Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 2: Model-Based Design (Ch. 2)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit
A. Seshia at UC Berkeley for sharing their course materials

~

Modeling, Design, Analysis (oo ’_3

Modeling is the process of I DeSig", /_3 1

gaining a deeper understanding ' Analysis
of a system through imitation. - :
Models specify what a system does. L

Design is the structured creation of
artifacts. It specifies how a system does
what it does. This includes optimization.

Analysis is the process of gaining a deeper
understanding of a system through dissection.
It specifies why a system does what it does
(or fails to do what a model says it should do).

What is Modeling”?

Developing insight about a system, process, or artifact
through imitation.

A model is the artifact that imitates the system, process,
or artifact of interest.

A mathematical model is model in the form of a set of
definitions and mathematical formulas.

What is Model-Based Design?

1. Create a mathematical model of all the parts of the
cyber-physical system
Physical world
Control system
Software environment
Hardware platform
Network

Sensors and actuators
2. Construct the implementation from the model
Construction may be automated, like a compiler

More commonly, some parts are automatically
constructed

Modeling Techniques in this Course

Models that are abstractions of system dynamics
(how things change over time)

Examples:
o Modeling physical phenomena — ODEs
Feedback control systems — time-domain modeling

o

o
o
(@)
(@)

Mode
Mode
Mode
Mode

iIng modal behavior — FSMs, hybrid automata
Ing sensors and actuators — calibration, noise
iIng software — concurrency, real-time models
INg networks — latencies, error rates, packet loss

5

Modeling of Continuous Dynamics

Ordinary differential equations, Laplace

transforms, feedback control systems, stability

analysis, robustness analysis, ...

K =0.0025

overshoot —

VA

damper

spring EE

3 A Ims
Lo
K= 0.00025
-0.03
.
-0l 0 | Re
K=<0 K-0 K0 K<0
k- 4

b

?

A

H(s) = K, + Ky/s + Kys|— Fy(5) =

1

Ms?+ Ds + C

PID controller

Plant

An Example: Modeling Helicopter Dynamics

Mal‘n Rolor

Drive Shaft — ~Tail

s Rolor
ockpit —___
Tail Boom

T Engine, Transmission,
Fuel, etc.

Landing Skids
The Fundamental Parts of any Helicopter

Modeling Physical Motion

Six degrees of freedom:
o Position: x, vy, z
o Orientation: pitch, yaw, roll

X axis

Z axis

Notation

Position is given by three functions:

r:R—R
y:R—-R
z:R—R

where the domain R represents time and the co-domain

(range) R represents position along the axis. Collect-
Ing into a vector:

x: R — R*
Position at time ¢ € R is x(t) € R>.

Notation

Velocity
x: R — R?

IS the derivative, V¢ € R,

k(1) = (1)

Acceleration x: R — R? is the second derivative,

d2

)“(= —X
dt?

Force on an objectis F: R — R*.

10

Newton’ s Second Law

Newton’s second law states V ¢ € R,

where M is the mass. To account for initial position
and velocity, convert this to an integral equation

x(t) = x(0)+ /)’(('r)dT

T
7 / / F(a)dadr,

0 O

= x(0) +tx(0) +

11

Orientation

e Orientation: #: R — R?
e Angular velocity: 6: R — R?

e Angular acceleration: 6: R — R?

Z axis

e Torque: T: R — R3

- 0,.(t) roll
0(t)= 1| 0, | = | yaw
KAGHE pitch |

12

Angular version of force is torque.
For a point mass rotating around a fixed axis:

e radius of the arm: » ¢ R

e force orthogonaltoarm: f € R | :

e mass of the object: m € R

=rf(t)

angular momentum, momentum

Just as force is a push or a pull, a torque is a twist.
Units: newton-meters/radian, Joules/radian

Note that radians are meters/meter (21 meters of circumference per 1
meter of radius), so as units, are optional.

13

Rotational Version of Newton’ s Second Law

r(t) = 7 (108()).

where I(t) is a 3 x 3 matrix called the moment of in-
ertia tensor.

 TL(t) p [L. (t) L) L.(t)][Qx(t) .
T,(t) | == | | L) L) Ls(t) || 6,0t
2 (1) h ! Ly(t) I..(t) 0.(t)

i | I(t) zy

Here, for example, T}, (t) is the net torque around the
y axis (which would cause changes in yaw), 7,.(t) is
the inertia that determines how acceleration around
the = axis is related to torque around the y axis.

~

Simple Example

Yaw dynamics:

Ty(t) — Iyyéy (t)

To account for initial angular velocity, write as

t
1
I / IU(T)dT'

vy .
0

0,(t) = 0,(0) +

%

15

Feedback Control Problem ‘[

A helicopter without a tail rotor, like the one
below, will spin uncontrollably due to the
torque induced by friction in the rotor shatt.

Control system problem:
Apply torque using the tail
rotor to counterbalance
the torque of the top rotor.

16

Actor Model of Systems

A system is a function that 5
accepts an input signaland X parameters| Y

yields an output signal. —» D q p

The domain and range of xR—R, yR—-R
the system function are

sets of signals, which S: X =Y
themselves are functions.
X=Y=(R—R)

Parameters may affect the
definition of the function S.

17

Actor model of the helicopter

Helicopter
Input is the net torque of T 7 0
the tail rotor and the top) Yy) Y
rotor. Output is the angular 0,(0)

velocity around the y axis.

Parameters of the

model are shown iIn ' . |
the box. The input 9, (t) = 6,(0) - - /Ty(’r)d'r
and output relation is Yy

given by the equation
to the right.

