
1 

Department of Computer Science 
National Tsing Hua University 

 

CS 5244: Introduction to Cyber 
Physical Systems 

 

Unit 17: Execution Time Analysis (Ch.15) 
 

Instructor: Cheng-Hsin Hsu 

 
Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit 

A. Seshia at UC Berkeley for sharing their course materials 

  
 

 
 



2 

Quantitative Analysis / Verification 

Does the brake-by-wire software 
always actuate the brakes within           
1 ms?!
Safety-critical embedded systems!

Can this new app drain my 
iPhone battery in an hour?!
Consumer devices!

How much energy must the sensor 
node harvest for RSA encryption?!
Energy-limited sensor nets,              
bio-medical apps, etc.!



3 Courtesy of Kuka Robotics Corp.!
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Time is Central to Cyber-Physical Systems 

Several timing analysis problems: 
q  Worst-case execution time (WCET) estimation 
q  Estimating distribution of execution times 
q  Threshold property: can you produce a test case that 

causes a program to violate its deadline? 
q  Software-in-the-loop simulation: predict execution time 

of particular program path 
 
ALL involve predicting an execution time property! 
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Worst-Case Execution Time (WCET) of a Task 

The longest time taken by a software task to execute 
à Function of input data and environment conditions 
 
BCET = Best-Case Execution Time 
(shortest time taken by the task to execute) 
 



7 

Worst-Case Execution Time (WCET) & BCET 

Figure from R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007. 
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The WCET Problem 

Given  
¢  the code for a software task  
¢  the platform (OS + hardware) that it will run on  
Determine the WCET of the task. 
 
Why is this problem important? 
 
 
 
Can the WCET always be found? 

The WCET is central in the design of RT Systems: 
Needed for Correctness (does the task finish in time?) and 
Performance (find optimal schedule for tasks) 

In general, no, because the problem is undecidable. 
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Typical WCET Problem 

Task executes within an infinite loop 
 
while(1) { 
     read_sensors(); 
     compute();               
     write_to_actuators(); 
} 
 

This code typically has: 
¢  loops with finite bounds  
¢  no recursion 
Additional assumptions: 
¢  runs uninterrupted 
¢  single-threaded 



EECS 249, UC Berkeley: 10 

Outline of the Lecture 

¢  Programs as Graphs 
¢  Challenges of Execution Time Analysis 
¢  Current Approaches; Measuring Execution Time 
¢  Limitations and Future Directions 
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Example Program: Modular Exponentiation 



result = 1; 
i = EXP_BITS; 

  (i > 0)? 

  ((exponent & 1) == 1)? 

   result = (result * base) % mod; 

exponent >>= 1; 
base = (base * base) % mod; 
i--; 

   return result; 
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Each node is a 
basic block 

Control-Flow 
Graph 
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Components of Execution Time Analysis 

¢  Program path (Control flow) analysis 
l Want to find longest path through the program  
l  Identify feasible paths through the program 
l  Find loop bounds 
l  Identify dependencies amongst different code fragments 

¢  Processor behavior analysis 
l  For small code fragments (basic blocks), generate 

bounds on run-times on the platform 
l  Model details of architecture, including cache behavior, 

pipeline stalls, branch prediction, etc. 
Ø   Outputs of both analyses feed into each other 
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Program Path Analysis: Path Explosion 

for (Outer = 0; Outer < MAXSIZE; Outer++) { 
/* MAXSIZE = 100 */ 

 for (Inner = 0; Inner < MAXSIZE; Inner++) { 
  if (Array[Outer][Inner] >= 0) { 
   Ptotal += Array[Outer][Inner]; 
   Pcnt++; 
  } else { 
   Ntotal += Array[Outer][Inner]; 
   Ncnt++; 
  } 
 Postotal = Ptotal; 
 Poscnt = Pcnt; 
 Negtotal = Ntotal; 
 Negcnt = Ncnt; 

} 

Example cnt.c from WCET benchmarks, Mälardalen Univ. 



