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Today’s Cars 

•  X-by-wire vs. conventional mechanical and hydraulic 
systems 

•  Basics: power locks/door/window/engine start 
•  Sensors/Actuators: tire, airbags, powertrain, video, 

radar, and photoelectrics, etc. 
•  Control/Safety: ABS, EBD/CBC, EBA/BAS/BA, ASR/

TCS/TRC, ESP/DSC/VSC, etc. 
•  Entertainment System 
•  Auto-Park 

•  DARPA’s Urban  
 Challenge 

Image: General Motors 



EECS 149, UC Berkeley: 3 

Today’s Cars 

•  Number of Electronic Control Units (ECUs) in a car:  
–  Low end: 30 ~ 50 (doors, roof, etc) 
–  High end: 70~100  

•  Lines of code: ~100 million (Future: 200~300 million) 
•  The radio and navigation system in the current S-class 

Mercedes-Benz requires over 20 million lines of code 
alone and that the car contains nearly as many ECUs as 
the new Airbus A380 (excluding the plane’s in-flight 
entertainment system).  

•  Cost of electronics/software: 35% ~ 40% in premium 
cars (for hybrid it is even higher!) 

•  How can we ensure timely and reliable communication 
via the “wires”? 

[http://www.spectrum.ieee.org/feb09/7649] 
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CAN bus 

CAN = Controller Area Network 
–  Publicly available communications standard [1] http://

www.semiconductors.bosch.de/pdf/can2spec.pdf 

Serial data bus developed by Bosch in the 80s 
–  Support for broadcast and multicast comm 
–  Low cost 
–  Deterministic resolution of the contention 
–  Priority-based arbitration 
–  Timing analysis for real-time messages 
–  Automotive standard but used also in automation, 

factory control, avionics and medical equipment 
–  Simple, 2 differential (copper) wire connection 
–  Speed of up to 1Mb/s 
–  Error detection and signalling 



EECS 149, UC Berkeley: 5 

CAN-based system 

Peripheral 
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System 
SW 
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Device 
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(MAC layer 

implementation) 

TX buffers 
(TXobjects) 

typically 1 to 32 

RX buffers 
(RXobjects) 

typically 1 to 32 
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CAN bus: Data Frame 
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Priority-Based Arbitration 

Main points: 
All nodes are synchronized on the SOF bit 
The bus behaves as a wired-AND 
An example … 

00101011010 01111010010 00111110110 

Id = 0x15a Id = 0x3d2 Id = 0x1f6 

0 0 0

0

sof 

0

0 1 0

0

1 10 1

1 0

1011010 

1 0
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Priority-Based Arbitration 

A sender must wait longer than that maximum propagation 
latency before sending the next bit. 

 
  Why?  
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The type of arbitration implies that the bit time is at least twice the 
propagation latency on the bus 

This defines a relation between the maximum bus length and the 
transmission speed. The available values are  

Bit rate Bus length 
1 Mbit/s 25 m 

800 kbit/s 50 m 
500 kbit/s 100 m 
250 kbit/s 250 m 
125 kbit/s 500 m 
50 kbit/s 1000 m 
20 kbit/s 2500 m 
10 kbit/s 5000 m 

node A 

node B 

node A starts 
transmitting a bit 

node B 
overwrites 

node A reads the effect 
of changes by B 

M
in

im
um

 b
it 

tim
e 

tim
e 

Priority-Based Arbitration 
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Assumptions that Impact Timing 

Timing Analysis (and inversions) – Ideal behavior 

Assumption 1: nodes are not synchronized, 
but clocks evolve at the same rate 

Assumption 2: messages are always 
transmitted by nodes based on their priority 
(ID) – ideal priority queue of messages 

Assumption 3: periodic messages, 
but no assumption on the 
message phases 
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Timing based on Priorities – Ideal Behavior 

id = 0x103 

id = 0x261 

id = 0x304 

id = 0x122 

id = 0x141 

id = 0x111 

id = 0x202 

id = 0x103 

id = 0x111 

id = 0x141 

id = 0x202 

id = 0x122 
id = 0x261 id = 0x304 
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Timing Analysis --- Worst-Case Reponse Time 

id = 0x103 

id = 0x261 

id = 0x304 

id = 0x122 

id = 0x141 

id = 0x111 

id = 0x202 

Critical instant theorem: for a preemptive priority based scheduled resource, the 
worst case response time of an object occurs when it is released together with 
all other higher priority objects and they are released with their highest rate 
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id = 0x103 
id = 0x261 
id = 0x304 

id = 0x122 
id = 0x141 

id = 0x111 
id = 0x202 

id = 0x261 

spend time in local queue  
(higher priority messages are transmitted with max rate) 

