Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 7: Interrupts (Ch. 9)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit
A. Seshia at UC Berkeley for sharing their course materials

Input Mechanisms in Software

o Polling
Main loop checks each I/O device periodically.
If input is ready, processor initiates communication.

o Interrupts
External hardware alerts the processor that input is ready.
Processor suspends what it is doing.
Processor invokes an interrupt service routine (ISR).
ISR interacts with the application concurrently.

Interrupts

o Interrupt Service Routine

Short subroutine that handles the interrupt

Processor Setup Code

A 4

Register the Interrupt Service Routine

A

Interrupt! %

Context switch

»

F Processor executes task code

<
<

Resume

Run Interrupt Service Routine

The most typical and general program setup for the Reset and Interrupt Vector Addresses in

ATmegal68 is:
Address Labels Code Comments
0x0000 jmp RESET ; Reset Handler
I nte rru ptS . Deta i IS 0x0002 jmp EXT_INTO ; IRQO Handler
u 0x0004 jmp EXT_ INT1 ; IRQ1 Handler
0x0006 jmp PCINTO ; PCINTO Handler
0x0008 jmp PCINT1 ; PCINT1 Handler
0X000A jmp PCINT2 ; PCINT2 Handler
oxooocC jmp WDT ; Watchdog Timer Handler
P 0X000E jmp TIM2_COMPA ; Timer2 Compare A Handler
rogram memory addresses’ 0x0010 jmp TIM2_COMPB ; Timer2 Compare B Handler
not data memory addresses. 0x0012 jmp TIM2_OVF ; Timer2 overflow Handler
0x0014 jmp TIM1_CAPT ; Timerl Capture Handler

Triggers:
. . Source: ATmega168 Reference Manual
o Hardware interrupt: A level change on an interrupt request pin

o Software interrupt: Special instruction or write a memory-mapped register

Responses:

o Disable interrupts.

o Push the current program counter onto the stack.

o Execute the instruction at a designated address in the flash memory.

Design of interrupt service routine:
o Save and restore any registers it uses.
o Re-enable interrupts before returning from interrupt.

Timed Interrupt

Processor Setup

v
Register Interrupt Service Routine

A

Initialize Timer

v
ocessor jumps to ISR

»

Timer

When timer expires,
interrupt processor

Reset timer

»

Execute Task Code

A

Resumes

Update Tick / Sample

Example 1: Set up a timer on an ATmega168 to
trigger an interrupt every 1ms.

The frequency of the processor in the command module is
18.432 MHz.

o TCCR: Timer/Counter Control Register
1. Set up an interrupt to occur once every millisecond.)
Toward the beginning of your program, set up and enable O OCR: Output compare reglster

the timerl interrupt with the following code: .
€ o TIMSK: Timer Interrupt Mask

TCCR1A = 0x00;

TCCR1B = Ox6C;

OCR1A = 71; The “prescaler” value divides the system
TIMSKL = €x62; clock to drive the timer.

The first two lines of the code put the timer in a mode in
which it generates an interrupt and resets a counter when

Setting a non-zero bit in the timer

the timer value reaches the value of OCR1A, and select interrupt mask causes an interrupt to
a prescaler value of 256, meaning that the timer runs at :
1/256th the speed of the processor. The third line sets occur when the timer resets.

the reset value of the timer. To generate an interrupt every
1ms, the interrupt frequency will be 1000 Hz. To calculate
the value for OCR1A, use the following formula:

OCR1A = (processor_frequency / (prescaler *
interrupt_frequency)) - 1

OCR1A = (18432000 / (256 * 1000)) - 1 =171

The fourth line of the code enables the timer interrupt. See .
the ATMega168 datasheet for more information on these Source: iRobot Command Module Reference Manual v6
control registers.

Setting up the timer interrupt hardware in C

include <avr / io.h> Figure 16-1. 8-bit Timer/Counter Block Diagram

int main (void) { memory- ecion | ke ;m] -
TCCR1A = OXOO; mapped T0P |BOTTOM _|
TCCRIB = 0x0c; 'edister b—=—| —
L= 1[=0]
OCR1A = 71; | ¢ ? t)
TIMSK1 = 0x02; ? ' o ot »0cna
- | OCRnA }d-——- H
) = = E o
}c_(srat
54—»[OCRnB]
This code sets the hardware up | # | | #m |
to trigger an interrupt every 1ms. v >

Source: ATmega168 Reference Manual

Example 2: Set up a timer on the Luminary to
trigger an interrupt every 1ms.

