Department of Computer Science National Tsing Hua University

CS 5263: Wireless Multimedia Networking Technologies and Applications

Scalable Video Coding

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Prof. Mohamed Hefeeda at Simon Fraser University for sharing his course materials

Motivation

Receivers of video stream are heterogeneous

- Connection bandwidth
- Display resolution
- Processing power
- Battery level

Dynamic conditions

- Even for the same receiver
- Internet bandwidth is changing
- Wireless conditions and mobility
- Need stream adaptation methods

Transcoding

- Transform the encoded stream to different format/ bitrate/resolution
- Simple approach: decode then encode again with different parameters
- There are more sophisticated transcoding schemes, e.g., work in the compressed domain
- Disadvantages?
 - Computational cost

- Simulcasting (or Stream Switching)
 - Encode a video stream multiple times
 - E.g., high, medium, low quality
 - Or high and low resolutions
 - Switch among streams during the session
 - Advantages: simple
 - Disadvantages?
 - Managing multiple versions of same video
 - Larger storage requirements
 - Switching streams is not easy: need to synchronize at I-frames

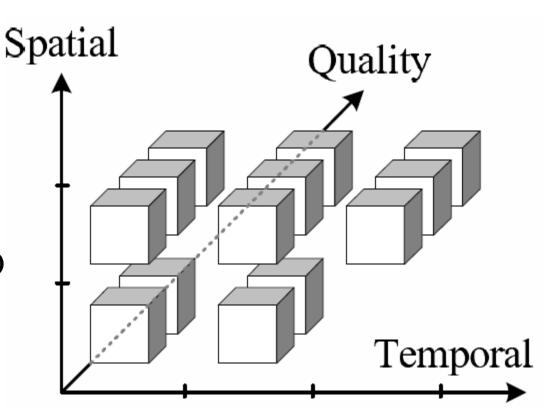
- Muti-Descritpion Coding (MDC)
 - Encode each stream into multiple descriptions
 - Each description improves the received quality
 - Any subset of descriptions can be decoded
 - Advantages:
 - Very flexible
 - Disadvantages?
 - Coding inefficiency: the aggregate bit rate of MDCs is much higher than single-layer (nonscalable stream) at the same quality

- Scalable Video Coding (SVC)
 - Goal: Each stream is encoded once, but can be decoded/adapted in many different ways
 - Idea: each stream has multiple layers, and subsets of layers can be decoded (some restrictions on layers)
- Started early on
 - H.262/MPEG-2, H.263, MPEG-4 Visual, ...
 - But was not widely deployed:
 - Coding/decoding complexity and
 - Coding inefficiency, e.g., 2-5 dB gap is common for MPEG-4 FGS (fine-grained scalability) streams when compared against MPEG-4 streams

H.264/SVC

- Most recent: H.264/SVC
 - Tries to avoid previous problems
 - Gaining momentum (some companies already used it)
- Our discussion is mostly focused on H.264/SVC

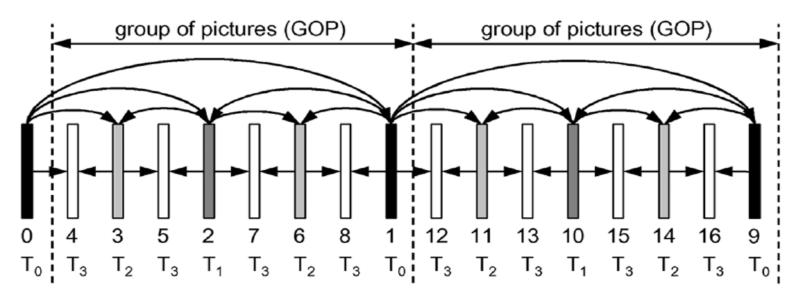
Read: Schwarz et al.,
 Overview of the Scalable Video Coding Extension of the H.
 264/AVC Standard, IEEE Trans. on Circuits and Systems for Video Technology, 17(9), 2007


H.264/SVC

- SVC tries to achieve (scalability wish list)
 - Similar coding efficiency to single-layer coding (10% bit rate increase at most)
 - Support for temporal, spatial, quality scalability
 - Backward compatibility of the base layer
 - Support for simple bitstream adaptations after encoding
 - Little increase in decoding complexity (arguably failed)
- SVC has many potential applications
 - Support heterogeneous receivers (wired and wireless)
 - Unequal error protection
 - Archiving in surveillance applications (store base quality)

