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The Challenge of Dependable Software in                 
Embedded Systems 

“In 1 of every 12,000 settings, the software can cause an 
error in the programming resulting in the possibility of 
producing paced rates up to 185 beats/min.”!

Today’s medical devices run on 
software… software defects can have 
life-threatening consequences.!

“the patient collapsed while walking towards                             
the cashier after refueling his car […] A week later the 
patient complained to his physician about an increasing 
feeling of unwell-being since the fall.”!

[different device]!

[Journal of Pacing and Clinical 
Electrophysiology, 2004]!
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A Robot delivery service, with obstacles  

                            φ = destination for robot 
  Specification:  
    The robot eventually reaches φ  

  Suppose there are n destinations φ1, φ2, …, φn  
  The new specification could be that 
    The robot visits φ1, φ2, …, φn in that order 

φ	


Starting 
position of robot 

obstacles 
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Graph of FSM modeling 2 trains 
and a bridge traffic controller. 

Is it possible for the             
trains to be on a collision 
path? 

[Moritz Hammer, Uni. Muenchen] 
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Reachability Analysis and Model Checking 

Reachability analysis is the process of computing the set 
of reachable states for a system. 
l  all three problems can be solved using reachability 

analysis 
 
Model checking is an algorithmic method for determining 

if a system satisfies a formal specification expressed in 
temporal logic. 

 
Model checking typically performs reachability analysis. 
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Formal Verification  
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Open vs. Closed Systems 

A closed system is one with no inputs 
 

For verification, we obtain a closed system by 
composing the system and environment models 
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Model Checking G p 

Consider an LTL formula of the form Gp where p is a 
proposition    (p is a property on a single state) 

To verify Gp on a system M, one simply needs to 
enumerate all the reachable states and check that they 
all satisfy p. 

The state space found is typically represented as a 
directed graph called a state graph. 

When M is a finite-state machine, this reachability 
analysis will terminate (in theory). 

In practice, though, the number of states may be 
prohibitively large consuming too much run-time or 
memory (the state explosion problem). 
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Traffic Light Controller Example 
Property: G (: (green Æ crossing)) 
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Composed FSM for Traffic Light Controller 
Property: G (: (green Æ crossing)) 
This FSM has 188 states (accounting for different values 

of count) 
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Reachability Analysis Through Graph Traversal  

Construct the state graph on the fly  
 
Start with initial state, and explore next states using a 
suitable graph-traversal strategy. 
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Depth-First Search (DFS) 

Maintain 2 data 
structures: 
1. Set of visited states R 
2. Stack with current path 
from the initial state 

Potential problems 
for a huge graph? 
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Generating counterexamples 

If the DFS algorithm finds the target 
(‘error’) state s, how can we generate a 
trace from the initial state to that state? 
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Generating counterexamples 

If the DFS algorithm finds the target (‘error’) 
state s, how can we generate a trace from  the 
initial state to that state? 

s 

s0 

s1 

Stack: 

s0 

s1 

s 

Simply read the trace        
off the stack 
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Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0) } 
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Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1) } 
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Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60) } 
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Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60), 
         (green, none, 0) } 
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Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60), 
         (green, none, 0), (green, none, 1) } 
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Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60), 
         (green, none, 0), (green, none, 1), …, (green, none, 60) } 
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Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60), 
         (green, none, 0), (green, none, 1), …, (green, none, 60), 
         (yellow, waiting, 0) } 
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Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60), 
         (green, none, 0), (green, none, 1), …, (green, none, 60), 
         (yellow, waiting, 0), … (yellow, waiting, 5) } 



23 

Explicit State Model Checking Example 
Property: G (: (green Æ crossing)) 

R = { (red, crossing, 0), (red, crossing, 1), … (red, crossing, 60), 
         (green, none, 0), (green, none, 1), …, (green, none, 60), 
         (yellow, waiting, 0), … (yellow, waiting, 5), 
         (pending, waiting, 1), …, (pending, waiting, 60) } 
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The Symbolic Approach 
Rather than exploring new reachable states one at a 
time, we can explore new sets of reachable states 

l  However, we only represent sets implicitly, as Boolean 
functions 

 
Set operations can be performed using Boolean algebra 
 
Represent a finite set of states S by its characteristic 
Boolean function fS 
¢  fS (x) = 1 iff x    S  
 
Similarly, δ can be viewed as a finite set of transitions 
(edges in the FSM), and so can also be represented 
using a characteristic Boolean function 
 

�
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. . . 
Qk 

Q2 

Symbolic Approach (Breadth First Search) 

¢  Generate the state graph by repeated application of 
transition function (δ)   
¢  If the goal state reached, stop & report success. Else, 
continue until all states are seen. 