// Setup and enable SysTick with interrupt every 1lms

vold initTimer (void) {
SysTickPeriodSet (SysCtlClockGet () / 1000);

SysTickEnable () ; $\\\\\\\\\\\\
Number of cycles per sec.
SysTickIntEnable () ;
} Start SysTick counter
, , Enable SysTick timer interrupt
// Disable SysTick
vold disableTimer (void) {

SysTickIntDisable () ;
SysTickDisable () ;

Source: Stellaris Peripheral Driver Library User’ s Guide

8

Example: Do something for 2 seconds then stop

_— static variable: declared outside
{ main() puts them in statically

allocated memory (not on the
stack)

volatile)uint timer count = 0;
void ISR (vod
if (timer =
timer coun

}

volatile: C keyword to tell the
compiler that this variable may
change at any time, not (entirely)
under the control of this program.

}
int main (void) {
// initialization code

SysTickIntRegister (&ISR);

/7 other init

Interrupt service routine

timer count = 2000;
while (timer count != 0) {
code to run for 2 seconds Registering the ISR to be invoked

} on every SysTick interrupt

Concurrency

volatile uint timer count = 0;
void ISR (void) {
if (timer count != 0) {

timer_count——;

}
}
int main (void) {
// initialization code
SysTickIntRegister (&ISR) ;
// other init
timer count = 2000;
while (timer count != 0) {
code to run for 2 seconds

}

concurrent code:
logically runs at the
same time. In this case,
between any two
machine instructions
in main() an interrupt
can occur and the

upper code can
execute.

10

Reasoning about concurrent code

volatile uint timer count = 0;
void ISR (void) {
if (timer count != 0) {

timer_count——;

}
}

int main (void) {

// 1nitialization code
SysTickIntRegister (&ISR);
// other init -«

timer count = 2000;
while (timer count != 0) {
code to run for 2 seconds

}

what if the interrupt
occurs right here?

11

Reasoning about concurrent code

volatile uint timer count = 0;
void ISR (void) {
if (timer count != 0) {

timer_count——;

}
}

int main (void) {
// 1nitialization code
SysTickIntRegister (&ISR);
// other init

__ what if the interrupt

timer count = 2000;
while (timer count != 0) {
code to run for 2 seconds

}

occurs right here?

12

Reasoning about concurrent code

volatile uint timer count = 0;
void ISR (void) {
if (timer count != 0) {

timer count--;

}
}
int main (void) {
// 1nitialization code
SysTickIntRegister (&ISR) ;
// other init
timer count = 2000;

while (timer count != 0) {
code to run for 2 seconds

}

what if the interrupt
occurs right here?

13

Reasoning about concurrent code

volatile uint timer count = 0;
void ISR (void) {
if (timer count != 0) {

timer count--;

}
}
int main (void) {
// 1nitialization code
SysTickIntRegister (&ISR) ;
// other init
timer count = 2000;

while (timer count != 0) {
code to run for 2 seconds

}

—

what if the interrupt

occurs twice during

the execution of this
code?

14

Reasoning about concurrent code

volatile uint timer count = 0;
void ISR (void) {
if (timer count != 0) {

timer_count——;

}

}
int main (void) {
// 1nitialization code
SysTickIntRegister (&ISR);

// other init
timer count = 2000;

while (timer count != 0) {
code to run for 2 seconds

can an interrupt
occur here? If it can,
what happens?

}

15

Reasoning about concurrent code

volatile uint timerCount = 0;
void ISR (void) {
. disable interrupts

if (timerCount != 0) { : .
E > . A key question: Assuming
timerCount—-;) . e .
} interrupt occurs infinitely often, is
. enable interrupts position C always reached?

}

int main(void) {
// initialization code
SysTickIntRegister (&ISR) ;
.. // other init
timerCount = 2000;
while (timerCount != 0) {

.. code to run for 2 seconds
}
C =>yhatever comes next

}

16

Reasoning about concurrent code

volatile uint timer count = 0;
void ISR (void) {
if (timer count != 0) {

timer_count——;

}
}
int main (void) {
// 1nitialization code
SysTickIntRegister (&ISR) ;
// other init
timer count = 2000;

while (timer count != 0) {
. code to run for 2 seconds

}

What is it about this
code that makes it
work?

17

A question:

What’ s the difference between

Concurrency
and
Parallelism

18

Concurrency and Parallelism

A program is said to be concurrent if different parts of
the program conceptually execute simultaneously.

A program is said to be parallel if different parts of the

program physically execute simultaneously on distinct
hardware.

A parallel program is concurrent, but a concurrent
program need not be parallel.

19

Concurrency in Computing

o Interrupt Handling
Reacting to external events (interrupts)
Exception handling (software interrupts)
o Processes

Creating the illusion of simultaneously running
different programs (multitasking)

o Threads
How is a thread different from a process?

o Multiple processors (multi-cores)

20

Summary

Interrupts introduce a great deal of nondeterminism into a
computation. Very careful reasoning about the design is
necessary.

21