-

H.264/SVC: 3-D Scalability


- Temporal scalability
 - Frame rate
- Spatial scalability
 - Resolution (picture size)
- Quality scalability
 - (Fidelity or SNR)
- SVC → Very flexible adaptation

Temporal Scalability

- Divide sequence into temporal layers
 - Restrict motion-compensated prediction
- Hierarchical prediction structure
 - Already provided by H.264/AVC

Temporal Scalability: Example

4 temporal layers: T0, ..., T3

- T0 = 1 frames per GoP
- T1 = T0 + 1 = 2 frames per GoP
- T2 = T1 + 2 = 4 frames per GoP
- Numbers below frames indicate decoding order
- Arrows show prediction dependency
- Dyadic (power of 2) temporal enhancement layers

Temporal Scalability: Example 2

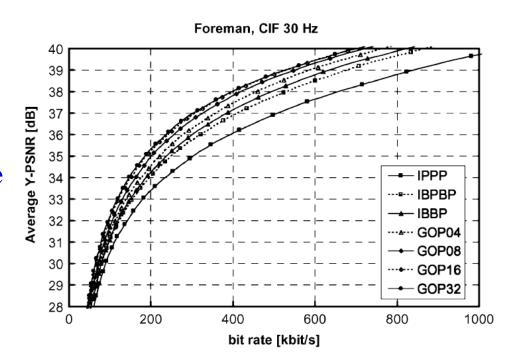
Non-dyadic structure is also possible

- T0 = 1/9 of full frame rate
- T1 = 1/3 of full frame rate
- T2 = full frame rate

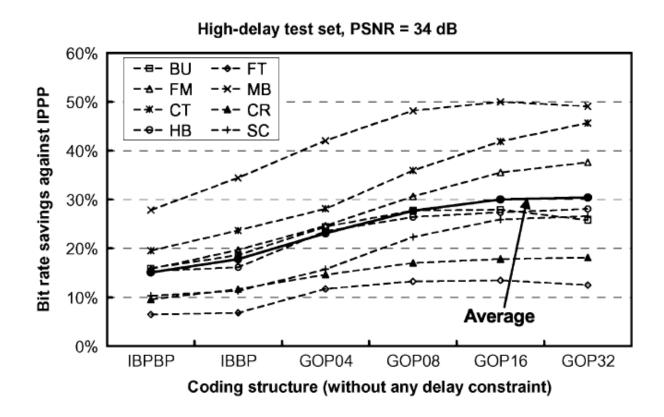

Temporal Scalability

SVC also supports

- Changing the hierarchical prediction structure over time
- Having the reference frame in the same temporal layer as the target frame
- Having multiple reference frames (as in H.264/AVC)

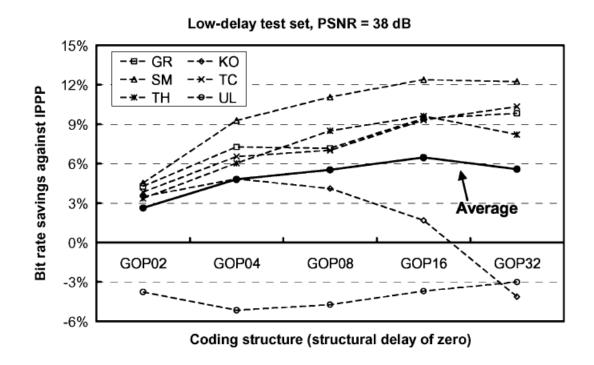

Temporal Scalability: Delay

- Hierarchical structure could increase decoding delay
 - Some frames cannot be decoded until receiving future frames
 - Not desired in interactive multimedia applications (e.g., video conf)
- SVC can limit predictions to preceding frames only
 - Cost?
 - Decreased coding efficiency



Temporal Scalability: Coding Efficiency

- Comparing dyadic hierarchical B-pictures (no decoding delay constraint)
 vs IPPP, IBPBP, and IBBP
- Hierarchical B-pictures achieve PSNR gain >= 1 dB compared to the widely used IBBP coding structure
- Gain is higher for large GoP sizes

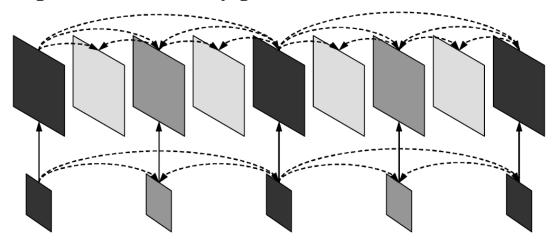


Temporal Scalability: Coding Efficiency

- Using high-delay test set (non-conversational sequences), CIF 30Hz, 34dB, compared to IPPP
- → significant saving in bitrate

