
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 7: Interrupts (Ch. 9)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

2

Input Mechanisms in Software

¢  Polling
l  Main loop checks each I/O device periodically.
l  If input is ready, processor initiates communication.

¢  Interrupts
l  External hardware alerts the processor that input is ready.
l  Processor suspends what it is doing.
l  Processor invokes an interrupt service routine (ISR).
l  ISR interacts with the application concurrently.

3

Interrupts

¢  Interrupt Service Routine
Short subroutine that handles the interrupt

Processor Setup Code

Register the Interrupt Service Routine

Processor executes task code Run Interrupt Service Routine

Interrupt!
Context switch

Resume

4

Interrupts: Details

Triggers:
¢  Hardware interrupt: A level change on an interrupt request pin
¢  Software interrupt: Special instruction or write a memory-mapped register

Responses:
¢  Disable interrupts.
¢  Push the current program counter onto the stack.
¢  Execute the instruction at a designated address in the flash memory.

Design of interrupt service routine:
¢  Save and restore any registers it uses.
¢  Re-enable interrupts before returning from interrupt.

Source: ATmega168 Reference Manual

Program memory addresses,
not data memory addresses.

5

Timed Interrupt

Timer

Update Tick / Sample

When timer expires,
interrupt processor

Reset timer

Processor jumps to ISR

Resumes

Processor Setup

Register Interrupt Service Routine

Initialize Timer

Execute Task Code

6

Example 1: Set up a timer on an ATmega168 to
trigger an interrupt every 1ms.

¢  TCCR: Timer/Counter Control Register
¢  OCR: output compare register
¢  TIMSK: Timer Interrupt Mask

 The “prescaler” value divides the system
clock to drive the timer.

 Setting a non-zero bit in the timer
interrupt mask causes an interrupt to
occur when the timer resets.

Source: iRobot Command Module Reference Manual v6

7

Setting up the timer interrupt hardware in C

#include <avr/io.h>

int main (void) {

 TCCR1A = 0x00;

 TCCR1B = 0x0C;

 OCR1A = 71;

 TIMSK1 = 0x02;

 ...

}

This code sets the hardware up
to trigger an interrupt every 1ms.

Source: ATmega168 Reference Manual

memory-
mapped
register

8

Example 2: Set up a timer on the Luminary to
trigger an interrupt every 1ms.

// Setup and enable SysTick with interrupt every 1ms

void initTimer(void) {
 SysTickPeriodSet(SysCtlClockGet() / 1000);

 SysTickEnable();

 SysTickIntEnable();

}

// Disable SysTick

void disableTimer(void) {

 SysTickIntDisable();

 SysTickDisable();

}

Source: Stellaris Peripheral Driver Library User’s Guide

Number of cycles per sec.

Start SysTick counter

Enable SysTick timer interrupt

9

volatile uint timer_count = 0;
void ISR(void) {
 if(timer_count != 0) {
 timer_count--;
 }
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init
 timer_count = 2000;
 while(timer_count != 0) {
 ... code to run for 2 seconds
 }
}

Example: Do something for 2 seconds then stop

volatile: C keyword to tell the
compiler that this variable may
change at any time, not (entirely)
under the control of this program.

static variable: declared outside
main() puts them in statically
allocated memory (not on the
stack)

Interrupt service routine

Registering the ISR to be invoked
on every SysTick interrupt

10

volatile uint timer_count = 0;
void ISR(void) {
 if(timer_count != 0) {
 timer_count--;
 }
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init
 timer_count = 2000;
 while(timer_count != 0) {
 ... code to run for 2 seconds
 }
}

Concurrency

concurrent code:
logically runs at the
same time. In this case,
between any two
machine instructions
in main() an interrupt
can occur and the
upper code can
execute.

11

volatile uint timer_count = 0;
void ISR(void) {
 if(timer_count != 0) {
 timer_count--;
 }
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init
 timer_count = 2000;
 while(timer_count != 0) {
 ... code to run for 2 seconds
 }
}

Reasoning about concurrent code

what if the interrupt
occurs right here?

12

volatile uint timer_count = 0;
void ISR(void) {
 if(timer_count != 0) {
 timer_count--;
 }
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init
 timer_count = 2000;
 while(timer_count != 0) {
 ... code to run for 2 seconds
 }
}

Reasoning about concurrent code

what if the interrupt
occurs right here?

13

volatile uint timer_count = 0;
void ISR(void) {
 if(timer_count != 0) {
 timer_count--;
 }
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init
 timer_count = 2000;
 while(timer_count != 0) {
 ... code to run for 2 seconds
 }
}

Reasoning about concurrent code

what if the interrupt
occurs right here?

14

volatile uint timer_count = 0;
void ISR(void) {
 if(timer_count != 0) {
 timer_count--;
 }
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init
 timer_count = 2000;
 while(timer_count != 0) {
 ... code to run for 2 seconds
 }
}

Reasoning about concurrent code

what if the interrupt
occurs twice during
the execution of this
code?

15

volatile uint timer_count = 0;
void ISR(void) {
 if(timer_count != 0) {
 timer_count--;
 }
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init
 timer_count = 2000;
 while(timer_count != 0) {
 ... code to run for 2 seconds
 }
}

Reasoning about concurrent code

can an interrupt
occur here? If it can,
what happens?

16

volatile uint timerCount = 0;
void ISR(void) {
 … disable interrupts
 if(timerCount != 0) {
 timerCount--;
 }
 … enable interrupts
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 … // other init
 timerCount = 2000;
 while(timerCount != 0) {
 … code to run for 2 seconds
 }
… whatever comes next
}

Reasoning about concurrent code

A
B

C

D
E A key question: Assuming

interrupt occurs infinitely often, is
position C always reached?

17

volatile uint timer_count = 0;
void ISR(void) {
 if(timer_count != 0) {
 timer_count--;
 }
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init
 timer_count = 2000;
 while(timer_count != 0) {
 ... code to run for 2 seconds
 }
}

Reasoning about concurrent code

What is it about this
code that makes it
work?

18

A question:

What’s the difference between

Concurrency
and

Parallelism

19

Concurrency and Parallelism

 A program is said to be concurrent if different parts of
the program conceptually execute simultaneously.

 A program is said to be parallel if different parts of the
program physically execute simultaneously on distinct
hardware.

A parallel program is concurrent, but a concurrent
program need not be parallel.

20

Concurrency in Computing

¢  Interrupt Handling
l  Reacting to external events (interrupts)
l  Exception handling (software interrupts)

¢  Processes
l  Creating the illusion of simultaneously running

different programs (multitasking)
¢  Threads

l  How is a thread different from a process?
¢  Multiple processors (multi-cores)
. . .

21

Summary

Interrupts introduce a great deal of nondeterminism into a
computation. Very careful reasoning about the design is
necessary.