18

Helicopter

Lyy é)_\.
Composition of actor models 6,00) |
Scale Integrator

_X:T\ Bk Y x J‘ ; ’y y/:é)'
[

VieR, y(t)=ax(t) Y()= i+/xl(T)dT
y = ax 0

q — 1 /I\’\, [= e\(o)

19

Actor models with multiple inputs

20

Proportional controller

RaNOgr
A

Controller

=

Helicopter

AN

\ 0,(0)

desired error
angular signal

velocity e(t) = y(t) —0y(1)

Oy(1) =

||
P
il
=
.l
|

\

net
torque

Iy(t) = Ke(t)

Note that the angular
velocity appears on
both sides, so this
equation is not trivial to

solve.
21

Controller

Helicopter

| 4

Behavior of v = - b L Dy
the controller a 6,(0)

Assume that helicopter is initially at rest,
A(0) = 0,
and that the desired signal is
() = au(t)

for some constant a.
By calculus (see notes), the solution is

6,(t) = au(t)(1 — et/ 1w)

22

Exercise

Reformulate the helicopter model so that it has two
iInputs, the torque of the top rotor and the torque of the
tail rotor.

Show (by simulation) that if the top rotor applies a
constant torque, then our controller cannot keep the
helicopter from rotating. Increasing the feedback gain,
however, reduces the rate of rotation.

A better controller would include an integrator in the
controller. Such controllers are studied in control systems

course.
23

Questions

o How do we measure the angular velocity?

o Can this controller be implemented in software?

o How does the behavior change when it is implemented
In software?

24

Other Modeling Techniques we will talk about

o

o

o

o

o

o

State machines
sequential decision logic

Synchronous/reactive concurrent composition

concurrent computation

composes well with state machines
Dataflow models

exploitable parallelism

well suited to signal processing
Discrete-event models

explicit about time
Time-driven

suitable for periodic, timed actions
Continuous-time models

models of physical dynamics
extended to “hybrid systems” to embrace computation

25

Discretized Model
A Step Towards Software

Numerical integration techniques provided sophisticated ways to get from the

continuous idealizations to computable algorithms.

Discrete-time signal processing techniques offer the same sophisticated stability

analysis as continuous-time methods.

But it’ s not accurate for software controllers (fails on correctness)

and so, 1f & = 0 is a small number, we can approximate this derivative by

z(t+) —z(t)

Z(f) =
' o
Using this for the derivative in the left-hand side of (5.50) we get

z(t+8) —z(t) = de(z(t).v(t)). (5.51)

two-sided

anti-causal

Alm z Almz Alm z
(, \\\. -~
sl I £ /’--.\\,_ s i \
. ; . . . ’ 1 \
In general, z 1s an N-tuple, z = (z1.- - -.zn), where z;: Reals | — Reals. The deriva- —L > i —
: - . . ; ; PN ; > - 1 ! > -
tive of an N-tuple 1s simply the N-tuple of derivatives, z = (3.---.Zy). We know \h G Re:z RoC K Re z
from calculus that 1 (£ +8) — (0 N Re . =
L. dz . z(t+98)—z(t) ——ee= TOOEes
i — ny ———————
dt 50 o

26

Hybrid Systems —
Union of Continuous & Discrete

A gOOd Sta I’tl ng p0| nt but gzz(:?arf:::: St:’c:‘fnsees;arate.pz = P1; Separate.vl = V1; Separate.v2 = V1
has limitations.

E.g. Consider building a
hybrid system model for

software running u nder a CTEmbedded This model gives two separate ordinary differential

mu Ititasking rea|_time OS - equations, one for each point mass attached to a spring.
) The ZeroCrossingDetector actor detects the collision
of the point masses and emits the "touched" event.

Vi
) V1 integrator P1 integrator
Expression N :
—*1.0-1‘0-1.0-91
P1
i J
" V2 A
V2 integrator P2 integrator

Expression2 . r.
—# 2.02.0-2.0'P2 nl:h

—- V1 and V2 are velocities,
AddSubtract ZeroCrossingDetector ~ and P1 and P2 are positions

— e + e of the two masses.
] —

Understanding models can be very challenging

5|1l 1]

An example, due to Jie Liu, has two controllers __ OutputofPlant1

sharing a CPU under an RTOS. Under i ff]
preemptive multitasking, only one can be made 0.2[I
stable (depending on the relative priorities). 041 [1
Under non-preemptive multitasking, both can be b]
made stable. 01| | | | | U | n

0 5 10 15 20 25 30

Theory for this is lacking, so designers =10l

/ / H Output of Plant 2
resort to simulation and testing. e
CT
[] 010 -
—_— ZeroOrderl-Jd
ons AddSubtract Plant1 Sampler1 i i
t— = I 0.05
= TM controllers I
Const2 E}D 0.00 1 1 1 1 1 1 -
AddSubtract2 Plant2 Sampler2
+ 0] 10 15 20 25 30

eroOrderHold2

]

b(s)/a(s) |
‘ I TimedPlotter2

b 4

This model shows two (independent) control loops whose controllers share the same CPU. The control

loops are chosen such that it is unstable if the control signals are constantly delayed. By choosing

different priority assignments and TM scheduling policies, different stability of the two loops may

appear. For example, a nonpreemptive scheduling can stablize both control loops, but none of the

preemptive ones can. 28

Key Concepts in Model-Based Design

Models describe physical dynamics.

Specifications are executable models.

Models are composed to form designs.

Models evolve during design.

Deployed code may be (partially) generated from models.
Modeling languages have semantics.

Modeling languages themselves may be modeled (meta models)

O O O OO OO

For embedded systems, this is about
o Time

o Concurrency

o Dynamics

29