15 

Program Path Analysis: Determining Loop Bounds 
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Program Path Analysis: Dependencies 

void altitude_pid_run(void) { 
  float err = estimator_z - desired_altitude; 
  desired_climb = pre_climb + altitude_pgain * err; 
  if (desired_climb < -CLIMB_MAX)  
      desired_climb = -CLIMB_MAX; 
  if (desired_climb > CLIMB_MAX)  
      desired_climb = CLIMB_MAX; 
} 

Example from “PapaBench” UAV autopilot code, IRIT, France 

Only one of these statements is executed 
(CLIMB_MAX = 1.0) 
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Processor Behavior Analysis: Cache Effects 

Suppose: 
1.  32-bit processor 
2.  Direct-mapped cache holds two sets 

¢  4 floats per set 
¢  x and y stored contiguously 

starting at address 0x0 

What happens 
when n=2? 
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Processor Behavior Analysis: Cache Effects 

Suppose: 
1.  32-bit processor 
2.  Direct-mapped cache holds two sets 

¢  4 floats per set 
¢  x and y stored contiguously 

starting at address 0x0 

What happens 
when n=8? 
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Common Current Approach (high-level) 

1.  Manually construct processor behavior model 
2.  Use model to find “worst-case” starting processor 

states for each basic block à measure execution 
times of the blocks from these states 

3.  Use these times as upper bounds on the time of each 
basic block 

4.  Formulate an integer linear program to find the 
maximum sum of these bounds along any program 
path  
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Example 

N = 10; 
q = 0; 
while(q < N) 
  q++; 
q = r; 

B1: 
N = 10; 
q = 0; 

B2: 
while(q<N) 

B4: 
q = r; 

B3: 
q++; 

x1 

x2 

x4 x3 

d1 

d2 

d3 

d4 

d5 

d6 

xi à # times Bi is executed 
dj à # times edge is executed 

Example due to Y.T. Li and S. Malik 
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Example, Revisited 
B1: 
N = 10; 
q = 0; 

B2: 
while(q<N) 

B4: 
q = r; 

B3: 
q++; 

x1 

x2 

x4 x3 

d1 

d2 

d3 

d4 

d5 

d6 

xi à # times Bi is executed 
dj à # times edge is executed 
Ci à measured upper bound on 

time taken by Bi 

Want to 
    maximize  ∑i  Ci xi 
subject to constraints 
  x1 = d1 = d2 
  d1 = 1 
  x2 = d2+d4 = d3+d5 
  x3 = d3 = d4 = 10 
  x4 = d5 = d6 

Example due to Y.T. Li and S. Malik 
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Timing Analysis and Compositionality 

Consider a task T with two parts A and B composed in 
sequence:  T = A; B 
 
Is  WCET(T) = WCET(A) + WCET(B)   ? 
 
  NOT ALWAYS! 

WCETs cannot simply be composed  L  
à Due to dependencies “through environment” 
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Timing Anomalies 

[ from R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.] 

Scenario 1:  Block A hits in I-cache, triggers branch 
speculation, and prefetch of instructions, then predicted 
branch is wrong, so Block B must execute, but it’s been 
evicted from I-cache, execution of B delayed. 

Scenario 2: Block A misses in I-cache, no branch prediction, 
then B hits in I-cache, B completes. 

I-Cache Hit!

I-Cache Miss!

A! B (I$ miss due to pre-fetch)!

B!A (miss in I$)!

pre-fetch! A!

B!

Branch evaluated!
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How to Measure Run-Time 

Several techniques, with varying accuracy: 
¢  Instrument code to sample CPU cycle counter 

l  relatively easy to do, read processor documentation for 
assembly instruction 

¢  Use cycle-accurate simulator for processor  
l  useful when hardware is not available/ready 

¢  Use Logic Analyzer 
l  non-intrusive measurement, more accurate 

¢  … 
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Cycle Counters 

Most modern systems have built in registers that are 
incremented every clock cycle 
Special assembly code instruction to access 
On Intel 32-bit x86 machines since Pentium: 

l  64 bit counter 
l  RDTSC instruction (ReaD Time Stamp Counter) sets 
%edx register to high order 32-bits, %eax register to low 
order 32-bits 

Wrap-around time for 2 GHz machine 
l  Low order 32-bits every 2.1 seconds 
l  High order 64 bits every 293 years 

 
[slide due to R. E. Bryant and D. R. O’Hallaron] 
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Measuring with Cycle Counter 
Idea 

l  Get current value of cycle counter 
•  store as pair of unsigned’s cyc_hi and cyc_lo 

l  Compute something 
l  Get new value of cycle counter 
l  Perform double precision subtraction to get elapsed cycles 

 
 

/* Keep track of most recent reading of cycle counter 
*/ 
static unsigned cyc_hi = 0; 
static unsigned cyc_lo = 0; 
 
void start_counter() 
{ 
  /* Get current value of cycle counter */ 
  access_counter(&cyc_hi, &cyc_lo); 
} 

