
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 21: Networking in Embedded
Systems: Control Area Network,

FlexRay, IEEE 1588
Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

EECS 149, UC Berkeley: 2

Today’s Cars

•  X-by-wire vs. conventional mechanical and hydraulic
systems

•  Basics: power locks/door/window/engine start
•  Sensors/Actuators: tire, airbags, powertrain, video,

radar, and photoelectrics, etc.
•  Control/Safety: ABS, EBD/CBC, EBA/BAS/BA, ASR/

TCS/TRC, ESP/DSC/VSC, etc.
•  Entertainment System
•  Auto-Park

•  DARPA’s Urban
 Challenge

Image: General Motors

EECS 149, UC Berkeley: 3

Today’s Cars

•  Number of Electronic Control Units (ECUs) in a car:
–  Low end: 30 ~ 50 (doors, roof, etc)
–  High end: 70~100

•  Lines of code: ~100 million (Future: 200~300 million)
•  The radio and navigation system in the current S-class

Mercedes-Benz requires over 20 million lines of code
alone and that the car contains nearly as many ECUs as
the new Airbus A380 (excluding the plane’s in-flight
entertainment system).

•  Cost of electronics/software: 35% ~ 40% in premium
cars (for hybrid it is even higher!)

•  How can we ensure timely and reliable communication
via the “wires”?

[http://www.spectrum.ieee.org/feb09/7649]

EECS 149, UC Berkeley: 4

CAN bus

CAN = Controller Area Network
–  Publicly available communications standard [1] http://

www.semiconductors.bosch.de/pdf/can2spec.pdf

Serial data bus developed by Bosch in the 80s
–  Support for broadcast and multicast comm
–  Low cost
–  Deterministic resolution of the contention
–  Priority-based arbitration
–  Timing analysis for real-time messages
–  Automotive standard but used also in automation,

factory control, avionics and medical equipment
–  Simple, 2 differential (copper) wire connection
–  Speed of up to 1Mb/s
–  Error detection and signalling

EECS 149, UC Berkeley: 5

CAN-based system

Peripheral
HW

System
SW

Appl.
 SW

Device
drivers RTOS

Middleware

Application

Firmware
(MAC layer

implementation)

TX buffers
(TXobjects)

typically 1 to 32

RX buffers
(RXobjects)

typically 1 to 32

EECS 149, UC Berkeley: 6

CAN bus: Data Frame

EECS 149, UC Berkeley: 7

Priority-Based Arbitration

Main points:
All nodes are synchronized on the SOF bit
The bus behaves as a wired-AND
An example …

00101011010 01111010010 00111110110

Id = 0x15a Id = 0x3d2 Id = 0x1f6

0 0 0

0

sof

0

0 1 0

0

1 10 1

1 0

1011010

1 0

EECS 149, UC Berkeley: 8

Priority-Based Arbitration

A sender must wait longer than that maximum propagation
latency before sending the next bit.

 Why?

EECS 149, UC Berkeley: 9

The type of arbitration implies that the bit time is at least twice the
propagation latency on the bus

This defines a relation between the maximum bus length and the
transmission speed. The available values are

Bit rate Bus length
1 Mbit/s 25 m

800 kbit/s 50 m
500 kbit/s 100 m
250 kbit/s 250 m
125 kbit/s 500 m
50 kbit/s 1000 m
20 kbit/s 2500 m
10 kbit/s 5000 m

node A

node B

node A starts
transmitting a bit

node B
overwrites

node A reads the effect
of changes by B

M
in

im
um

 b
it

tim
e

tim
e

Priority-Based Arbitration

EECS 149, UC Berkeley: 10

Assumptions that Impact Timing

Timing Analysis (and inversions) – Ideal behavior

Assumption 1: nodes are not synchronized,
but clocks evolve at the same rate

Assumption 2: messages are always
transmitted by nodes based on their priority
(ID) – ideal priority queue of messages

Assumption 3: periodic messages,
but no assumption on the
message phases

EECS 149, UC Berkeley: 11

Timing based on Priorities – Ideal Behavior

id = 0x103

id = 0x261

id = 0x304

id = 0x122

id = 0x141

id = 0x111

id = 0x202

id = 0x103

id = 0x111

id = 0x141

id = 0x202

id = 0x122
id = 0x261 id = 0x304

EECS 149, UC Berkeley: 12

Timing Analysis --- Worst-Case Reponse Time

id = 0x103

id = 0x261

id = 0x304

id = 0x122

id = 0x141

id = 0x111

id = 0x202

Critical instant theorem: for a preemptive priority based scheduled resource, the
worst case response time of an object occurs when it is released together with
all other higher priority objects and they are released with their highest rate

EECS 149, UC Berkeley: 13

id = 0x103
id = 0x261
id = 0x304

id = 0x122
id = 0x141

id = 0x111
id = 0x202

id = 0x261

spend time in local queue
(higher priority messages are transmitted with max rate)

