
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 3: Modeling Modal Behavior (Ch. 3)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

2

Example: integrator:

Continuous-time signal:

Continuous-time actor:

Recall Actor Model of a Continuous-Time System

Integrator : RR� RR

x : R� R, x ⇥ (R� R), x ⇥ RR

3

Discrete Systems

Example: count the number of cars that enter and leave a
parking garage:

Pure signal:
Discrete actor:

Counter : (R� {absent,present})P � (R� {absent}⇥N)

up : R� {absent,present}

P = {up,down}

4

Reaction

Counter : (R� {absent,present})P � (R� {absent}⇥N)
P = {up,down}

For any t �R where up(t) ⇥= absent or down(t) ⇥= absent the
Counter reacts. It produces an output value in N and
changes its internal state.

5

Input and Output Valuations at a Reaction

For t �R a port p has a valuation, which is an assignment
of a value in Vp (the type of port p). A valuation of the
input ports P = {up,down} assigns to each port a value in
{absent,present}.

A reaction gives a valuation to the output port count
in the set {absent}⇥N.

6

State Space

A practical parking garage has a finite number M of spaces,
so the state space for the counter is

States = {0,1,2, · · · ,M} .

7

Garage Counter Finite State Machine (FSM)
in Pictures

Guard g is specified using the predicate

up�¬down

which means that up has value present and down has value
absent.

8

Garage Counter Finite State Machine (FSM)
in Pictures

Initial state

9

Garage Counter Finite State Machine (FSM)
in Pictures

Output valuation

10

Garage Counter Mathematical Model

The picture
above defines
the update
function.

Formally: (States, Inputs,Outputs,update, initialState), where

• States = {0,1, · · · ,M}

• Inputs is a set of input valuations

• Outputs is a set of output valuations

• update : States� Inputs⇥ States�Outputs

• initialState = 0

11

FSM Notation

transition

self loop

state

initial state

12

Examples of Guards for Pure Signals

true Transition is always enabled.
p1 Transition is enabled if p1 is present.
¬p1 Transition is enabled if p1 is absent.

p1� p2 Transition is enabled if both p1 and p2 are present.
p1⇥ p2 Transition is enabled if either p1 or p2 is present.

p1�¬p2 Transition is enabled if p1 is present and p2 is absent.

13

Examples of Guards for Signals with Numerical
Values

p3 Transition is enabled if p3 is present (not absent).
p3 = 1 Transition is enabled if p3 is present and has value 1.

p3 = 1� p1 Transition is enabled if p3 has value 1 and p1 is present.
p3 > 5 Transition is enabled if p3 is present with value greater than 5.

14

Example: Thermostat

Exercise: From this picture, construct the formal
mathematical model.

15

More Notation: Default Transitions

A default transition is enabled if no non-default transition
is enabled and it either has no guard or the guard
evaluates to true. When is the above default transition
enabled?

16

Extended State Machines

17

Traffic Light Controller

18

Definitions

•  Stuttering transition: Implicit default transition that is
enabled when inputs are absent and that produces
absent outputs.

•  Receptiveness: For any input values, some transition
is enabled. Our structure together with the implicit
default transition ensures that our FSMs are receptive.

•  Determinism: In every state, for all input values,
exactly one (possibly implicit) transition is enabled.

19

Example: Nondeterminate FSM
Nondeterminate model of pedestrians arriving at a
crosswalk:

Formally, the update function is replaced by a function

possibleUpdates : States� Inputs⇥ 2States�Outputs

20

Behaviors and Traces

•  FSM behavior is a sequence of (non-stuttering) steps.
•  A trace is the record of inputs, states,

and outputs in a behavior.
•  A computation tree is a graphical

representation of all
possible traces.

FSMs are suitable for formal
analysis. For example, safety
analysis might show that some unsafe
state is not reachable.

21

Uses of nondeterminism

1.  Modeling unknown aspects of the environment or
system
¢  Such as: how the environment changes the iRobot’s

orientation
2.  Hiding detail in a specification of the system

¢  We will see an example of this later (see notes)

Any other reasons why nondeterministic FSMs might be
preferred over deterministic FSMs?

22

Size Matters

Non-deterministic FSMs are more compact than
deterministic FSMs

l  ND FSM à D FSM: Exponential blow-up in #states in
worst case

23

Non-deterministic Behavior: Tree of Computations

For a fixed input sequence:
¢  A deterministic system exhibits a single behavior
¢  A non-deterministic system exhibits a set of behaviors

. . .

. . .

. . .

. . .

. . .

Deterministic FSM behavior for a particular input sequence:

Non-deterministic FSM behavior for an input sequence:

24

Related points

What does receptiveness mean for non-deterministic
state machines?

Non-deterministic ≠ Probabilistic

25

Example from Industry: Engine Control

Source:
Delphi Automotive Systems (2001)

26

Elements of a Modal Model (FSM)

Source:
Delphi Automotive Systems (2001)

state

initial state

transition

input

output

27

It is sometimes useful to even model continuous
systems as FSMs by discretizing their state
space. E.g.: Discretized iRobot Hill Climber

28

Actor Model of an FSM

This model enables composition of state machines.

29

What we will be able to do with FSMs

FSMs provide:
1. A way to represent the system for:

l  Mathematical analysis
l  So that a computer program can manipulate it

2. A way to model the environment of a system.
3. A way to represent what the system must do and must
not do – its specification.
4. A way to check whether the system satisfies its
specification in its operating environment.

30

FSM Controller for iRobot

States = {init, tilt, drive} Inputs = ? Outputs = ?
update = ? Any transitions missing?

31

FSM Controller for iRobot (version 2)

Will this robot always drive uphill?
(assume that it starts facing uphill)

 Also need to specify “else”
arcs for tilt and drive

32

Modeling the iRobot’s environment

L level=true
NL45 level=false, 45o offset
NL90 level=false, 90o offset

Self loops on: rotate=false

Is this model deterministic?

33

Representing a state machine

1.  Pictorial notation

2.  Table representing transition relation

3.  Functional notation

When would you use each representation?