[slide due to R. E. Bryant and D. R. O’Hallaron] 
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Accessing the Cycle Counter 

l  GCC allows inline assembly code with mechanism for 
matching registers with program variables 

l  Code only works on x86 machine compiling with GCC 

 

l Emit assembly with rdtsc and two movl instructions 

void access_counter(unsigned *hi, unsigned *lo) 
{ 
  /* Get cycle counter */ 
  asm("rdtsc; movl %%edx,%0; movl %%eax,%1" 
      : "=r" (*hi), "=r" (*lo) 
      : /* No input */ 
      : "%edx", "%eax"); 
} 

[slide due to R. E. Bryant and D. R. O’Hallaron] 
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Completing Measurement 

l  Get new value of cycle counter 
l  Perform double precision subtraction to get elapsed 

cycles 
l  Express as double to avoid overflow problems 

 
 

double get_counter() 
{ 
  unsigned ncyc_hi, ncyc_lo 
  unsigned hi, lo, borrow; 
  /* Get cycle counter */ 
  access_counter(&ncyc_hi, &ncyc_lo); 
  /* Do double precision subtraction */ 
  lo = ncyc_lo - cyc_lo; 
  borrow = lo > ncyc_lo; 
  hi = ncyc_hi - cyc_hi - borrow; 
  return (double) hi * (1 << 30) * 4 + lo; 
} 

[slide due to R. E. Bryant and D. R. O’Hallaron] 
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Timing With Cycle Counter 
Time Function P 

l  First attempt: Simply count cycles for one execution of P 

l  What can go wrong here? 

  double tcycles; 
  start_counter(); 
  P(); 
  tcycles = get_counter(); 

[slide due to R. E. Bryant and D. R. O’Hallaron] 
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Measurement Pitfalls 

¢  Instrumentation incurs small overhead 
l  measure long enough code sequence to compensate 

¢  Cache effects can skew measurements 
l  “warm up” the cache before making measurement 

¢  Multi-tasking effects: counter keeps going even when the 
task of interest is inactive 

l  take multiple measurements and pick “k best” (cluster) 
¢  Multicores/hyperthreading 

l  Need to ensure that task is ‘locked’ to a single core 
¢  Power management effects 

l  CPU speed might change, timer could get reset during 
hibernation 
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Some WCET Estimation Tools 

Commercial Tools: aiT, RapiTime, … 
 
University/Research Tools: GameTime, Chronos, … 
 
See sidebar in Ch 15 for more information. 



PROGRAM 

PREDICT 
TIMING 

PROPERTIES 
(worst-case, 

distribution, etc.) 

Compile Program 
for Platform!

LEARNING 
ALGORITHM 

i1 
i2 
i3 

…
 

42 
75 

101 

…
 

online 

Measure timing on 
Test Suite directed by 

Learning Algorithm!

CONTROL-FLOW 
GRAPH (DAG) 

Generate Control-Flow 
Graph, Unroll Loops, Inline 

Functions, etc.!

SMT SOLVER 

i1 

i2 
i3 

Extract FEASIBLE             
BASIS PATHS with 

corresponding Test Cases!
TEST 
SUITE 

GameTime 
Overview 
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Open Problems 
¢  Architectures are getting much more complex.  

l  Can we create processor models without the agonizing 
pain? 

l  Can we change the architecture to make timing analysis 
easier? [See PRET machine project] 

¢  Analysis methods are “Brittle” – small changes to code 
and/or architecture can require completely re-doing the 
WCET computation 
l  Use robust techniques that learn about processor/

platform behavior  
l  Need to deal with concurrency, e.g., interrupts 

¢  Need more reliable ways to measure execution time 
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Dealing with Overhead & Cache Effects 

l Always execute function once to “warm up” cache 
l Keep doubling number of times execute P() until reach 

some threshold 
•  Used CMIN = 50000 

  int cnt = 1; 
  double cmeas = 0; 
  double cycles; 
  do  { 
    int c = cnt; 
    P();  /* Warm up cache */ 
    get_counter(); 
    while (c-- > 0) 
      P(); 
    cmeas = get_counter(); 
    cycles = cmeas / cnt; 
    cnt += cnt; 
  } while (cmeas < CMIN);  /* Make sure have enough */ 
  return cycles / (1e6 * MHZ); 
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Timing With Cycle Counter 
Determine Clock Rate of Processor 

l  Count number of cycles required for some fixed number 
of seconds 

 
 
 
 
Time Function P 

l  First attempt: Simply count cycles for one execution of P 
  double tsecs; 
  start_counter(); 
  P(); 
  tsecs = get_counter() / (MHZ * 1e6); 

  double MHZ; 
  int sleep_time = 10; 
  start_counter(); 
  sleep(sleep_time); 
  MHZ = get_counter()/(sleep_time * 1e6); 

[slide due to R. E. Bryant and D. R. O’Hallaron] 