Ii 

id = 0x103 

id = 0x111 

Message 
transmission time 

Ci 
Mi 

Message Mi starts its 
transmission 

id = 0x122 
id = 0x141 
id = 0x202 

Timing Analysis --- Worst-Case Reponse Time 
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Timing Analysis under Ideal Conditions 

Timing Analysis – worst case latency – Ideal behavior [2] 
The transmission of a message cannot be preempted 

id = 0x261 

qi = time spent in local queue  

Ii 

id = 0x103 

id = 0x111 

Message 
transmission time 

Ci 

Mi 

Message Mi starts its 
transmission 

id = 0x304 
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Fixed point formula: solved iteratively by 
setting qi(0)=0 until the minimum solution 
is found 
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CAN bus 

In reality, this analysis can give optimistic results! 
A number of issues need to be considered … 

– … 
–  Availability of TxObjects at the adapter 
–  Finite copy time between the queue and the TxObjects 

Adapters typically only have a limited number of 
TXObjects or RxObjects available 
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CAN bus 

A number of issues need to be considered … 
–  … 
–  Availability of TxObjects at the adapter 

•  Let’s check the controller specifications! 
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CAN bus 

What happens if only one TxObject is available? 
–  Assuming preempatbility of TxObject 

id = 0x103 

id = 0x261 

id = 0x304 

id = 0x122 id = 0x2a1 

id = 0x2d2 

id = 0x261 

id = 0x341 

id = 0x122 

id = 0x103 

preemption 

id = 0x261 

Priority inversion for 0x261 
AFTER its queuing time 
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Violation of Priority-based Queuing 

   1.857316 1  110             Rx   d 8 00 09 BF 00 00 06 00 00 
   1.857548 1  120             Rx   d 8 03 85 23 83 06 EA 03 85 
   1.857696 1  170             Rx   d 3 01 00 86 
   1.858256 1  124             Rx   d 5 00 03 83 03 85 
   …… 
   3.877361 1  110             Rx   d 8 00 09 C4 00 00 06 00 00 
   3.877597 1  120             Rx   d 8 03 83 23 81 06 EA 03 82 
   3.877819 1  308             Rx   d 7 00 80 2A 00 00 00 AD 
   3.878309 1  124             Rx   d 5 00 03 81 03 83 
   ...... 
   4.017366 1  110             Rx   d 8 00 09 C4 00 00 06 00 00 
   4.017600 1  120             Rx   d 8 03 85 23 80 06 EA 03 81 
   4.017768 1  348             Rx   d 4 08 48 43 FF 
   4.018312 1  124             Rx   d 5 00 03 80 03 85 

Message name 

Frame ID 

ECU 

Period (ms) 

Message 0x170, 
0x308, 0x 348 
transmitted before 
0x124 

msg1   110             ECU1   10  
msg2   120             ECU1   10 
msg3   124             ECU1   10  
msg4   170             ECU1   500 
msg5   308             ECU1   100  
msg6   348             ECU1   250 
msg7   410             ECU1   100  
msg8   510             ECU1   500 
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Possible Effect of Interrupt Service 

Message name 

Frame ID 

ECU 

Period (ms) 

   0.222236 1  150             Rx   d 8 40 00 09 60 3F FF F6 9F 
   0.222527 1  380             Rx   d 8 09 42 20 00 70 40 FC BF 
   0.222766 1  151             Rx   d 8 00 FF 09 22 00 00 0F 3F 
   …… 
   0.297743 1  150             Rx   d 8 C0 00 09 60 3F FD F6 9D 
   0.297989 1  410             Rx   d 8 00 00 00 96 2B 00 00 00 
   0.298229 1  151             Rx   d 8 00 FF 09 25 00 00 0F 3F 
   …… 
   0.322497 1  150             Rx   d 8 40 00 09 60 3F FF F6 9F 
   0.322733 1  388             Rx   d 8 21 12 68 19 00 00 DC 80 
   0.322978 1  151             Rx   d 8 00 FF 09 21 00 00 0F 3F 

Message 0x380, 
0x410, 0x 388 
transmitted before 
0x151 

msg1   150             ECU1  12.5  
msg2   151             ECU1  12.5 
msg3   320             ECU1  100  
msg4   520             ECU1  100 
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FlexRay 

•  Being developed by a consortium of automotive makers 
and 1-tier suppliers.  

