Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 3: Modeling Modal Behavior (Ch. 3)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit
A. Seshia at UC Berkeley for sharing their course materials

Recall Actor Model of a Continuous-Time System

Integrator

| « .
Example: integrator: ../ .

Continuous-time signal: x: R—R, x€(R—R), xeR®

Continuous-time actor: Integrator: R* — RX

Discrete Systems

Example: count the number of cars that enter and leave a
parking garage:

ArrivalDetector

arrival

Counter Display

count

DepartureDetector

departure

Pure signal: up: R — {absent,present}

Discrete actor:
Counter: (R — {absent,present})’ — (R — {absent} UN)

P = {up,down} .

Reaction

For any t € R where up(t) # absent or down(t) # absent the
Counter reacts. It produces an output value in N and
changes its internal state.

ArrivalDetector

arrival

Counter :
up ‘ Display
| count
y
DepartureDetector
down
departure

p————

Counter: (R — {absent,present})’ — (R — {absent} UN)
P = {up,down}

Input and Output Valuations at a Reaction

For ¢t € R a port p has a valuation, which is an assignment
of a value in V, (the type of port p). A valuation of the
input ports P = {up, down} assigns to each port a value in
{absent,present}.

A reaction gives a valuation to the output port count
in the set {absent} UN.

ArrivalDetector

arrival

Counter D|Sp|ay

“p count
y
DepartureDetector
down

departure

p—

State Space

A practical parking garage has a finite number M of spaces,
so the state space for the counter is

States = {0,1,2,--- M} .

ArrivalDetector

arrival

Counter D|Sp|ay

Up count
I
DepartureDetector
down

departure

p————

Garage Counter Finite State Machine (FSM)
In Pictures

up N\ ﬁm /1 upAN—down /2 up/A\—down /3 up\—down | M

down \N—up /| 0 downAN—-up /1 downAN—-up /2 downN\—-up /M —1

uard g)is specified using the predicate
up A —~down

which means that up has value present and down has value
absent.

Garage Counter Finite State Machine (FSM)
In Pictures

up \N—down /1 upN\—down |2 upA\—down /3 up\—down | M

down \N—up /| 0 downAN—-up /1 downAN—-up /2 downN\—-up /M —1

Initial state

Garage Counter Finite State Machine (FSM)
In Pictures

ip A\—down | 2 up \N—down /3 up \—down | M

0.0:@;

down \N—up /0 downAN—-up /1 downAN-up /2 downN\—-up /M —1

Output valuation

Garage Counter Mathematical Model

up \A—down / 1 up AN—down /2 upN\—down /3 upA\-down | M
downN\N—up | 0 downAN—up /1 downAN—up /2 downA\—-up | M—1
Formally: (States, Inputs, Outputs, update, initialState), where
o States=1{0,1,--- M}

e Inputs is a set of input valuations

The picture

e Outputs IS a set of output valuations above defines
the update

e update : States X Inputs — States X Outputs function.

e initialState =0
10

FSM Notation

guard / action state
State?

initial state
Statel transition
initial
state CState 3)

indicator

self loop

11

Examples of Guards for Pure Signals

frue

P1
—P1
P1 A P2
p1Vp2
P1/A7p2

Transition is always enabled.

Transition is enabled if p; is present.

Transition is enabled if p; Is absent.

Transition is enabled if both p; and p, are present.
Transition is enabled if either p; or p, Is present.
Transition is enabled if p; is present and p, IS absent.

12

Examples of Guards for Signals with Numerical
Values

D3 Transition is enabled if pj3 is present (not absent).
p3 = Transition is enabled if ps is present and has value 1.
p3 = 1A p; Transition is enabled if p3 has value 1 and p; is present.
p3 >S5 Transition is enabled if p; is present with value greater than 5.

13

Example: Thermostat

input: remperature : R
outputs: heatOn, heatOff : pure

temperature < 18 / heatOn

temperature > 22 | heatOff

Exercise: From this picture, construct the formal
mathematical model.

14

More Notation: Default Transitions

up \ ~down / 1

- -
- "~

-

down A\ —up / 0O

A default transition is enabled if no non-default transition
IS enabled and it either has no guard or the guard

evaluates to true. When is the above default transition
enabled?

