Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 16: Reachability Analysis (Ch. 14)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit
A. Seshia at UC Berkeley for sharing their course materials

The Challenge of Dependable Software in
Embedded Systems

Today’ s medical devices run on
software... software defects can have

life-threatening consequences.

[Journal of Pacing and Clinical
Electrophysiology, 2004]

“the patient collapsed while walking towards [ifferent device]
the cashier after refueling his car [...] A week later the

patient complained to his physician about an increasing

feeling of unwell-being since the fall.”

“In 1 of every 12,000 settings, the software can cause an
error in the programming resulting in the possibility of
producing paced rates up to 185 beats/min.”

A Robot delivery service, with obstacles

obstacles
\

Starting

position of robot L
¢ = destination for robot

Specification:
The robot eventually reaches ¢

Suppose there are n destinations ¢, ¢,, ..., ¢,
The new specification could be that
The robot visits ¢4, ¢, ..., ¢, in that order

"\-\:'-4,, Y

“~

"
.
"

Graph of FSM modeling 2 trains
and a bridge traffic controller.. " . i

Is it possible for the }‘\\'
trains to be on a collision A //
path?

¥ . : 4

Reachability Analysis and Model Checking

Reachability analysis is the process of computing the set
of reachable states for a system.

all three problems can be solved using reachabillity
analysis

Model checking is an algorithmic method for determining
If a system satisfies a formal specification expressed in

temporal logic.

Model checking typically performs reachability analysis.

Formal Verification

Property
e |
System] > YES
’ [proof]
S > AV

Environment| | €ompose ——>1 Verify

E >

—> NO
counterexample

Open vs. Closed Systems

A closed system is one with no inputs

in out out
So Sc

(a) Open system (b) Closed system

For verification, we obtain a closed system by
composing the system and environment models

Model Checking G p

Consider an LTL formula of the form Gp where p is a
proposition (p is a property on a single state)

To verify Gp on a system M, one simply needs to
enumerate all the reachable states and check that they
all satisfy p.

The state space found is typically represented as a
directed graph called a state graph.

When M is a finite-state machine, this reachability
analysis will terminate (in theory).

In practice, though, the number of states may be
prohibitively large consuming too much run-time or
memory (the state explosion problem).

Traffic Light Controller Example
Property: G (: (green A crossing))

variable: count: {0,---,60}

variable: count: {0,---,60} inputs: sigR, sigG, sigY : pure
inputs: pedestrian: pure outputs: pedestrian : pure
outputs: sigR, sigG, sigY : pure true /

count < 60 /

true / pedestrian
count .= count+ 1

------ SigR
p—>
count > 60 / sigG pedestrian A\ count < 60 / sigG
count :=0 count := count + 1 ; <
sigY

count := count + 1 count := count + 1

...........

‘e

- pedestrian A\ count > 60 / sigY
count ;=0

count := 0 crossing

count > 60 / sigY <+—<
count > 5 / sigR count :=0 pedestrian

count :=0

¢

count = count +1

Composed FSM for Traffic Light Controller

Property: G (: (green A crossing))

This FSM has 188 states (accounting for different values
of count)

variable: count: {0,---,60} count < 60 /
count := count + 1

4 -

count Z 60 / { /: count < 60 /

green, none count := count + 1
count := count+1 €Ut y

A
1)
L]
1
]
x

L (red, crossing)count> 60 b/ count :— OCpending, waiting)/

J w count := count + 1

count :=(
count > 5/ (Yellow, waiting count > 60 / count :=0
count :=0 ! \’

10

Reachability Analysis Through Graph Traversal

Construct the state graph on the fly

Start with initial state, and explore next states using a
suitable graph-traversal strategy.

11

Depth-First Search (DFS)

Maintain 2 data
structures:

1.Set of visited states R
2.Stack with current path
from the initial state

Potential problems
for a huge graph?

12

Generating counterexamples

If the DFS algorithm finds the target
(“error’) state s, how can we generate a
trace from the initial state to that state?

13

Generating counterexamples

If the DFS algorithm finds the target (“error’)
state s, how can we generate a trace from the
initial state to that state?

