
1 

Department of Computer Science 
National Tsing Hua University 

 

CS 5244: Introduction to Cyber 
Physical Systems 

 

Unit 16: Reachability Analysis (Ch. 14) 
 

Instructor: Cheng-Hsin Hsu 

 
Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit 

A. Seshia at UC Berkeley for sharing their course materials 

  
 

 
 



2 

The Challenge of Dependable Software in                 
Embedded Systems 

“In 1 of every 12,000 settings, the software can cause an 
error in the programming resulting in the possibility of 
producing paced rates up to 185 beats/min.”!

Today’s medical devices run on 
software… software defects can have 
life-threatening consequences.!

“the patient collapsed while walking towards                             
the cashier after refueling his car […] A week later the 
patient complained to his physician about an increasing 
feeling of unwell-being since the fall.”!

[different device]!

[Journal of Pacing and Clinical 
Electrophysiology, 2004]!



3 

A Robot delivery service, with obstacles  

                            φ = destination for robot 
  Specification:  
    The robot eventually reaches φ  

  Suppose there are n destinations φ1, φ2, …, φn  
  The new specification could be that 
    The robot visits φ1, φ2, …, φn in that order 

φ	


Starting 
position of robot 

obstacles 



4 

Graph of FSM modeling 2 trains 
and a bridge traffic controller. 

Is it possible for the             
trains to be on a collision 
path? 

[Moritz Hammer, Uni. Muenchen] 



5 

Reachability Analysis and Model Checking 

Reachability analysis is the process of computing the set 
of reachable states for a system. 
l  all three problems can be solved using reachability 

analysis 
 
Model checking is an algorithmic method for determining 

if a system satisfies a formal specification expressed in 
temporal logic. 

 
Model checking typically performs reachability analysis. 
 



6 

Formal Verification  

S 

E 

Φ	


Compose Verify 

Property 

System 

Environment 

YES 
[proof] 

NO 
counterexample 

M 



7 

Open vs. Closed Systems 

A closed system is one with no inputs 
 

For verification, we obtain a closed system by 
composing the system and environment models 



8 

Model Checking G p 

Consider an LTL formula of the form Gp where p is a 
proposition    (p is a property on a single state) 

To verify Gp on a system M, one simply needs to 
enumerate all the reachable states and check that they 
all satisfy p. 

The state space found is typically represented as a 
directed graph called a state graph. 

When M is a finite-state machine, this reachability 
analysis will terminate (in theory). 

In practice, though, the number of states may be 
prohibitively large consuming too much run-time or 
memory (the state explosion problem). 



9 

Traffic Light Controller Example 
Property: G (: (green Æ crossing)) 



10 

Composed FSM for Traffic Light Controller 
Property: G (: (green Æ crossing)) 
This FSM has 188 states (accounting for different values 

of count) 



11 

Reachability Analysis Through Graph Traversal  

Construct the state graph on the fly  
 
Start with initial state, and explore next states using a 
suitable graph-traversal strategy. 



12 

Depth-First Search (DFS) 

Maintain 2 data 
structures: 
1. Set of visited states R 
2. Stack with current path 
from the initial state 

Potential problems 
for a huge graph? 



13 

Generating counterexamples 

If the DFS algorithm finds the target 
(‘error’) state s, how can we generate a 
trace from the initial state to that state? 



14 

Generating counterexamples 

If the DFS algorithm finds the target (‘error’) 
state s, how can we generate a trace from  the 
initial state to that state? 

s 

s0 

s1 

Stack: 

s0 

s1 

s 

Simply read the trace        
off the stack 



15 

Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0) } 



16 

Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1) } 



17 

Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60) } 



18 

Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60), 
         (green, none, 0) } 



19 

Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60), 
         (green, none, 0), (green, none, 1) } 



20 

Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60), 
         (green, none, 0), (green, none, 1), …, (green, none, 60) } 



21 

Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60), 
         (green, none, 0), (green, none, 1), …, (green, none, 60), 
         (yellow, waiting, 0) } 



22 

Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60), 
         (green, none, 0), (green, none, 1), …, (green, none, 60), 
         (yellow, waiting, 0), … (yellow, waiting, 5) } 



23 

Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60), 
         (green, none, 0), (green, none, 1), …, (green, none, 60), 
         (yellow, waiting, 0), … (yellow, waiting, 5), 
         (pending, waiting, 1), …, (pending, waiting, 60) } 



24 

The Symbolic Approach 
Rather than exploring new reachable states one at a 
time, we can explore new sets of reachable states 

l  However, we only represent sets implicitly, as Boolean 
functions 

 
Set operations can be performed using Boolean algebra 
 
Represent a finite set of states S by its characteristic 
Boolean function fS 
¢  fS (x) = 1 iff x    S  
 
Similarly, δ can be viewed as a finite set of transitions 
(edges in the FSM), and so can also be represented 
using a characteristic Boolean function 
 

�



25 

. . . 
Qk 

Q2 

Symbolic Approach (Breadth First Search) 

¢  Generate the state graph by repeated application of 
transition function (δ)   
¢  If the goal state reached, stop & report success. Else, 
continue until all states are seen. 