Temporal Scalability: Coding Efficiency

- Using low-delay (delay = 0) test set (conversational sequences), 365x288, 25-30Hz, 38 dB vs IPPP
 - Still some gain but not as high as before


Temporal Scalability: Summary

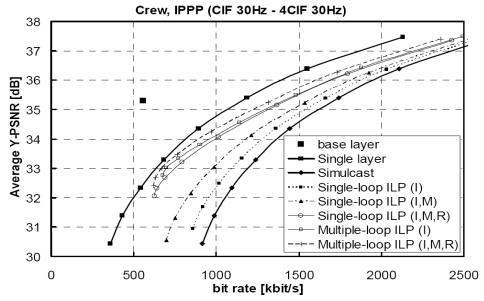
- Achieved using hierarchical temporal structures
- Typically no negative impact on coding efficiency
 - Significant improvement, especially when higher delays are tolerable
 - Minor losses in coding efficiency are possible when low delay is required

Spatial Scalability

Basic Idea:

- Multiple layers with different resolutions
- Each layer is treated as if it were single-layer coding:
 - i.e., uses motion-compensated prediction and intra-prediction
- All layers share the same encoding order ← for low complexity
- Inter-layer prediction is also possible
- Notice temporal and spatial scalabilities can exist
 - Inter-layer prediction is only performed at access units

Spatial Scalability: Inter-Layer Prediction


- Inter-layer prediction
 - Up-sample lower layer signal (reconstructed samples) and perform prediction ← early standards only support this
 - Perform temporal prediction inside higher-resolution layer (in the enhancement layer)
 - You can either use the first prediction and/or the second
 - Averaging in case of using both
- Note: same-layer temporal prediction can provide better compression in case of low motion videos with detailed resolution

Spatial Scalability: Improving Efficiency

- To improve the coding efficiency of inter-layer prediction, two coding tools were added
 - Prediction of macroblock modes and associated motion parameters
 - Prediction of the residual signal
- A new macroblock type is defined
 - Transmits a residue signal
 - No intra-prediction mode nor motion parameters
 - If the corresponding macroblock in the reference layer is
 - Intra-coded → intra prediction: upsample reference layer
 - Inter-coded→motion prediction: motion vectors are scaled up

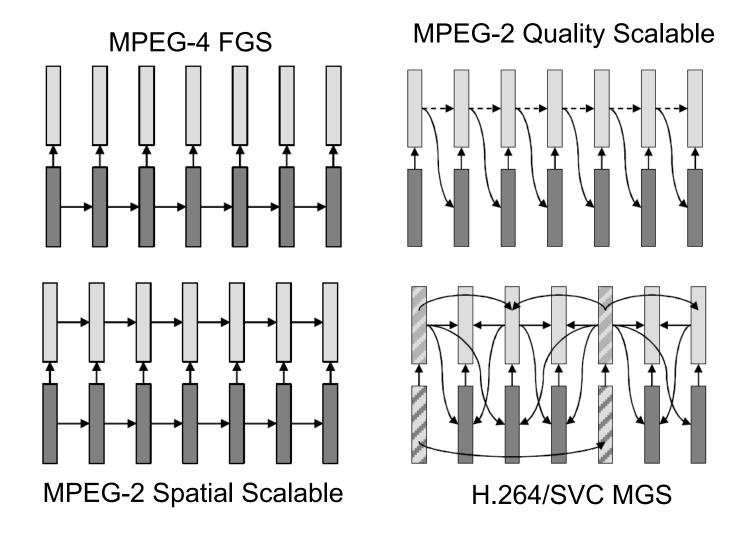
Spatial Scalability: Coding Efficiency

- Single-loop vs. multiple-loop decoding
 - Reconstructing inter-coded reference layer or not...
- Coding tools: Intra-layer prediction (I), motion prediction (M), residual prediction (R)
- Take-Away
 - I, M, R are beneficial
 - But multiple-loop leads to minor enhancements, while incurring high decoding overhead

Quality Scalability

Basic Idea:

- Multiple layers created with same resolution but different fidelity (picture quality)
- Different qualities can be achieved by controlling quantization step
- H.264/SVC quality scalability models
 - Coarse-Grained Scalability (CGS)
 - Few layers
 - Medium-Grained Scalability (MGS)
 - More flexible


Quality Scalability: CGS

- Similar to spatial scalability, but with same resolution
- Use different quality parameters in different layers
- Supports a few (typically 3 to 6) different bit-rates/ layers
- Too many layers → high overhead → low coding efficiency