Simply read the trace

Q off the stack

14

Explicit State Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e e

count > 60 / > W count < 60 /

green, none count := count + 1
count := count+1 count V

Y (red, crossing) > 60V count OCpending, waiting).E
count > =

7
’

—/ count ;= count + 1
count :=(V
count >5 / (yellow, waiting count > 60 / count :== 0

count :=0 "

''''''

R ={ (red, crossing, 0) }

15

Explicit State Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count > 60 / > W count < 60 /

green, none count := count + 1
count := count+1 count V

Y (red, crossing) > 60V count OCpending, waiting).E
count > =

7
’

—/ count ;= count + 1
count :=(V
count >5 / (yellow, waiting count > 60 / count :== 0

count :==0 ‘

''''''

R ={ (red, crossing, 0), (red, crossing, 1) }

16

Explicit State Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count > 60 / A count < 60 /

count — 0 (gree n, none count := count + 1
count := count + 1 /

Y (red, crossing) > 60V count O(pendmg waltlng)
* coun =

—/ coun.t- = count + 1
count :=0 V
count >5 / (yellow, waiting count > 60 / count :== 0

count :==0 ‘

''''''

count = count +1

R ={ (red, crossing, 0), (red, crossing, 1), ... (red, crossing, 60) }

17

Explicit State Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count > 60 / A count < 60 /

count — 0 (gree n, none count := count + 1
count := count + 1 /

Y (red, crossing) > 60V count O(pendmg waltlng)
* coun =

—/ coun.t- = count + 1
count :=0 *
count >5 / (yellow, waiting count > 60 / count :== 0

count :==0 ‘

''''''

count = count +1

R ={ (red, crossing, 0), (red, crossing, 1), ... (red, crossing, 60),
(green, none, 0) }

18

Explicit State Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count > 60 / A count < 60 /

count — 0 (gree n, none count := count + 1
count := count + 1 /

Y (red, crossing) > 60V count O(pendmg waltlng)
* coun =

—/ coun.t- = count + 1
count :=0 *
count >5 / (yellow, waiting count > 60 / count :== 0

count :==0 ‘

''''''

count = count +1

R ={ (red, crossing, 0), (red, crossing, 1), ... (red, crossing, 60),
(green, none, 0), (green, none, 1) }

19

Explicit State Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count > 60 / A count < 60 /

B green, none count := count + 1
count := count+1 count V

Y (red, crossing) > 60V count = O(pendmg waltlng)
* coun =

—/ coun.t- = count + 1
count :=0 V
count >5 / (yellow, waiting count > 60 / count :== 0

count :==0 ‘

''''''

count = count +1

R ={ (red, crossing, 0), (red, crossing, 1), ... (red, crossing, 60),
(green, none, 0), (green, none, 1), ..., (green, none, 60) }

20

Explicit State Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count > 60 / A count < 60 /

N green, none count = count + 1
count := count+1 count V

Y (red, crossing) > 60V count = OCpendmg waltlng)
* coun =

—/ couriz: = count + 1
count :=0 V
count >5 / (yellow, waiting count > 60 / count :== 0

count :==0 ‘

''''''

count = count +1

R ={ (red, crossing, 0), (red, crossing, 1), ... (red, crossing, 60),
(green, none, 0), (green, none, 1), ..., (green, none, 60),

(yellow, waiting, 0) }

21

Explicit State Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count > 60 / A count < 60 /

N green, none count = count + 1
count := count+1 count V

Y (red, crossing) > 60V count = OCpendmg waltlng)
* coun =

—/ couriz: = count + 1
count :=0 V
count >5 / (yellow, waiting count > 60 / count :== 0

count :==0 ‘

''''''

count = count +1

R ={ (red, crossing, 0), (red, crossing, 1), ... (red, crossing, 60),
(green, none, 0), (green, none, 1), ..., (green, none, 60),

(yellow, waiting, 0), ... (yellow, waiting, 5) }

22

Explicit State Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

.
. o
.

count > 60 / A count < 60 /
_ green, none count := count + 1

count := count+1 count 7’)\

Y (red, crossing) +> 60V count O(pending, waiting),E
count > = !