Q1 Q0 

δ	


s 



26 

The Symbolic Reachability Algorithm 

Two extremely useful techniques: 
Binary Decision Diagrams (BDDs) 
Boolean Satisfiability (SAT) 
These are covered in EECS 144 

\ R 



27 

Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ count = 0)  



28 

Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 1)  



29 

Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 60)  



30 

Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 60) 
    Ç (vl = green Æ vp = none Æ count = 0)  



31 

Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 60) 
    Ç (vl = green Æ vp = none Æ  0 · count · 1)  
    Ç (vl = pending Æ vp = waiting Æ count = 1) 



32 

Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 60) 
    Ç (vl = green Æ vp = none Æ  0 · count · 60) 
    Ç (vl = pending Æ vp = waiting Æ 1 · count · 60)  



33 

Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 60) 
    Ç (vl = green Æ vp = none Æ  0 · count · 60) 
    Ç (vl = pending Æ vp = waiting Æ 1 · count · 60) 
    Ç (vl = yellow Æ vp = waiting Æ count = 0) 



34 

Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 60) 
    Ç (vl = green Æ vp = none Æ  0 · count · 60) 
    Ç (vl = pending Æ vp = waiting Æ 1 · count · 60) 
    Ç (vl = yellow Æ vp = waiting Æ 0 · count · 5) 



35 

Abstraction in Model Checking 

Should use simplest model of a system that provides 
proof of safety. 

Simpler models have smaller state spaces and easier to 
check. 

The challenge is to know what details can be abstracted 
away. 

A simple and useful approach is called localization 
abstraction. 

A localization abstraction hides state variables that are 
irrelevant to the property being verified. 



36 

Abstract Model for Traffic Light Example 

What’s the hidden variable? 
Property: G (: (green Æ crossing)) 



37 

Model Checking Liveness Properties 

A safety property (informally) states that “nothing bad 
ever happens” and has finite-length counterexamples.  

 
A liveness property, on the other hand, states 
“something good eventually happens”, and only has 
infinite-length counterexamples. 

 
Model checking liveness properties is more involved than 

simply doing a reachability analysis. See Section 14.4 
for more information. 



38 

Suppose we have a Robot that must pick up 
multiple things, in any order  

 
 
 
How would you state this goal in temporal logic? 
 

�i = robot picks up item i, where 1� i� n



39 

Suppose we have a Robot that must pick up 
multiple things, in any order  

      	


	


 
Goal to be achieved is: 
 
 
How can we find a strategy to achieve this goal? 
 
 

�i = robot picks up item i, where 1� i� n

F�1�F�2� · · ·�F�n



40 

Suppose we have a Robot that must pick up 
multiple things, in any order  

      	


	


 
Goal to be achieved is: 
 
 
How can we find a strategy to achieve this goal? 
à How about this: Do repeated reachability, first from q0 to 
reach φ1, then from φ1 to reach φ2, then φ2 to reach φ3, 
à Problem: What if φ2 is not reachable from φ1, but reachable 
from q0?   

�i = robot picks up item i, where 1� i� n

F�1�F�2� · · ·�F�n



41 

Student question: Suppose we have a Robot that 
must pick up multiple things, in a specified order  

 
 
Goal to be achieved is: 

�i = robot picks up item i, where 1� i� n

F(�1�F(�2� · · ·�F�n))



42 

A Robot delivery service, with moving obstacles  

                            φ = destination for robot 
  At any time step: 
Robot can move Left, Right, Up, Down, Stay Put 
Environment can move one obstacle Up or Down or Stay Put 
à But only 3 times total  
Can model Robot and Env as FSMs 
à  Robot state = its position,  
à  Env state = positions of obstacles and counts 

φ	


start 



43 

A Robot delivery service, with moving obstacles  

       φ = robot delivers item to destination 
Goal to be achieved can be stated in temporal logic 
            F φ  
 
How can we find a path for the robot from starting point  
to the destination? 
à This is an example of a “reachability problem” 

φ	


start 


