
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 5: Memory Architectures (Ch. 8)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

2

Memory Architecture: Issues

¢  Types of memory
¢  Stack
¢  Caches
¢  Scratchpad memories
¢  Absolute and relative addresses
¢  Virtual memory
¢  Heaps

l allocation/deallocation
l  fragmentation
l garbage collection

¢  Segmented memory spaces
¢  …

These issues loom
larger in embedded
systems than in
general-purpose
computing.

3

To be concrete:
•  A low-end example:

8-bit microcomputer

•  A medium-end example:
32-bit microcomputer

Specific Examples

4

Specific Examples
(Continued)

Single-Board RIO
(National Instruments)
•  Xilinx FPGA

•  In our lab: preconfigured
with a 32-bit MicroBlaze
microprocessor running
without an operating system (“bare iron”).

•  PowerPC processor (Freescale MPC5200)
•  In our lab: running VxWorks RTOS (real-time operating

system) or LabVIEW Embedded.

5

Atmel ATMega 168
Microcontroller

9-pin I/O port

The iRobot Create
Command
Module

6

ATMega168 Memory Architecture
An 8-bit microcontroller with 16-bit addresses

Example of a
microcontroller
architecture. Used in
iRobot command
module.

iRobot
command
module has
16K bytes
flash memory
(14,336
available for
the user
program.
Includes
interrupt
vectors and
boot loader.)

1 k bytes RAM

Additional I/O on the
command module:
• Two 8-bit timer/counters
• One 16-bit timer/counter
• 6 PWM channels
• 8-channel, 10-bit ADC
• One serial UART
• 2-wire serial interface

stack
Source: ATmega168 Reference Manual

7

Understanding the memory architecture

What is meant by the
following C code:

char x;

x = 0x20;

8

Understanding the memory architecture

What is meant by the
following C code:

char *x;

x = 0x20;

9

Understanding the memory architecture

What is meant by the
following C code:

char *x, y;

x = 0x20;

y = *x;

10

Understanding the memory architecture

What is meant by the
following C code:

char *x, y;

x = &y;

*x = 0x20;

11

Understanding the memory architecture
What is meant by the
following C code:

char foo() {

 char *x, y;

 x = 0x20;

 y = *x;

 return y;
}

char z;

int main(void) {

 z = foo();

 …
}
Where are x, y, z in memory?

12

Understanding the memory architecture

char foo() {

 char *x, y;
 x = 0x20;

 y = *x;

 return y;

}

char z;
int main(void) {

 z = foo();

 …
x occupies 2 bytes on the

stack, y occupies 1 byte on
the stack, and z occupies 1
byte in static memory.

13

Understanding the memory architecture
What is meant by the
following C code:

char foo() {

 char y;

 uint16_t x;

 x = 0x20;

 y = *x;
 return y;

}

char z;

int main(void) {

 z = foo();
 …

}

14

Memory usage: Understanding the stack.
Find the flaw in this program

int x = 2;

int* foo(int y) {
 int z;
 z = y * x;
 return &z;
}

int main(void) {
 int* result = foo(10);
 ...
}

statically allocated: compiler assigns a memory location.

arguments on the stack

automatic variables on the stack

program counter and copies of all
registers on the stack

This program returns a pointer to a variable on
the stack. What if another procedure call occurs
before the returned pointer is de-referenced?

15

Understanding the
memory architecture

void foo(uint16_t x) {

 char y;
 y = *x;

 if (x > 0x100) {

 foo(x – 1);

 }

}
char z;

void main(…) {

 z = 0x10;

 foo(0x04FF);

 …
}
What is the value of z?

16

Luminary LM3S8962
I/O Architecture

32-bit microcomputer.

Relevant features:
¢ UART interface
¢ ADC to accelerometer
¢ SysTick/other Timers
¢ UART to Bluetooth
¢ JTAG interface for programming
¢ No floating point!

Source: Luminary Micro Datasheet

17

Memory Architecture

Source: Luminary Micro Datasheet

Luminary LM3S8962

ARM Cortex M3

18

Microblaze memory map
Xilinx soft core

Thanks to Trung Tran

MicroBlaze	

40MHz	

MEMORY	

BRAM	

UART0	

UART1	

ADC	

Subsystem	

TIMER	

Debugger	

0xFFFFFFFF

0x00000000

0x0000FFFF

0x81420000

Unmapped	
 Area	

ADC	
 subsystem	

Memory	
 for	

InstrucFons	
 and	
 Data	
 	

0x814CFFFF

Interrupt	
 controller	

0x81800000

Interrupt	

controller	

0x8180FFFF

Unmapped	
 Area	

Timer	

0x83C00000

0x83C0FFFF

Unmapped	
 Area	

UARTs	

Unmapped	
 Area	

0x84000000

0x8402FFFF

Debugger	

Unmapped	
 Area	

Unmapped	
 Area	

0x84400000

0x8440FFFF

19

Heaps

An operating system typically offers a way to dynamically
allocate memory on a “heap”.

Memory management (malloc() and free()) can lead to
many problems with embedded systems:
¢  Memory leaks (allocated memory is never freed)
¢  Memory fragmentation (allocatable pieces get smaller)

Automatic techniques (“garbage collection”) typically
require stopping everything and reorganizing the
allocated memory. This is deadly for real-time programs.

20

Summary

Understanding memory architectures is essential to
programming embedded systems.