Q1 Q0 

δ	


s 
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The Symbolic Reachability Algorithm 

Two extremely useful techniques: 
Binary Decision Diagrams (BDDs) 
Boolean Satisfiability (SAT) 
These are covered in EECS 144 

\ R 
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Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ count = 0)  
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Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 1)  
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Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 60)  
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Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 60) 
    Ç (vl = green Æ vp = none Æ count = 0)  
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Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 60) 
    Ç (vl = green Æ vp = none Æ  0 · count · 1)  
    Ç (vl = pending Æ vp = waiting Æ count = 1) 
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Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 60) 
    Ç (vl = green Æ vp = none Æ  0 · count · 60) 
    Ç (vl = pending Æ vp = waiting Æ 1 · count · 60)  
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Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 60) 
    Ç (vl = green Æ vp = none Æ  0 · count · 60) 
    Ç (vl = pending Æ vp = waiting Æ 1 · count · 60) 
    Ç (vl = yellow Æ vp = waiting Æ count = 0) 
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Symbolic Model Checking Example 
Property: G (: (green Æ crossing)) 

R =  (vl = red Æ vp = crossing Æ  0 · count · 60) 
    Ç (vl = green Æ vp = none Æ  0 · count · 60) 
    Ç (vl = pending Æ vp = waiting Æ 1 · count · 60) 
    Ç (vl = yellow Æ vp = waiting Æ 0 · count · 5) 
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Abstraction in Model Checking 

Should use simplest model of a system that provides 
proof of safety. 

Simpler models have smaller state spaces and easier to 
check. 

The challenge is to know what details can be abstracted 
away. 

A simple and useful approach is called localization 
abstraction. 

A localization abstraction hides state variables that are 
irrelevant to the property being verified. 
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Abstract Model for Traffic Light Example 

What’s the hidden variable? 
Property: G (: (green Æ crossing)) 
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Model Checking Liveness Properties 

A safety property (informally) states that “nothing bad 
ever happens” and has finite-length counterexamples.  

 
A liveness property, on the other hand, states 
“something good eventually happens”, and only has 
infinite-length counterexamples. 

 
Model checking liveness properties is more involved than 

simply doing a reachability analysis. See Section 14.4 
for more information. 
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Suppose we have a Robot that must pick up 
multiple things, in any order  

 
 
 
How would you state this goal in temporal logic? 
 

�i = robot picks up item i, where 1� i� n
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Suppose we have a Robot that must pick up 
multiple things, in any order  

      	


	


 
Goal to be achieved is: 
 
 
How can we find a strategy to achieve this goal? 
 
 

�i = robot picks up item i, where 1� i� n

F�1�F�2� · · ·�F�n
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Suppose we have a Robot that must pick up 
multiple things, in any order  

      	


	


 
Goal to be achieved is: 
 
 
How can we find a strategy to achieve this goal? 
à How about this: Do repeated reachability, first from q0 to 
reach φ1, then from φ1 to reach φ2, then φ2 to reach φ3, 
à Problem: What if φ2 is not reachable from φ1, but reachable 
from q0?   

�i = robot picks up item i, where 1� i� n

F�1�F�2� · · ·�F�n



41 

Student question: Suppose we have a Robot that 
must pick up multiple things, in a specified order  

 
 
Goal to be achieved is: 

�i = robot picks up item i, where 1� i� n

F(�1�F(�2� · · ·�F�n))
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A Robot delivery service, with moving obstacles  

                            φ = destination for robot 
  At any time step: 
Robot can move Left, Right, Up, Down, Stay Put 
Environment can move one obstacle Up or Down or Stay Put 
à But only 3 times total  
Can model Robot and Env as FSMs 
à  Robot state = its position,  
à  Env state = positions of obstacles and counts 

φ	


start 
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A Robot delivery service, with moving obstacles  

       φ = robot delivers item to destination 
Goal to be achieved can be stated in temporal logic 
            F φ  
 
How can we find a path for the robot from starting point  
to the destination? 
à This is an example of a “reachability problem” 

φ	


start 


