allow 

the user to perform different actions 
●  You must implement the onCreate() method to perform 

basic application startup logic that should happen only 
once for the entire life of the activity.  

●  For example, your implementation of onCreate() should 
define the user interface and possibly instantiate some 
class-scope variables. 



An Example of onCreate() Method 
TextView mTextView; // Member variable for text view in the layout 

@Override 

public void onCreate(Bundle savedInstanceState) { 

    super.onCreate(savedInstanceState); 

    // Set the user interface layout for this Activity 

    // The layout file is defined in the project res/layout/main_activity.xml file 

    setContentView(R.layout.main_activity);   

 

 



    // Initialize member TextView so we can manipulate it later 

    mTextView = (TextView) findViewById(R.id.text_message);   

    // Make sure we're running on Honeycomb or higher to use ActionBar APIs 

    if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) { 

        // For the main activity, make sure the app icon in the action bar 

        // does not behave as a button 

        ActionBar actionBar = getActionBar(); 

        actionBar.setHomeButtonEnabled(false); 

    } 

} 



The Flow From onCreate() 
●  Once the onCreate() is done, the system calls the 

onStart() and onResume() methods in quick succession 
 



Destroy The Activity 
●  Most apps don't need to implement this method 

because local class references are destroyed with the 
activity.  

●  However, if your activity includes  
o  background threads that you created during 

onCreate()  
o  other long-running resources that could potentially 

leak memory,  
you should kill them during onDestroy(). 



Pause The Activity 
●  The foreground activity is sometimes obstructed by 

other components that cause the activity to pause. 
●  For example, when a semi-transparent activity opens,  

such as a dialog, the previous activity pauses 



The onPause() Callback Method 
●  When onPause() is called, it technically means your 

activity is still partially visible, but often users are going to 
leave the activity 

●  You should use the onPause() callback to: 
o  Stop animations or other ongoing actions that could 

consume CPU 
o  Commit unsaved changes if users expect you to do so 

when they leave (such as a draft email) 
o  Release system resources, such as broadcast 

receivers, handles to sensors (like GPS) 



The Activity Stopped 
●  When the activity stops? The user 

o  Opens the Recent Apps window and switches from 
your app to another app 

o  Performs an action in your app that starts a new 
activity 

o  Receives a phone call while using your app on his or 
her phone 



onStop() 
●  When your activity receives a call to the onStop() 

method, it's no longer visible and should release almost 
all resources that aren't needed while the user is not 
using it. 

●  For example, here's an implementation of onStop() that 
saves the contents of a draft note to persistent storage 



An Example of onStop() 
@Override 

protected void onStop() { 

    super.onStop();  // Always call the superclass method first 

    // Save the note's current draft, because the activity is stopping 

    // and we want to be sure the current note progress isn't lost. 

    ContentValues values = new ContentValues(); 

    values.put(NotePad.Notes.COLUMN_NAME_NOTE, getCurrentNoteText()); 

    values.put(NotePad.Notes.COLUMN_NAME_TITLE, getCurrentNoteTitle()); 

    getContentResolver().update( mUri,  values, null, null); 

} 
 



Recreating The Activity 
●  To save additional state information for your activity, 

you must implement onSaveInstanceState() and add 
key-value pairs to the Bundle object. 

●  This bundle object will help to restore the activity later 



An Example of Saving Your State 
static final String STATE_SCORE = "playerScore"; 

static final String STATE_LEVEL = "playerLevel"; 

@Override 

public void onSaveInstanceState(Bundle savedInstanceState) { 

    // Save the user's current game state 

    savedInstanceState.putInt(STATE_SCORE, mCurrentScore); 

    savedInstanceState.putInt(STATE_LEVEL, mCurrentLevel); 

    // Always call the superclass so it can save the view hierarchy state 

    super.onSaveInstanceState(savedInstanceState); 

} 
 



An Example of Restoring Your State 
protected void onCreate(Bundle savedInstanceState) { 

    super.onCreate(savedInstanceState); // Always call the superclass first 

    // Check whether we're recreating a previously destroyed instance 

    if (savedInstanceState != null) {  // Restore value of members from saved state 

        mCurrentScore = savedInstanceState.getInt(STATE_SCORE); 

        mCurrentLevel = savedInstanceState.getInt(STATE_LEVEL); 

    } else { 

        // Probably initialize members with default values for a new instance 

    } 

}  



Hands-on Exercise 
●  Reuse your first app, and add 

Log.d(TAG,String) in each callback of your 
activity 

●  For example, I will add 
Log.d(TAG,”onCreated”) in the onCreate 
method 