15

Extended State Machines

variable: c¢: {0,--- ,M}
inputs: up, down: pure
output: count: {0,--- M}

up N\ —downNc <M [c+1
c:=c+1

down N—upANc>0/c—1

c.=c—1

16

Traffic Light Controller

variable: count: {0,---,60}
inputs: pedestrian : pure count < 60 /
outputs: sigR, sigG, sigY : pure count := count + 1

count > 60 / sigG
count := 0

pedestrian A count < 60 /
count := count + 1

~~~~

.....

count := count + 1

count := 0

pedestrian A\ count > 60 / sigY count := count + 1

count := ()

count > 60 / sigY
count > 5 / sigR count := 0

count := 10

-
_____

count ‘= count + 1

17



Definitions

- Stuttering transition: Implicit default transition that is
enabled when inputs are absent and that produces
absent outputs.

Receptiveness: For any input values, some transition
is enabled. Our structure together with the implicit
default transition ensures that our FSMs are receptive.

Determinism: In every state, for all input values,
exactly one (possibly implicit) transition is enabled.

18



Example: Nondeterminate FSM

Nondeterminate model of pedestrians arriving at a

CrOSSW8|k: inputs: sigR, sigG, sigY : pure
outputs: pedestrian : pure

true /

true / pedestrian

crossing

Formally, the update function is replaced by a function

possibleUpdates : States X Inputs — ystatesx Qutputs

19



Behaviors and Traces

FSM behavior is a sequence of (non-stuttering) steps.

A trace is the record of inputs, states,
and outputs in a behavior. yellow

A computation tree is a graphical
representation of all rue ! sigG
possible traces.

A

true / sigG

green

red

FSMs are suitable for formal ka true / sigG g (green

analysis. For example, safety = \
analysis might show that some unsafe/sisR

state is not reachable. .\

A

20



Uses of nondeterminism

1. Modeling unknown aspects of the environment or
system

Such as: how the environment changes the iRobot’'s
orientation

2. Hiding detail in a specification of the system
We will see an example of this later (see notes)

Any other reasons why nondeterministic FSMs might be
preferred over deterministic FSMs?

21



Size Matters

Non-deterministic FSMs are more compact than
deterministic FSMs

ND FSM - D FSM: Exponential blow-up in #states in
worst case

22



Non-deterministic Behavior: Tree of Computations

For a fixed input sequence:
o A deterministic system exhibits a single behavior
o A non-deterministic system exhibits a set of behaviors

Deterministic FSM behavior for a particular input sequence:

.ﬁ.ﬁ.ﬁ.ﬁ.ﬁ | ] | | | ]

Non-deterministic FSM behavior for an input sequence:
o ——> 0 —> 0 —> @ —> = = =

./
N T
\./V._>-I-
~—— ¢ —

E E = 23



Related points

What does receptiveness mean for non-deterministic
state machines?

Non-deterministic = Probabilistic

24



Example from Industry:

[EhutdownC
Oftf
entry.Engine_State=EngOFF,

[lgnition_State==lgn_ONJK

it=1

==lgn_ON}/ShutdownToOnlnit=1

ition_State==Ign T

Engine Control

downToOffInit=1

fShutdown!

entry.Engine_State=SHUTDOWN,
Quring:PerﬂToDownlnit:O;

OffToOninit=1

[!PwrdmNnTimeExpiredz1 PerOfToDownlnit=1

PwrOfiDelay/

entry:Engine_State=PWROFF,

KeyOn/ during: RunToPwaOffinit=C,
entry: Engine_State=KEYON; | ignition_State==lgn_OFF JKeyOnTaPwrOfinit=)) StallToPwrOfinit=0,
during:KeyOninit=0, - - KeyOnTaPwrOfinit=0,
ShutdownTaOninit=0; J

PwrOfToOninit=0; [lgnition_State==lgn_OFF]/StaHIngr0fﬁnit=1

[KeyOnToCrankidet(RPM,..
KOS _n_EngfumThrsh)==1]...

fKeyOnToCranklni=1
[CrankToStaliMet
KOS _n_Eng
{CrankToStalll