J count ;= count +1
count :=0 V
count >5 / (yellow, waiting count > 60 / count :=0

count :=0 ; ‘

R ={ (red, crossing, 0), (red, crossing, 1), ... (red, crossing, 60),
(green, none, 0), (green, none, 1), ..., (green, none, 60),
(yellow, waiting, 0), ... (yellow, waiting, 5),

(pending, waiting, 1), ..., (pending, waiting, 60) }

23

The Symbolic Approach

Rather than exploring new reachable states one at a
time, we can explore new sets of reachable states

However, we only represent sets implicitly, as Boolean
functions

Set operations can be performed using Boolean algebra

Represent a finite set of states S by its characteristic
Boolean function f

ofi(x)=1iffxes

Similarly, 6 can be viewed as a finite set of transitions
(edges in the FSM), and so can also be represented

using a characteristic Boolean function ”

Symbolic Approach (Breadth First Search)

o Generate the state graph by repeated application of
transition function ()

o If the goal state reached, stop & report success. Else,
continue until all states are seen.

25

The Symbolic Reachability Algorithm

R ~1I N O AR W N

Input : Initial state sy and transition relation o for closed
finite-state system M, represented symbolically

Output: Set R of reachable states of M, represented
symbolically

Initialize: Current set of reached states R = {sp}

Symbolic_Search() {

Rpew = R

while R,,.,, # 0 do
Rpew =1{5' | Is € Rst. s €d(s)}\ R
R = RURpew

end Two extremely useful techniques:
} Binary Decision Diagrams (BDDs)
Boolean Satisfiability (SAT)
These are covered in EECS 144

Symbolic Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count > 60 / A count < 60 /

o O (green none count := count + 1
count := count+1 CoUnt-=

' (red crosslng) t> 60V count := O(pendlng waltlng)
coun =

_/ V coum: = count+1

count :=0
count > 5 / vellow waiting count > 60 / count :== 0

count :==0 ‘

''''''

count = count +1

R = (v,=red A& v, = crossing A count = 0)

27

Symbolic Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count > 60 / A count < 60 /

o O (green none count := count + 1
count := count+1 CoUnt-=

' (red crosslng) t> 60V count := O(pendlng waltlng)
coun =

_/ V coum: = count+1

count :=0
count > 5 / vellow waiting count > 60 / count :== 0

count :==0 ‘

''''''

count = count +1

R= (v,=red A& v, = crossing /£ 0 - count - 1)

Symbolic Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count > 60 / A count < 60 /

o O (green none count := count + 1
count := count+1 CoUnt-=

' (red crosslng) t> 60V count := O(pendlng waltlng)
coun =

_/ V coum: = count+1

count :=0
count > 5 / vellow waiting count > 60 / count :== 0

count :==0 ‘

''''''

count = count +1

R= (v,=red A& v, = crossing /£ 0 - count - 60)

Symbolic Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count < 60 /

count > 60 {
0 / (green none count := count + 1
count := count+1 COUnt :=

(red crossmg) t> 60V count := O(pendmg waltlng)
coun =

_/ *)/ counz: = count+1

count :=0
count > 5 / vellow waiting count > 60 / count :== 0

count :=0

''''''

count = count +1

R= (v,=red A v, = crossing /£ 0 - count - 60)
G (v, = green A v, = none A count = 0)

30

Symbolic Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count < 60 /

count > 60 {
/ (green none count := count + 1
count := count+1 COUnt := O

(red crossmg) t> 60V count := OCpendmg waltlng)
coun =

_/ V)/ counz: = count+1

count :=0
count > 5 / vellow waltmg count > 60 / count :== 0

count :=0

''''''

count = count +1

R= (v,=red A v, = crossing /£ 0 - count - 60)
green £ v, =none £ 0 - count - 1)
(v, = pending A v, = waiting A count = 1)