Ii

id = 0x103

id = 0x111

Message
transmission time

Ci
Mi

Message Mi starts its
transmission

id = 0x122
id = 0x141
id = 0x202

Timing Analysis --- Worst-Case Reponse Time

EECS 149, UC Berkeley: 14

Timing Analysis under Ideal Conditions

Timing Analysis – worst case latency – Ideal behavior [2]
The transmission of a message cannot be preempted

id = 0x261

qi = time spent in local queue

Ii

id = 0x103

id = 0x111

Message
transmission time

Ci

Mi

Message Mi starts its
transmission

id = 0x304

Bi
interference from higher priority messages

blocking from lower priority messages

iii IBq +=

iii Cqw +=

∑
∈

=
)(
,

ihpj
jii II

j
j

i
ji C

T
qI
⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
=,

j
ihpj j

i
ii C

T
qBq ∑

∈ ⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

)(

Fixed point formula: solved iteratively by
setting qi(0)=0 until the minimum solution
is found

EECS 149, UC Berkeley: 15

CAN bus

In reality, this analysis can give optimistic results!
A number of issues need to be considered …

– …
–  Availability of TxObjects at the adapter
–  Finite copy time between the queue and the TxObjects

Adapters typically only have a limited number of
TXObjects or RxObjects available

EECS 149, UC Berkeley: 16

CAN bus

A number of issues need to be considered …
–  …
–  Availability of TxObjects at the adapter

•  Let’s check the controller specifications!

EECS 149, UC Berkeley: 17

CAN bus

What happens if only one TxObject is available?
–  Assuming preempatbility of TxObject

id = 0x103

id = 0x261

id = 0x304

id = 0x122 id = 0x2a1

id = 0x2d2

id = 0x261

id = 0x341

id = 0x122

id = 0x103

preemption

id = 0x261

Priority inversion for 0x261
AFTER its queuing time

EECS 149, UC Berkeley: 18

Violation of Priority-based Queuing

 1.857316 1 110 Rx d 8 00 09 BF 00 00 06 00 00
 1.857548 1 120 Rx d 8 03 85 23 83 06 EA 03 85
 1.857696 1 170 Rx d 3 01 00 86
 1.858256 1 124 Rx d 5 00 03 83 03 85
 ……
 3.877361 1 110 Rx d 8 00 09 C4 00 00 06 00 00
 3.877597 1 120 Rx d 8 03 83 23 81 06 EA 03 82
 3.877819 1 308 Rx d 7 00 80 2A 00 00 00 AD
 3.878309 1 124 Rx d 5 00 03 81 03 83

 4.017366 1 110 Rx d 8 00 09 C4 00 00 06 00 00
 4.017600 1 120 Rx d 8 03 85 23 80 06 EA 03 81
 4.017768 1 348 Rx d 4 08 48 43 FF
 4.018312 1 124 Rx d 5 00 03 80 03 85

Message name

Frame ID

ECU

Period (ms)

Message 0x170,
0x308, 0x 348
transmitted before
0x124

msg1 110 ECU1 10
msg2 120 ECU1 10
msg3 124 ECU1 10
msg4 170 ECU1 500
msg5 308 ECU1 100
msg6 348 ECU1 250
msg7 410 ECU1 100
msg8 510 ECU1 500

EECS 149, UC Berkeley: 19

Possible Effect of Interrupt Service

Message name

Frame ID

ECU

Period (ms)

 0.222236 1 150 Rx d 8 40 00 09 60 3F FF F6 9F
 0.222527 1 380 Rx d 8 09 42 20 00 70 40 FC BF
 0.222766 1 151 Rx d 8 00 FF 09 22 00 00 0F 3F
 ……
 0.297743 1 150 Rx d 8 C0 00 09 60 3F FD F6 9D
 0.297989 1 410 Rx d 8 00 00 00 96 2B 00 00 00
 0.298229 1 151 Rx d 8 00 FF 09 25 00 00 0F 3F
 ……
 0.322497 1 150 Rx d 8 40 00 09 60 3F FF F6 9F
 0.322733 1 388 Rx d 8 21 12 68 19 00 00 DC 80
 0.322978 1 151 Rx d 8 00 FF 09 21 00 00 0F 3F

Message 0x380,
0x410, 0x 388
transmitted before
0x151

msg1 150 ECU1 12.5
msg2 151 ECU1 12.5
msg3 320 ECU1 100
msg4 520 ECU1 100

EECS 149, UC Berkeley: 20

FlexRay

•  Being developed by a consortium of automotive makers
and 1-tier suppliers.