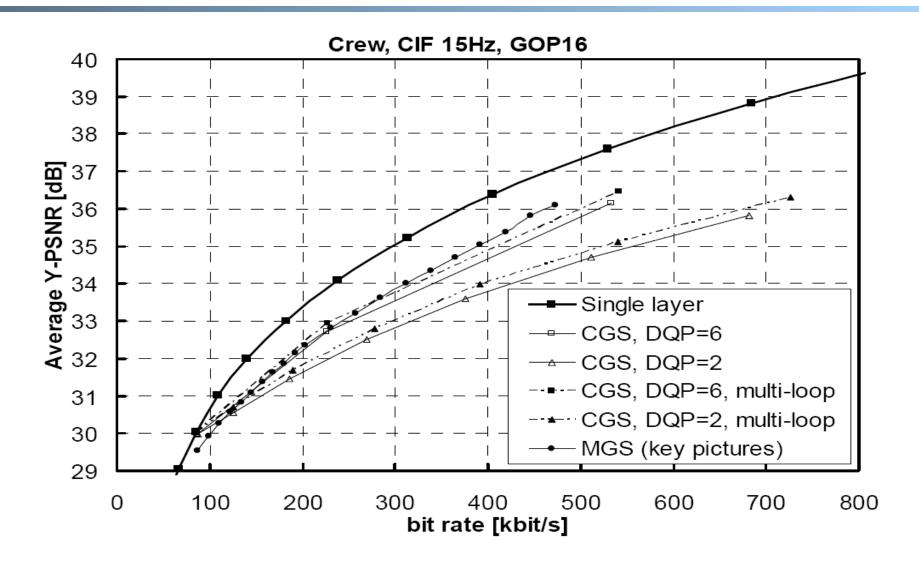
Quality Scalability: MGS

- Medium-Grained Scalability (MGS) improves:
 - Flexibility of the stream
 - Packet-level quality scalability
 - Error robustness
 - Controlling drift propagation
 - Coding efficiency
 - Use of more information for temporal prediction

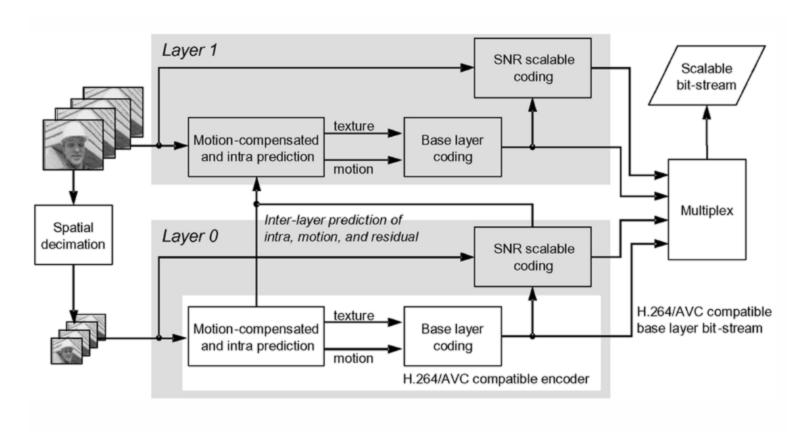
Quality Scalability: MGS Prediction Structure

Quality Scalability: MGS Key Frames

- Video frames of coarsest temporal layer are called key frames
- Key frames only use base-layer frames for predictions ← robustness
- Non-key frames can only highest possible layers for prediction ← coding efficiency


Quality Scalability: MGS

- MGS: flexibility of the stream
 - Enhancement layer transform coefficients can be distributed among several slices


1	1	2	3
2	2	3	4
2	3	3	4
3	3	4	4

- Packet-level quality scalability

Quality Scalability: MGS vs. CGS

SVC Encoder Structure

Simple example for 2 spatial layers

Summary

- Different models of scalability
 - Simulcast, MDC, SVC
- SVC
 - Temporal
 - Spatial
 - Quality
- H.264/SVC tried to improve coding efficiency while reducing complexity
 - It achieves the former goal: gap between H.264/SVC and MPEG-4 is reported to be as low as 10%
 - It arguably fails the later goal: very few SVC chip designs are out there, mostly due to memory limitation

Compiling JSVM (and other ref. sw)

