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Example: integrator: 
 
 
 
Continuous-time signal: 
 
Continuous-time actor: 

Recall Actor Model of a Continuous-Time System 

Integrator : RR� RR

x : R� R, x ⇥ (R� R), x ⇥ RR
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Discrete Systems 

Example: count the number of cars that enter and leave a 
parking garage: 
 
 
 
 
 
Pure signal: 
Discrete actor: 

Counter : (R� {absent,present})P � (R� {absent}⇥N)

up : R� {absent,present}

P = {up,down}
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Reaction 

Counter : (R� {absent,present})P � (R� {absent}⇥N)
P = {up,down}

For any t �R where up(t) ⇥= absent or down(t) ⇥= absent the
Counter reacts. It produces an output value in N and
changes its internal state.
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Input and Output Valuations at a Reaction 

For t �R a port p has a valuation, which is an assignment
of a value in Vp (the type of port p). A valuation of the
input ports P = {up,down} assigns to each port a value in
{absent,present}.

A reaction gives a valuation to the output port count
in the set {absent}⇥N.
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State Space 

A practical parking garage has a finite number M of spaces,
so the state space for the counter is

States = {0,1,2, · · · ,M} .



7 

Garage Counter Finite State Machine (FSM)  
in Pictures 

Guard g is specified using the predicate

up�¬down

which means that up has value present and down has value
absent.
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Garage Counter Finite State Machine (FSM)  
in Pictures 

Initial state 
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Garage Counter Finite State Machine (FSM)  
in Pictures 

Output valuation 
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Garage Counter Mathematical Model 

The picture 
above defines 
the update 
function. 

Formally: (States, Inputs,Outputs,update, initialState), where

• States = {0,1, · · · ,M}

• Inputs is a set of input valuations

• Outputs is a set of output valuations

• update : States� Inputs⇥ States�Outputs

• initialState = 0
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FSM Notation 

transition 

self loop 

state 

initial state 
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Examples of Guards for Pure Signals 

true Transition is always enabled.
p1 Transition is enabled if p1 is present.
¬p1 Transition is enabled if p1 is absent.

p1� p2 Transition is enabled if both p1 and p2 are present.
p1⇥ p2 Transition is enabled if either p1 or p2 is present.

p1�¬p2 Transition is enabled if p1 is present and p2 is absent.
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Examples of Guards for Signals with Numerical 
Values 

p3 Transition is enabled if p3 is present (not absent).
p3 = 1 Transition is enabled if p3 is present and has value 1.

p3 = 1� p1 Transition is enabled if p3 has value 1 and p1 is present.
p3 > 5 Transition is enabled if p3 is present with value greater than 5.
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Example: Thermostat 

 
 
Exercise: From this picture, construct the formal 
mathematical model. 
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More Notation: Default Transitions 

A default transition is enabled if no non-default transition 
is enabled and it either has no guard or the guard 
evaluates to true. When is the above default transition 
enabled?  
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Extended State Machines 
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Traffic Light Controller 
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Definitions 

•  Stuttering transition: Implicit default transition that is 
enabled when inputs are absent and that produces 
absent outputs. 

•  Receptiveness: For any input values, some transition 
is enabled. Our structure together with the implicit 
default transition ensures that our FSMs are receptive. 

•  Determinism: In every state, for all input values, 
exactly one (possibly implicit) transition is enabled. 
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Example: Nondeterminate FSM 
Nondeterminate model of pedestrians arriving at a 
crosswalk: 
 
 
 
 
 
 
 
Formally, the update function is replaced by a function 

possibleUpdates : States� Inputs⇥ 2States�Outputs
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Behaviors and Traces 

•  FSM behavior is a sequence of (non-stuttering) steps. 
•  A trace is the record of inputs, states,  

and outputs in a behavior. 
•  A computation tree is a graphical 

representation of all  
possible traces. 

FSMs are suitable for formal 
analysis. For example, safety 
analysis might show that some unsafe 
state is not reachable. 



21 

Uses of nondeterminism 

1.  Modeling unknown aspects of the environment or 
system 
¢  Such as: how the environment changes the iRobot’s 

orientation 
2.  Hiding detail in a specification of the system 

¢  We will see an example of this later (see notes) 

Any other reasons why nondeterministic FSMs might be 
preferred over deterministic FSMs? 
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Size Matters 

 
Non-deterministic FSMs are more compact than 
deterministic FSMs 

l  ND FSM à D FSM: Exponential blow-up in #states in 
worst case 
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Non-deterministic Behavior: Tree of Computations 

For a fixed input sequence: 
¢  A deterministic system exhibits a single behavior 
¢  A non-deterministic system exhibits a set of behaviors 

. . . 

. . . 

. . . 

. . . 

. . . 

Deterministic FSM behavior for a particular input sequence: 

Non-deterministic FSM behavior for an input sequence: 
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Related points 

What does receptiveness mean for non-deterministic 
state machines? 
 
 
Non-deterministic ≠ Probabilistic 
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Example from Industry: Engine Control 

Source:  
Delphi Automotive Systems (2001) 
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Elements of a Modal Model (FSM) 

Source:  
Delphi Automotive Systems (2001) 

state 

initial state 

transition 

input 

output 
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It is sometimes useful to even model continuous 
systems as FSMs by discretizing their state 
space. E.g.: Discretized iRobot Hill Climber   
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Actor Model of an FSM 

This model enables composition of state machines. 
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What we will be able to do with FSMs 

FSMs provide:  
1. A way to represent the system for: 

l  Mathematical analysis  
l  So that a computer program can manipulate it 

2. A way to model the environment of a system. 
3. A way to represent what the system must do and must 
not do – its specification. 
4. A way to check whether the system satisfies its 
specification in its operating environment. 
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FSM Controller for iRobot  

States = {init, tilt, drive}     Inputs = ?     Outputs = ? 
update = ?         Any transitions missing? 
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FSM Controller for iRobot (version 2) 

Will this robot always drive uphill?                       
(assume that it starts facing uphill) 

 Also need to specify “else” 
arcs for tilt and drive 
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Modeling the iRobot’s environment 

L      level=true 
NL45     level=false, 45o offset 
NL90    level=false, 90o offset 

Self loops on: rotate=false 

Is this model deterministic? 



33 

Representing a state machine 

1.  Pictorial notation 

2.  Table representing transition relation 

3.  Functional notation 
 
When would you use each representation? 


