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Memory Architecture: Issues 

¢  Types of memory 
¢  Stack  
¢  Caches 
¢  Scratchpad memories 
¢  Absolute and relative addresses 
¢  Virtual memory 
¢  Heaps 

l allocation/deallocation 
l  fragmentation 
l garbage collection 

¢  Segmented memory spaces 
¢  … 

These issues loom 
larger in embedded 
systems than in 
general-purpose 
computing. 
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To be concrete: 
•  A low-end example:  

8-bit microcomputer 

•  A medium-end example:  
32-bit microcomputer 

Specific Examples 
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Specific Examples 
(Continued) 

Single-Board RIO  
(National Instruments) 
•  Xilinx FPGA 

•  In our lab: preconfigured 
with a 32-bit MicroBlaze 
microprocessor running 
without an operating system (“bare iron”). 

•  PowerPC processor (Freescale MPC5200) 
•  In our lab: running VxWorks RTOS (real-time operating 

system) or LabVIEW Embedded. 
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Atmel ATMega 168 
Microcontroller  

9-pin I/O port 

The iRobot Create 
Command 
Module 
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ATMega168 Memory Architecture 
An 8-bit microcontroller with 16-bit addresses 

Example of a 
microcontroller 
architecture. Used in 
iRobot command 
module. 

iRobot 
command 
module has 
16K bytes 
flash memory 
(14,336 
available for 
the user 
program. 
Includes 
interrupt 
vectors and 
boot loader.) 

1 k bytes RAM 

Additional I/O on the  
command module: 
• Two 8-bit timer/counters 
• One 16-bit timer/counter 
• 6 PWM channels 
• 8-channel, 10-bit ADC 
• One serial UART 
• 2-wire serial interface 

stack 
Source: ATmega168 Reference Manual 
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Understanding the memory architecture 

What is meant by the 
following C code: 
 
char x; 

x = 0x20; 
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Understanding the memory architecture 

What is meant by the 
following C code: 
 
char *x; 

x = 0x20; 
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Understanding the memory architecture 

What is meant by the 
following C code: 
 
char *x, y; 

x = 0x20; 

y = *x; 
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Understanding the memory architecture 

What is meant by the 
following C code: 
 
char *x, y; 

x = &y; 

*x = 0x20; 
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Understanding the memory architecture 
What is meant by the 
following C code: 
 
char foo() { 

 char *x, y; 

 x = 0x20; 

 y = *x; 

 return y; 
} 

char z; 

int main(void) { 

 z = foo(); 

 … 
} 
Where are x, y, z in memory? 
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Understanding the memory architecture 

char foo() { 

 char *x, y; 
 x = 0x20; 

 y = *x; 

 return y; 

} 

char z; 
int main(void) { 

 z = foo(); 

 … 
x occupies 2 bytes on the 

stack, y occupies 1 byte on 
the stack, and z occupies 1 
byte in static memory. 
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Understanding the memory architecture 
What is meant by the 
following C code: 
 

char foo() { 

 char y; 

 uint16_t x; 

 x = 0x20; 

 y = *x; 
 return y; 

} 

char z; 

int main(void) { 

 z = foo(); 
 … 

} 
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Memory usage: Understanding the stack. 
Find the flaw in this program 

int x = 2; 
 
int* foo(int y) { 
  int z; 
  z = y * x; 
  return &z; 
} 
 
int main(void) { 
  int* result = foo(10); 
  ... 
} 

statically allocated: compiler assigns a memory location. 

arguments on the stack 

automatic variables on the stack 

program counter and copies of all 
registers on the stack 

This program returns a pointer to a variable on 
the stack. What if another procedure call occurs 
before the returned pointer is de-referenced? 
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Understanding the  
memory architecture 

void foo(uint16_t x) { 

 char y; 
 y = *x; 

 if (x > 0x100) { 

     foo(x – 1); 

 } 

} 
char z; 

void main(…) { 

 z = 0x10; 

 foo(0x04FF); 

 … 
} 
What is the value of z? 
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Luminary LM3S8962 
I/O Architecture 

32-bit microcomputer. 
 
 
Relevant features: 
¢ UART interface 
¢ ADC to accelerometer 
¢ SysTick/other Timers 
¢ UART to Bluetooth 
¢ JTAG interface for programming 
¢ No floating point! 

Source: Luminary Micro Datasheet 
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Memory Architecture 

Source: Luminary Micro Datasheet 

Luminary LM3S8962 

ARM Cortex M3 
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Microblaze memory map 
Xilinx soft core 

Thanks to Trung Tran 
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Heaps 

An operating system typically offers a way to dynamically 
allocate memory on a “heap”. 
 
Memory management (malloc() and free()) can lead to 
many problems with embedded systems: 
¢   Memory leaks (allocated memory is never freed) 
¢   Memory fragmentation (allocatable pieces get smaller) 
 
Automatic techniques (“garbage collection”) typically 
require stopping everything and reorganizing the 
allocated memory. This is deadly for real-time programs. 
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Summary 

Understanding memory architectures is essential to 
programming embedded systems. 
 


