
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 20: Hierarchical State Machines

(Ch. 5)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

2

Recall Synchronous Composition:

SC = SA�SB

Synchronous composition

3

Recall Asynchronous Composition:

SC = SA�SB

Asynchronous composition
with interleaving semantics

4

volatile uint timerCount = 0;
void ISR(void) {
 … disable interrupts
 if(timerCount != 0) {
 timerCount--;
 }
 … enable interrupts
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 ... // other init
 timerCount = 2000;
 while(timerCount != 0) {
 ... code to run for 2 seconds
 }
}

Recall program that does something for 2
seconds, then stops

Is synchronous
composition the right
model for this?

Is asynchronous
composition (with
interleaving semantics)
the right model for this?

Answer: no to both.

5

volatile uint timerCount = 0;
void ISR(void) {
 … disable interrupts
 if(timerCount != 0) {
 timerCount--;
 }
 … enable interrupts
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 … // other init
 timerCount = 2000;
 while(timerCount != 0) {
 … code to run for 2 seconds
 }
… whatever comes next
}

Position in the program is part of the state

A
B

C

D
E A key question: Assuming

interrupt occurs infinitely often, is
position C always reached?

6

volatile uint timerCount = 0;
void ISR(void) {
 … disable interrupts
 if(timerCount != 0) {
 timerCount--;
 }
 … enable interrupts
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 … // other init
 timerCount = 2000;
 while(timerCount != 0) {
 … code to run for 2 seconds
 }
… whatever comes next
}

State machine model

A
B

C

D
E

Is asynchronous composition the
right thing to do here?

7

Asynchronous composition

This has transitions that will not occur in practice,
such as A,D to B,D. Interrupts have priority over
application code.

SC = SA�SB

A

B

C

8

Modeling an interrupt controller

FSM model of a single interrupt handler in an interrupt controller:

9

Modeling an interrupt controller

volatile uint timerCount = 0;
void ISR(void) {
 … disable interrupts
 if(timerCount != 0) {
 timerCount--;
 }
 … enable interrupts
}

int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 … // other init
 timerCount = 2000;
 while(timerCount != 0) {
 … code to run for 2 seconds
 }
}

Note that states can share
refinements.

10

Hierarchical State Machines

Reaction:
1.  First, the refinement of

the current state (if any)
reacts.

2.  Then the top-level
machine reacts.

If both produce outputs, they
are required to not conflict.
The two steps are part of the
same reaction.

refinement

OR state (being B
means being in C or D)

11

Hierarchical State Machines

Example trace:

A
g2/a2���⇥C

g4/a4���⇥D
g1/a1���⇥ A

g2/a2���⇥D
g3⇤g1/a3,a1�������⇥ A · · ·

simultaneous transitions

Simultaneous transitions can produce multiple outputs. These are required
to not conflict.

12

Hierarchical State Machines

Example trace:

A
g2/a2���⇥C

g4/a4���⇥D
g1/a1���⇥ A

g2/a2���⇥D
g3⇤g1/a3,a1�������⇥ A · · ·

history transition

A history transition implies that when a state with a refinement is left, it is
nonetheless necessary to remember the state of the refinement.

13

Flattening the state machine
(assuming history transitions):

A history transition implies that when a state
with a refinement is left, it is nonetheless
necessary to remember the state of the
refinement. Hence A,C and A,D.

14

Hierarchical State Machines with
Reset Transitions

Example trace:

reset transition

A reset transition implies that when a state with a refinement is left, you
can forget the state of the refinement.

A
g2/a2���⇥C

g4/a4���⇥D
g1/a1���⇥ A

g2/a2���⇥C
g4⇤g1/a4,a1�������⇥ A · · ·

A reset transition always
initializes the refinement of
the destination state to its
initial state.

15

Flattening the state machine
(assuming reset transitions):

A reset transition implies that when a state with
a refinement is left, it is not necessary to
remember the state of the refinement. Hence
there are fewer states.

16

Preemptive Transitions

A preemptive transition specifies that the
guard should be evaluated before the
current state refinement reacts, and if it is
true, then the current state should not react.

17

Modeling an interrupt controller

volatile uint timerCount = 0;
void ISR(void) {
 … disable interrupts
 if(timerCount != 0) {
 timerCount--;
 }
 … enable interrupts
}

int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 … // other init
 timerCount = 2000;
 while(timerCount != 0) {
 … code to run for 2 seconds
 }
}

Note that states can share
refinements.

18

Simplified interrupt controller

This abstraction assumes that an interrupt is always
handled immediately upon being asserted:

int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 … // other init
 timerCount = 2000;
 while(timerCount != 0) {
 … code to run for 2 seconds
 }
}

volatile uint timerCount = 0;
void ISR(void) {
 … disable interrupts
 if(timerCount != 0) {
 timerCount--;
 }
 … enable interrupts
}

A
B

C

D
E

19

Hierarchical interrupt controller
This model assumes further that interrupts are disabled in
the ISR:

A key question: Assuming
interrupt occurs infinitely often, is
state C always reached?

20

Hierarchical interrupt controller

This model assumes interrupts are disabled in the ISR:

History transition

Reset, preemptive transition

21

Hierarchical composition to model interrupts

Examining this composition machine, it is
clear that C is not necessarily reached if
the interrupt occurs infinitely often. If
assert is present on every reaction, C is
never reached.

History transition results
in product state space,
but hierarchy reduces the
number of transitions
compared to
asynchronous
composition.

22

What if
interrupts
are not
disabled?

A key question:
Assuming interrupt
occurs infinitely often, is
state C always reached?

Answer: NO! Counterexample: each time timerCount = 1, get more than one
nested interrupt. Trace in upper machine: idle, D, E, D2, E2, D2, E, D, …

23

Communicating FSMs

In the ISR, example our FSM models of the main
program and the ISR communicate via shared variables
and the FSMs are composed asynchronously.

We call this model of computation threads.

There are better alternatives for concurrent composition.

24

Hierarchical FSMs + Synchronous Composition:
Statecharts [Harel 87]
Modeling with
¢  Hierarchy (OR states)
¢  Synchronous composition (AND states)
¢  Broadcast (for communication)

Example due to Reinhard von Hanxleden

25

Summary

¢ Composition enables building complex systems from
simpler ones.

¢ Hierarchical FSMs enable compact representations of
complex behaviors.

¢ Both forms of composition can be converted to single
flat FSMs, but the resulting FSMs are quite complex
and difficult to analyze by hand.

¢ Algorithmic techniques are needed (e.g., model
checking, the inventors of which won the 2009 Turing
Award).