M

=1

mThrsh)==1]..

Stall
entry:Engine_State=STALL,
during: CrankToStallinit=0;

[StallTeCrankMet(RPM KMVIOS_n_EngTumThrsh)...
==1}/GtallTaCrankinit=1

Crank/

CrankToStallinit=0;
StallToCrankinit=0;

entry: Engine_State=CRANK;
during:KeyOnToCrankinit=0,

[lgnition_State==ign_OFF [fRunToP

prr Offinit=1

[CrankToRun==1}/Cran

Source:
Delphi Automotive Systems (2001)

during: CrankToRuninit=0,

entry: Engine_State=EngRUN,;

25



Elements of a Modal Model (FSM)

initial state

downToOffInit=1

fShutdown!
entry.Engine_State=SHUTDOWN,

Oftf
entry.Engine_State=EngOFF,

ition_State==Ign T

==lgn_ON}/ShutdownToOnlnit=1

Quring:PerﬂToDownlnit:O;

[!PwrdmNnTimeExpiredz1 PerOfToDownlnit=1
OfiToOninit=1

PwrOfiDelay/

entry:Engine_State=PWROFF,
KeyOn/ during: RunToPwaOffinit=C,
State entry: Engine_State=KEYON, [lgnition_State==lgn_OFF JKeyOnToPwrOfinit=) StallToPwrOfinit=0,
during:KeyOninit=0, KeyOnTaPwrOfinit=0,
ShutdownTaOninit=0;
PwrOfToOninit=0; [lgnition_State==lgn_OFF]/StaHIngr0fﬁnit=1 _
[KeyOnToCrankidet(RPM, ... Stall /InpUt
KWIOS _n_EngfumThrsh)==1]... entry:Engine_State=STALL,
fKeyOnToCranklni=1 ing: ait=0:
¥ Cr (CrankToStalMet(REM, during: CrankToStallinit=0; Output
KOS _n_EngPumThrsh)==1].
- {CrankToStallinft=1 [StallTetTankMet(RPM KMIOS n_En
transmon > ==1}&tallTaCrankinit=1 )
Crank/ [ignition_State==ign_OFF f/RunTePOfnit=1
entry: Engine_State=CRANK;
during:KeyOnToCrankinit=0,
CrankToStallinit=0; kMet(RPM, ..
StallToCrankinit=0, ToCrankThrshj==1}/...
A
. CrankToRun==1]/Cran entry: Engine State=EngRUN,
Source: | | G T REC:

Delphi Automotive Systems (2001)

during: CrankToRuninit=0,

26



It is sometimes useful to even model continuous
systems as FSMs by discretizing their state
space. E.g.: Discretized iRobot Hill Climbe

27



Actor Model of an FSM

guard / action

statel

guard / action

guard / action

This model enables composition of state machines.

28



What we will be able to do with FSMs

FSMs provide:
1.A way to represent the system for:
Mathematical analysis
So that a computer program can manipulate it
2.A way to model the environment of a system.

3.A way to represent what the system must do and must
not do — its specification.

4.A way to check whether the system satisfies its
specification in its operating environment.

29



FSM Controller for iRobot

guard: !level
output: drive_one_ sg=false;
rotate=true

guard: true
output: drive_one sqg=false;
rotate=false

drive

guard: level
output: drive_one_sq=true;
rotate=false
States = {init, tilt, drive} Inputs =?  Outputs = ?
update = ? Any transitions missing?

30



FSM Controller for iRobot (version 2)

Also need to specify “else guard: llevel

arcs for tilt and drive output: drive_one_sq=false;
rotate=true

guard: true
output: drive_one_sq=false;
rotate=false guard: level

output: drive_one_sq=true;
rotate=false

Will this robot always drive uphill?
(assume that it starts facing uphill)

31



Modeling the iRobot’ s environment

guard: true
output: level=true

guard: true
output: level=false

guard: rotate
output: level=true

guard: rotate
output: level=false

guard: rotate

guard: rotate
output: level=false

output: level=false

Is this model deterministic?
L level=true

NL45 level=false, 45° offset
NLO9O Ilevel=false, 90° offset

Self loops on: rotate=false

32



Representing a state machine

1. Pictorial notation
2. Table representing transition relation
3. Functional notation

When would you use each representation?

33