- Create working folder: mkdir JSVM; cd JSVM
- **CVS login:** cvs -d :pserver:jvtuser:jvt.Amd. 2@garcon.ient.rwth-aachen.de:/cvs/jvt login
- **CVS checkout:** cvs -d :pserver:jvtuser@garcon.ient.rwth-aachen.de:/cvs/jvt checkout jsvm
- Get into the build directory (using Linux as example): cd jsvm/JSVM/H264Extension/build/linux
- Compile: make

The resulting binary files are under JSVM/jsvm/bin

JSVM Utilities

- *H264AVCEncoderLibTestStatic*: reference encoder
- *H264AVCDecoderLibTestStatic*: reference decoder
- *BitStreamExtractorStatic*: extract a substream from the global scalable stream
- PSNRStatic, YUVCompareStatic: compare two yuv files for PSNR
- *FixedQPEncoderStatic*: binary search algorithm for rate control (there is no rate control algorithms in JSVM)
- *H264AVCVideoIoLibStatic*: library for read and write NAL units ← useful for your term projects

Encoding a Two Layer CGS Stream (1/5)

Prepare the configure files

- One main configuration file: main.cfg
- One layer configuration file for each layer: layer0.cfg and layer1.cfg

Download the YUV files

- wget http://nsl.cs.sfu.ca/video/library/YUV/4CIF/CREW_704x576_30_orig_01.yuv
- wget http://nsl.cs.sfu.ca/video/library/YUV/CIF/CREW_352x288_30_orig_01.yuv

Encoding a Two Layer CGS Stream (2/5)

main.cfg

JSVM Main Configuration File

```
OutputFile
                        CS5263.264 # Bitstream file
FrameRate
                        30.0
                                   # Maximum frame rate [Hz]
                        150
FramesToBeEncoded
                                   # Number of frames (at input frame
rate)
GOPSize
                        16
                                   # GOP Size (at maximum frame rate)
BaseLayerMode
                                   # Base layer mode (0,1: AVC
compatible,
                                                         2: AVC w
subseq SEI)
SearchMode
                                   # Search mode (0:BlockSearch,
                        4
4:FastSearch)
                        32
                                   # Search range (Full Pel)
SearchRange
                                   # Number of layers
NumLayers
                        layer0.cfg # Layer configuration file
LayerCfq
LayerCfg
                        layer1.cfg # Layer configuration file
```

Encoding a Two Layer CGS Stream (3/5)

layer0.cfg

JSVM Layer Configuration File

Encoding a Two Layer CGS Stream (4/5)

Encode the video

- ../bin/H264AVCEncoderLibTestStatic -pf main.cfg - lqp 0 30 -lqp 1 32

Decode at the full quality

- ../bin/H264AVCDecoderLibTestStatic CS5263.264 full.yuv

Playout the reconstructed yuv file

- mplayer -demuxer rawvideo -rawvideo fps=10:w=704:h=576:format=i420 -loop 0 full.yuv

Encoding a Two Layer CGS Stream (5/5)

- Extract a lower resolution stream
 - ../bin/BitStreamExtractorStatic CS5263.264 CS5263_LoFi.264 -1 0
- Decode the video
 - ../bin/H264AVCDecoderLibTestStatic CS5263_LoFi.264 LoFi.yuv
- Play the low resolution reconstructed video
 - mplayer -demuxer rawvideo -rawvideo fps=10:w=352:h=288:format=i420 -loop 0 LoFi.yuv

Compute PSNR

../bin/PSNRStatic 704 576CREW_704x576_30_orig_01.yuv full.yuv

0	38,9117	43,1924	43,8809
1	34,3800	39,0224	39,2633
2	37,0061	42,5263	42,8077
3	36,7575	42,3130	42,4146
••••			
147	33,8073	39,1530	39,1838
148	35,4138	39,7400	39,5863
149	34,3667	39,4859	39,0969
total	35,1929	40,6697	40,6936

Compile and Use OpenSVC

- Download the source code from Sourceforge
 - http://sourceforge.net/projects/opensvcdecoder/
- unzip the source code
- cd to Mplayer/ folder
- Configure:
 - CPPFLAGS="-I/opt/local/include/" LDFLAGS="-L/opt/local/lib" CC=qcc-4.2 ./configure --enable-svc
- make
- Decode the 4CIF version
 - ./mplayer -fps 30 -loop 0 ../../jsvm/CS5262/CS5262.264
- Decode the CIF version
 - ./mplayer -fps 30 -setlayer 0 -loop 0 ../../jsvm/CS5262/ CS5262.264
- OpenSVC supports switching among layers, but it doesn't work on our 264 file, why? How can we fix it? ← homework assignment?