Department of Computer Science National Tsing Hua University

CS 5244: Introduction to Cyber Physical Systems

Unit 0: Course Format and Logistics

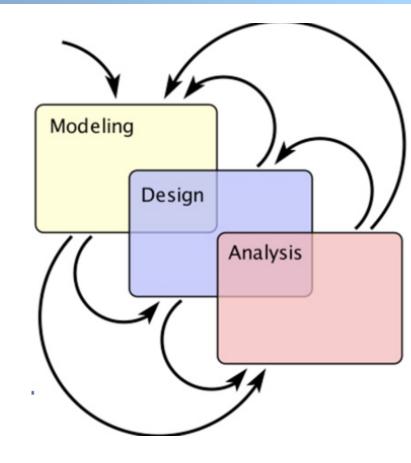
Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit A. Seshia at UC Berkeley for sharing their course materials

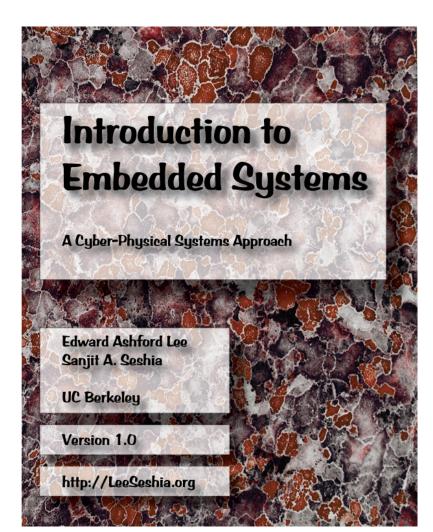
About This Course

- Almost all the course materials are based on two courses developed at
 - National Taiwan University,智慧整合感控系統(CPS)概論, 施 吉昇教授
 - University of California Berkeley, Introduction to Embedded Systems, Profs. Edward A. Lee and Sanjit A. Seshia

- This is the first time we offer this course
 - All the plans are tentative
 - Fell free to suggest *anything*


Yet Another Embedded Systems Course?

• BTW, what are embedded systems?


- Computers whose job is not primarily information processing, but rather is interacting with physical processes
- Examples: Automotive controllers, avionics, medical devices, industrial control, and energy management/conservation
- Cyber-Physical Systems (CPS): a broader view
- So, the course is about embedded systems, but
 - Not only hacking \rightarrow hacking without a sound plan may lead to disaster
- The course is more about: A scientific approach to designing and implementing cyber-physical systems

Model, Design, and Analysis

- Modeling is the process of gaining a deeper understanding of a system through imitation. Models specify what a system does.
- Design is the structured creation of artifacts. It specifies how a system does what it does.
- Analysis is the process of gaining a deeper understanding of a system through dissection. It specifies why a system does what it does or fails to do what a model says it should do.

Textbook

- Available at http:// LeeSeshia.org
- The emphasis is on modeling, design, and analysis of cyberphysical systems, which integrate computing, networking, and physical processes.

STARMAC Quadrotor Aircraft

STARMAC Quadrotor Aircraft (cont.)

How STARMAC is Related to This Course

Modeling

- Flight dynamics (ch2)
- Modes of operation (ch3)
- Transitions between modes (ch4)
- Composition of behaviors (ch5)
- Multi-vehicle interaction (ch6)

Design

- Processors (ch7)
- Memory system (ch8)

- Sensor interfacing (ch9)
- Concurrent software (ch10)
- Real-time scheduling (ch11)

Analysis

- Specifying safe behavior (ch12)
- Achieving safe behavior (ch13)
- Verifying safe behavior (ch14)
- Guaranteeing timeliness (ch15)

Lectures

- Time: Tuesdays 10:10 11:00 a.m., Thursdays 10:10 a.m. 12:00 p.m.
- Location: EECS 132
- Format:
 - The lectures will be given in English
 - All written reports, assignments, and exams must be in English
 - In-class discussion, questions, and comments can be in Mandarin
- Course Website, please read carefully: http://nmsl.cs.nthu.edu.tw/index.php/courses

Grading

- Assignments: 20%
 - Four written assignments: 5% each
- Programming Projects: 50%
 - Five projects: 10% each
- Midterm and Final Exams: 30%
 - Midterm: 15%
 - Final: 15%

Questions?