•  Successor to CAN, higher bit rate, more ECUs, and 
more reliable   
–  FlexRay: max 10 Mbps 
–  CAN: max 1 Mbps (but protocol itself has over 40% 

overhead) 
•  Allow both time-triggered and event-triggered 

communication 
•  Good clock synchronization (distributive) with built-in 

fault tolerance 
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FlexRay – Format of Time Division for Mesg 
Transmission 

FlexRay Specification v2.1 

FlexRay has a static segment with guaranteed slots for ECUs to transmit 
(reduce arbitration overhead) 
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CAN bus 
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John Eidson 

Major time distribution systems used in embedded 
systems 

1.  NTP- c <1985, ~10ms  
2.  GPS- c 1972, operational in 1993,~100ns: (Glonass, 

Galileo ) 
3.  IRIG-B- c 1960, ~1-10 us  
4.  IEEE 1588-2008 – c 2002, ~20ns on Ethernet 
5.  Proprietary or controlled protocols, e.g. FlexRay(c 

~2000), TTP(c ~1993), TTE(c ~2005)… 
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Purpose of IEEE 1588 

 

 
 
 

NETWORK 

• IEEE 1588 is a protocol designed to synchronize 
real-time clocks in the nodes of a distributed system 
that communicate using a network 
– It does not say how to use these clocks (this is specified by 

the respective application areas) 

John Eidson 
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Where is IEEE 1588 being (or likely to be used)? 

1.  Power generation (>50K nodes in service) 
2.  Industrial automation (esp. motion control) 
3.  Telecom (cellular backhaul initially- already field 

installations) 
4.  Audio visual systems (as IEEE 802.1AS a 

specialization of 1588) 
5.  Military, aerospace, instrumentation (flight 

qualification, surveillance, data acquisition) 
6.  Other nascent applications 

John Eidson 
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High speed printing Courtesy of Bosch-Rexroth.!

60 mph ~= 0.001 in/us 

John Eidson 
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IEEE 1588 enabled flight test instrumentation in the forward 
fuselage of a test aircraft. (Data acquisition) 

Courtesy of Teletronics!

John Eidson 
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• Cellular backhaul is the major telecom application to 
date. Metro-Ethernet in field trial. Femtocells beginning. 
• Companies involved (partial list): 
– Nokia-Siemens, Brilliant, Semtech, Zarlink, … 

Telecommunications Applications  

John Eidson 
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Synchronization Basics – Delay 
Request-Response Mechanism  

Master
time

Slave
time

t1

t4

t3

t2

Timestamps known
by slave

t-ms

t-sm

Sync

Follow_Up

Delay_Req

Delay_Resp

t1, t2, t3, t4

t1, t2, t3

t2
t1, t2

Grandmaster- M S-  BC - M S-  OC

t-ms: time from master to slave 
t-sm: time from slave to master John Eidson 
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Offset = slave clock – master clock 
M-S difference = t-ms = offset + M-S prop delay 
S-M difference = t-sm = -offset + S-M prop delay 
 

Under the assumption that the link is symmetric  
•  M-S prop delay = S-M prop delay 
•  Offset = [(t-ms) – (t-sm)]/2 = [(t2 – t1) – (t4 – t3)]/2  
•  Propagation delay = [(t-ms) + (t-sm)]/2  
                                 = [(t2 – t1) + (t4 – t3)]/2 
Can rewrite the offset as 
• Offset = t2 – t1 – (propagation delay) = (t-ms) – (propagation 
delay) 

Synchronization Basics – Delay 
Request-Response Mechanism - 2 

John Eidson 
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Websites 

General IEEE 1588 site: contains product pointers, 
conference records, general guidance, standards related 

http://ieee1588.nist.gov/  

 

ISPCS (International IEEE Symposium on Precision Clock 
Synchronization) site: Conference on IEEE 1588 and 
related subjects 

http://www.ispcs.org/  

John Eidson 


