
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 13: Synchronous/Reactive Models
(Ch. 6)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

2

Concurrent Composition:
Alternatives to Threads

Threads yield incomprehensible behaviors.

Composition of State Machines:
•  Side-by-side composition
•  Cascade composition
•  Feedback composition

We will begin with synchronous composition, an abstraction
that has been very effectively used in hardware design and
is gaining popularity in software design.

3

Recall: Actor Model for State Machines

Expose inputs and outputs, enabling composition:

4

Recall: Actor Model of Continuous-Time Systems

A system is a function that
accepts an input signal and
yields an output signal.

The domain and range of
the system function are
sets of signals, which
themselves are functions.

Parameters may affect the
definition of the function S.

5

Recall: Composition of Actors

Angular velocity
appears on both
sides. The semantics
(meaning) of the
model is the solution
to this equation.

We will now generalize this notion of composition.

6

Side-by-Side Composition

Synchronous composition: the machines react
simultaneously and instantaneously.

7

Cascade Composition

Synchronous composition: the machines react
simultaneously and instantaneously, despite the apparent
causal relationship!

8

Synchronous Composition:
Reactions are Simultaneous and Instantaneous

Consider a cascade composition as follows:

9

Synchronous Composition:
Reactions are Simultaneous and Instantaneous

In this model, you must not think of machine A as reacting before machine
B. If it did, the unreachable states would not be unreachable.

SC = SA�SB

unreachable

10

Feedback Composition

Turns out everything can be viewed as feedback composition…

11

Example: Feedback Composition

Angular velocity
appears on both
sides. The semantics
(meaning) of the
model is the solution
to this equation.

12

Observation: Any Composition is a
Feedback Composition

s ∈ S N

The behavior of the system
is a “fixed point.”

13

Fixed Point Semantics

s ∈ S N

Consider an
interconnection of actors

Abstract actors
Abstract signals

Reorganize

We seek an s ∈ S N

that satisfies F(s) = s.

Such an s is called a
fixed point.

We would like the
fixed point to exist
and be unique. And
we would like a
constructive
procedure to find it.

It is the behavior of
the system.

14

Data Types

x y

s

As with any connection, we require compatible data types:

Vy �Vx

Then the signal on the feedback loop is a function

s : N⇥Vy⇤{absent}

Then we seek s such that

F(s) = s

where F is the actor function, which for determinate systems
has form

F : (N⇥Vx⇤{absent})⇥ (N⇥Vy⇤{absent})

15

Firing Functions

x y

s

With synchronous composition of determinate state machines,
we can break this down by reaction. At the n-th reaction, there
is a (state-dependent) function

f (n) : Vx⇥{absent}�Vy⇥{absent}

such that
s(n) = (f (n))(s(n))

This too is a fixed point.

16

Well-Formed Feedback

x y

s

At the n-th reaction, we seek s(n) �Vy⇥{absent} such that

s(n) = (f (n))(s(n))

There are two potential problems:

1. It does not exist.

2. It is not unique.

In either case, we call the system ill formed. Otherwise, it is
well formed.

Note that if a state is not reachable, then it is irrelevant to
determining whether the machine is well formed.

17

Well-Formed Example

In state s1, we get the unique s(n) = absent.
In state s2, we get the unique s(n) = present.
Therefore, s alternates between absent and present.

18

Composite Machine

19

Ill-Formed Example 1 (Existence)

In state s1, we get the unique s(n) = absent.
In state s2, there is no fixed point.
Since state s2 is reachable, this composition is ill formed.

20

Ill-Formed Example 2 (Uniqueness)

In s1, both s(n) = absent and s(n) = present are fixed points.
In state s2, we get the unique s(n) = present.
Since state s1 is reachable, this composition is ill formed.

21

Constructive Semantics: Single Signal

1. Start with s(n) unknown.

2. Determine as much as you can about (f (n))(s(n)).

3. If s(n) becomes known (whether it is present, and if it is
not pure, what its value is), then we have a unique fixed
point.

A state machine for which this procedure works is said to be
constructive.

22

Non-Constructive Well-Formed State Machine

In state s1, if the input is unknown, we cannot immediately tell
what the output will be. We have to try all the possible values
for the input to determine that in fact s(n) = absent for all n.

For non-constructive machines, we are forced to do exhaus-
tive search. This is only possible if the data types are finite, and
is only practical if the data types are small.

23

Must / May Analysis

For the above constructive machine, in state s1, we can im-
mediately determine that the machine may not produce an out-
put. Therefore, we can immediately conclude that the output is
absent, even though the input is unknown.

In state s2, we can immediately determine that the machine
must produce an output, so we can immediately conclude that
the output is present.

24

Constructive Semantics: Multiple Signals

1. Start with s1(n), · · · ,sN(n) unknown.

2. Determine as much as you can about (f (n))(s1(n), · · · ,sN(n)).

3. Using new information about s1(n), · · · ,sN(n), repeat step
(2) until no information is obtained.

4. If s1(n), · · · ,sN(n) all become known, then we have a
unique fixed point and a constructive machine.

A state machine for which this procedure works is said to be
constructive.

25

Constructive Semantics: Multiple Actors

Procedure is the same.

26

Constructive Semantics: Arbitrary Structure

Procedure is the same.

A state machine language with constructive semantics

will reject all compositions that in any iteration fail to
make all signals known.

Such a language rejects some well-formed compositions.

27

Conclusion

The emphasis of synchronous composition, in contrast
with threads, is on determinate and analyzable
concurrency.

Although there are subtleties with synchronous programs,
all constructive synchronous programs have a unique
and well-defined meaning.

Automated tools can systematically explore all possible
behaviors. This is not possible in general with threads.

