
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 2: Model-Based Design (Ch. 2)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

2

Modeling, Design, Analysis

Modeling is the process of
gaining a deeper understanding
of a system through imitation.
Models specify what a system does.

Design is the structured creation of
artifacts. It specifies how a system does
what it does. This includes optimization.

Analysis is the process of gaining a deeper
understanding of a system through dissection.
It specifies why a system does what it does
(or fails to do what a model says it should do).

3

What is Modeling?

Developing insight about a system, process, or artifact
through imitation.

A model is the artifact that imitates the system, process,
or artifact of interest.

A mathematical model is model in the form of a set of
definitions and mathematical formulas.

4

What is Model-Based Design?

1.  Create a mathematical model of all the parts of the
cyber-physical system
¢  Physical world
¢  Control system
¢  Software environment
¢  Hardware platform
¢  Network
¢  Sensors and actuators

2.  Construct the implementation from the model
¢  Construction may be automated, like a compiler
¢  More commonly, some parts are automatically

constructed

5

Modeling Techniques in this Course

Models that are abstractions of system dynamics
(how things change over time)

Examples:
¢  Modeling physical phenomena – ODEs
¢  Feedback control systems – time-domain modeling
¢  Modeling modal behavior – FSMs, hybrid automata
¢  Modeling sensors and actuators – calibration, noise
¢  Modeling software – concurrency, real-time models
¢  Modeling networks – latencies, error rates, packet loss

6

Modeling of Continuous Dynamics

Ordinary differential equations, Laplace
transforms, feedback control systems, stability
analysis, robustness analysis, …

7

An Example: Modeling Helicopter Dynamics

8

Modeling Physical Motion

Six degrees of freedom:
¢  Position: x, y, z
¢  Orientation: pitch, yaw, roll

9

Notation

10

Notation

11

Newton’s Second Law

12

Orientation

13

Angular version of force is torque.
For a point mass rotating around a fixed axis:

Just as force is a push or a pull, a torque is a twist.
Units: newton-meters/radian, Joules/radian

Note that radians are meters/meter (2π meters of circumference per 1
meter of radius), so as units, are optional.

Ty(t) = r f (t)
angular momentum, momentum

14

Rotational Version of Newton’s Second Law

15

Simple Example

16

Feedback Control Problem

A helicopter without a tail rotor, like the one
below, will spin uncontrollably due to the
torque induced by friction in the rotor shaft.

Control system problem:
Apply torque using the tail
rotor to counterbalance
the torque of the top rotor.

17

Actor Model of Systems

A system is a function that
accepts an input signal and
yields an output signal.

The domain and range of
the system function are
sets of signals, which
themselves are functions.

Parameters may affect the
definition of the function S.

18

Actor model of the helicopter

Input is the net torque of
the tail rotor and the top
rotor. Output is the angular
velocity around the y axis.

Parameters of the
model are shown in
the box. The input
and output relation is
given by the equation
to the right.

19

Composition of actor models

20

Actor models with multiple inputs

21

Proportional controller

desired
angular
velocity

error
signal

net
torque

Note that the angular
velocity appears on
both sides, so this
equation is not trivial to
solve.

22

Behavior of
the controller

23

Exercise

Reformulate the helicopter model so that it has two
inputs, the torque of the top rotor and the torque of the
tail rotor.

Show (by simulation) that if the top rotor applies a
constant torque, then our controller cannot keep the
helicopter from rotating. Increasing the feedback gain,
however, reduces the rate of rotation.

A better controller would include an integrator in the
controller. Such controllers are studied in control systems
course.

24

Questions

¢  How do we measure the angular velocity?

¢  Can this controller be implemented in software?

¢  How does the behavior change when it is implemented
in software?

25

Other Modeling Techniques we will talk about

¢  State machines
l  sequential decision logic

¢  Synchronous/reactive concurrent composition
l  concurrent computation
l  composes well with state machines

¢  Dataflow models
l  exploitable parallelism
l  well suited to signal processing

¢  Discrete-event models
l  explicit about time

¢  Time-driven
l  suitable for periodic, timed actions

¢  Continuous-time models
l  models of physical dynamics
l  extended to “hybrid systems” to embrace computation

26

Discretized Model
A Step Towards Software

Numerical integration techniques provided sophisticated ways to get from the
continuous idealizations to computable algorithms.
Discrete-time signal processing techniques offer the same sophisticated stability
analysis as continuous-time methods.

But it’s not accurate for software controllers (fails on correctness)

27

Hybrid Systems –
Union of Continuous & Discrete

 A good starting point, but
has limitations.
 E.g. Consider building a
hybrid system model for
software running under a
multitasking real-time OS.

28

Understanding models can be very challenging
An example, due to Jie Liu, has two controllers
sharing a CPU under an RTOS. Under
preemptive multitasking, only one can be made
stable (depending on the relative priorities).
Under non-preemptive multitasking, both can be
made stable.

Theory for this is lacking, so designers
resort to simulation and testing.

29

Key Concepts in Model-Based Design

¢  Models describe physical dynamics.
¢  Specifications are executable models.
¢  Models are composed to form designs.
¢  Models evolve during design.
¢  Deployed code may be (partially) generated from models.
¢  Modeling languages have semantics.
¢  Modeling languages themselves may be modeled (meta models)

For embedded systems, this is about
¢  Time
¢  Concurrency
¢  Dynamics