•  Successor to CAN, higher bit rate, more ECUs, and
more reliable
–  FlexRay: max 10 Mbps
–  CAN: max 1 Mbps (but protocol itself has over 40%

overhead)
•  Allow both time-triggered and event-triggered

communication
•  Good clock synchronization (distributive) with built-in

fault tolerance

EECS 149, UC Berkeley: 21

FlexRay – Format of Time Division for Mesg
Transmission

FlexRay Specification v2.1

FlexRay has a static segment with guaranteed slots for ECUs to transmit
(reduce arbitration overhead)

EECS 149, UC Berkeley: 22

CAN bus

Bibliography
[1] CAN Specification, Version 2.0. Robert Bosch GmbH.

Stuttgard, 1991,
http://www.semiconductors.bosch.de/pdf/can2spec.pdf

[2] K. Tindell, H. Hansson, and A. J. Wellings, Analysing
real-time communications: Controller area network
(can),' Proceedings of the 15th IEEE Real-Time Systems
Symposium (RTSS'94), vol. 3, no. 8, pp. 259--263,
December 1994.

[3] A. Meschi M. Di Natale M. Spuri Priority Inversion at the
Network Adapter when Scheduling Messages with
Earliest Deadline Techniques , Euromicro Conference on
Real-time systems, L’Aquila, Italy 1996.

[4] R. Davis, A. Burns, R. Bril, and J. Lukkien. Controller
area network (can) schedulability analysis: Refuted,
revisited and revised. In RTN06, Dresden, Germany,
July 2006.

EECS 149, UC Berkeley: 23
John Eidson

Major time distribution systems used in embedded
systems

1.  NTP- c <1985, ~10ms
2.  GPS- c 1972, operational in 1993,~100ns: (Glonass,

Galileo)
3.  IRIG-B- c 1960, ~1-10 us
4.  IEEE 1588-2008 – c 2002, ~20ns on Ethernet
5.  Proprietary or controlled protocols, e.g. FlexRay(c

~2000), TTP(c ~1993), TTE(c ~2005)…

EECS 149, UC Berkeley: 24

Purpose of IEEE 1588

NETWORK

• IEEE 1588 is a protocol designed to synchronize
real-time clocks in the nodes of a distributed system
that communicate using a network
– It does not say how to use these clocks (this is specified by

the respective application areas)

John Eidson

EECS 149, UC Berkeley: 25

Where is IEEE 1588 being (or likely to be used)?

1.  Power generation (>50K nodes in service)
2.  Industrial automation (esp. motion control)
3.  Telecom (cellular backhaul initially- already field

installations)
4.  Audio visual systems (as IEEE 802.1AS a

specialization of 1588)
5.  Military, aerospace, instrumentation (flight

qualification, surveillance, data acquisition)
6.  Other nascent applications

John Eidson

EECS 149, UC Berkeley: 26

High speed printing Courtesy of Bosch-Rexroth.!

60 mph ~= 0.001 in/us

John Eidson

EECS 149, UC Berkeley: 27

IEEE 1588 enabled flight test instrumentation in the forward
fuselage of a test aircraft. (Data acquisition)

Courtesy of Teletronics!

John Eidson

EECS 149, UC Berkeley: 28

• Cellular backhaul is the major telecom application to
date. Metro-Ethernet in field trial. Femtocells beginning.
• Companies involved (partial list):
– Nokia-Siemens, Brilliant, Semtech, Zarlink, …

Telecommunications Applications

John Eidson

EECS 149, UC Berkeley: 29

Synchronization Basics – Delay
Request-Response Mechanism

Master
time

Slave
time

t1

t4

t3

t2

Timestamps known
by slave

t-ms

t-sm

Sync

Follow_Up

Delay_Req

Delay_Resp

t1, t2, t3, t4

t1, t2, t3

t2
t1, t2

Grandmaster- M S- BC - M S- OC

t-ms: time from master to slave
t-sm: time from slave to master John Eidson

EECS 149, UC Berkeley: 30

Offset = slave clock – master clock
M-S difference = t-ms = offset + M-S prop delay
S-M difference = t-sm = -offset + S-M prop delay

Under the assumption that the link is symmetric
•  M-S prop delay = S-M prop delay
•  Offset = [(t-ms) – (t-sm)]/2 = [(t2 – t1) – (t4 – t3)]/2
•  Propagation delay = [(t-ms) + (t-sm)]/2
 = [(t2 – t1) + (t4 – t3)]/2
Can rewrite the offset as
• Offset = t2 – t1 – (propagation delay) = (t-ms) – (propagation
delay)

Synchronization Basics – Delay
Request-Response Mechanism - 2

John Eidson

EECS 149, UC Berkeley: 31

Websites

General IEEE 1588 site: contains product pointers,
conference records, general guidance, standards related

http://ieee1588.nist.gov/

ISPCS (International IEEE Symposium on Precision Clock
Synchronization) site: Conference on IEEE 1588 and
related subjects

http://www.ispcs.org/

John Eidson