—~~
<
I

31

Symbolic Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count < 60 /

count > 60 {
/ (green none count := count + 1
count := count+1 COUnt := O

(red crossmg) t> 60V count := OCpendmg waltlng)
coun =

_/ V)/ counz: = count+1

count :=0
count > 5 / vellow waltmg count > 60 / count :== 0

count :=0

''''''

count = count +1

R= (v,=red A v, = crossing /£ 0 - count - 60)
C green A v, =none £ 0 - count - 60)
G (v, = pending A v, = waiting /£ 1 - count - 60)

—~~
<
I

32

Symbolic Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

e .

count > 60 / A count < 60 /

N green, none count = count + 1
count := count+1 count 7

(red crossmg) t> 60V count := O(pendmg waltlng)
coun =

_/ V counz: = count+1

count :=0
count > 5 / vellow waiting count > 60 / count :== 0
count :=0 "

''''''

count = count +1

R= (v,=red A v, = crossing /£ 0 - count - 60)
green £ v, =none £ 0 - count - 60)

G v =
G (v, = pending A v, = waiting /£ 1 - count - 60)
G

(v, = yellow A v, = waiting A count = 0)

33

Symbolic Model Checking Example
Property: G (: (green A crossing))

variable: count: {0,---,60} count < 60 /
count := count + 1

count > 60 / . count < 60 /
green, none count := count + 1

(red crossmg)

count > 60 |/ count := OCpendlng waltlng)

count = count + 1

count ;=0 *
count > 5 / YE||0W waiting count > 60 / count :==0
count :=0 \’

......

count = count +1

R= (v,=red A v, = crossing /£ 0 - count - 60)
C (v greenﬁEv =none /£ 0 - count - 60)

G (v, = pending A v, = waiting /£ 1 - count - 60)
G (v, = yellow A v, = waiting /£ 0 - count - 5)

Abstraction in Model Checking

Should use simplest model of a system that provides
proof of safety.

Simpler models have smaller state spaces and easier to
check.

The challenge is to know what details can be abstracted
away.

A simple and useful approach is called localization
abstraction.

A localization abstraction hides state variables that are
irrelevant to the property being verified.

35

Abstract Model for Traffic Light Example
Property: G (: (green A crossing))
What' s the hidden variable?

true /

green none true /|
true /

true | Cpe nding, waltlng)

red, crossing

true /

yeIIow waiting

true /

36

Model Checking Liveness Properties

A safety property (informally) states that “nothing bad
ever happens” and has finite-length counterexamples.

A liveness property, on the other hand, states
“something good eventually happens”, and only has
infinite-length counterexamples.

Model checking liveness properties is more involved than
simply doing a reachability analysis. See Section 14.4
for more information.

37

Suppose we have a Robot that must pick up
multiple things, in any order

®; = robot picks up item i, where 1 <i<n

How would you state this goal in temporal logic?

38

Suppose we have a Robot that must pick up
multiple things, in any order

®; = robot picks up item i, where 1 <i<n

Goal to be achieved is:

F¢1AF¢2/\“°/\F(])n

How can we find a strategy to achieve this goal?

39

Suppose we have a Robot that must pick up
multiple things, in any order

®»; = robot picks up item i, where 1 <i<n

Goal to be achieved is:
F¢1AF¢2/\“°/\F(])n

How can we find a strategy to achieve this goal?

>How about this: Do repeated reachability, first from ¢, to
reach ¢4, then from ¢, to reach ¢,, then ¢, to reach ¢,

>Problem: What if ¢, is not reachable from ¢,, but reachable
from ¢g,?
40

Student question: Suppose we have a Robot that
must pick up multiple things, in a specified order

®; = robot picks up item i, where 1 <i<n

Goal to be achieved is:

F(01 AF(02A---AFdy))

41

A Robot delivery service, with moving obstacles

start

¢ = destination for robot

At any time step:
Robot can move Left, Right, Up, Down, Stay Put
Environment can move one obstacle Up or Down or Stay Put

- But only 3 times total
Can model Robot and Env as FSMs

> Robot state = its position,
> Env state = positions of obstacles and counts

42

A Robot delivery service, with moving obstacles

start

¢ = robot delivers item to destination
Goal to be achieved can be stated in temporal logic

F ¢

How can we find a path for the robot from starting point
to the destination?

- This is an example of a “reachability problem”
43

