
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 17: Execution Time Analysis (Ch.15)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

2

Quantitative Analysis / Verification

Does the brake-by-wire software
always actuate the brakes within
1 ms?!
Safety-critical embedded systems!

Can this new app drain my
iPhone battery in an hour?!
Consumer devices!

How much energy must the sensor
node harvest for RSA encryption?!
Energy-limited sensor nets,
bio-medical apps, etc.!

3 Courtesy of Kuka Robotics Corp.!

4

Time is Central to Cyber-Physical Systems

Several timing analysis problems:
q  Worst-case execution time (WCET) estimation
q  Estimating distribution of execution times
q  Threshold property: can you produce a test case that

causes a program to violate its deadline?
q  Software-in-the-loop simulation: predict execution time

of particular program path

ALL involve predicting an execution time property!

5

References

Material in this lecture is drawn from the following sources:
l  Chapter 15 of Lee and Seshia. See http://leeseshia.org
l  “The Worst-Case Execution Time Problem – Overview of

Methods and Survey of Tools”, R. Wilhelm et al., ACM
Transactions on Embedded Computing Systems, 2007.

l  Chapter 9 of “Computer Systems: A Programmer's
Perspective”, R. E. Bryant and D. R. O’Hallaron, Prentice-Hall,
2002.

l  “Performance Analysis of Real-Time Embedded Software,” Y-
T. Li and S. Malik, Kluwer Academic Pub., 1999.

l “Game-Theoretic Timing Analysis”, S. A. Seshia and A.
Rakhlin, ICCAD 2008

•  Extended journal version is “Quantitative Analysis of Systems
Using Game-Theoretic Learning”, ACM TECS.

6

Worst-Case Execution Time (WCET) of a Task

The longest time taken by a software task to execute
à Function of input data and environment conditions

BCET = Best-Case Execution Time
(shortest time taken by the task to execute)

7

Worst-Case Execution Time (WCET) & BCET

Figure from R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.

8

The WCET Problem

Given
¢  the code for a software task
¢  the platform (OS + hardware) that it will run on
Determine the WCET of the task.

Why is this problem important?

Can the WCET always be found?

The WCET is central in the design of RT Systems:
Needed for Correctness (does the task finish in time?) and
Performance (find optimal schedule for tasks)

In general, no, because the problem is undecidable.

9

Typical WCET Problem

Task executes within an infinite loop

while(1) {
 read_sensors();
 compute();
 write_to_actuators();
}

This code typically has:
¢  loops with finite bounds
¢  no recursion
Additional assumptions:
¢  runs uninterrupted
¢  single-threaded

EECS 249, UC Berkeley: 10

Outline of the Lecture

¢  Programs as Graphs
¢  Challenges of Execution Time Analysis
¢  Current Approaches; Measuring Execution Time
¢  Limitations and Future Directions

EECS 249, UC Berkeley: 11

Example Program: Modular Exponentiation

result = 1;
i = EXP_BITS;

 (i > 0)?

 ((exponent & 1) == 1)?

 result = (result * base) % mod;

exponent >>= 1;
base = (base * base) % mod;
i--;

 return result;

1

0

1

0

1

2

3

4

5

6

Each node is a
basic block

Control-Flow
Graph

13

Components of Execution Time Analysis

¢  Program path (Control flow) analysis
l Want to find longest path through the program
l  Identify feasible paths through the program
l  Find loop bounds
l  Identify dependencies amongst different code fragments

¢  Processor behavior analysis
l  For small code fragments (basic blocks), generate

bounds on run-times on the platform
l  Model details of architecture, including cache behavior,

pipeline stalls, branch prediction, etc.
Ø  Outputs of both analyses feed into each other

14

Program Path Analysis: Path Explosion

for (Outer = 0; Outer < MAXSIZE; Outer++) {
/* MAXSIZE = 100 */

 for (Inner = 0; Inner < MAXSIZE; Inner++) {
 if (Array[Outer][Inner] >= 0) {
 Ptotal += Array[Outer][Inner];
 Pcnt++;
 } else {
 Ntotal += Array[Outer][Inner];
 Ncnt++;
 }
 Postotal = Ptotal;
 Poscnt = Pcnt;
 Negtotal = Ntotal;
 Negcnt = Ncnt;

}

Example cnt.c from WCET benchmarks, Mälardalen Univ.

15

Program Path Analysis: Determining Loop Bounds

16

Program Path Analysis: Dependencies

void altitude_pid_run(void) {
 float err = estimator_z - desired_altitude;
 desired_climb = pre_climb + altitude_pgain * err;
 if (desired_climb < -CLIMB_MAX)
 desired_climb = -CLIMB_MAX;
 if (desired_climb > CLIMB_MAX)
 desired_climb = CLIMB_MAX;
}

Example from “PapaBench” UAV autopilot code, IRIT, France

Only one of these statements is executed
(CLIMB_MAX = 1.0)

17

Processor Behavior Analysis: Cache Effects

Suppose:
1.  32-bit processor
2.  Direct-mapped cache holds two sets

¢  4 floats per set
¢  x and y stored contiguously

starting at address 0x0

What happens
when n=2?

18

Processor Behavior Analysis: Cache Effects

Suppose:
1.  32-bit processor
2.  Direct-mapped cache holds two sets

¢  4 floats per set
¢  x and y stored contiguously

starting at address 0x0

What happens
when n=8?

19

Common Current Approach (high-level)

1.  Manually construct processor behavior model
2.  Use model to find “worst-case” starting processor

states for each basic block à measure execution
times of the blocks from these states

3.  Use these times as upper bounds on the time of each
basic block

4.  Formulate an integer linear program to find the
maximum sum of these bounds along any program
path

20

Example

N = 10;
q = 0;
while(q < N)
 q++;
q = r;

B1:
N = 10;
q = 0;

B2:
while(q<N)

B4:
q = r;

B3:
q++;

x1

x2

x4 x3

d1

d2

d3

d4

d5

d6

xi à # times Bi is executed
dj à # times edge is executed

Example due to Y.T. Li and S. Malik

21

Example, Revisited
B1:
N = 10;
q = 0;

B2:
while(q<N)

B4:
q = r;

B3:
q++;

x1

x2

x4 x3

d1

d2

d3

d4

d5

d6

xi à # times Bi is executed
dj à # times edge is executed
Ci à measured upper bound on

time taken by Bi

Want to
 maximize ∑i Ci xi
subject to constraints
 x1 = d1 = d2
 d1 = 1
 x2 = d2+d4 = d3+d5
 x3 = d3 = d4 = 10
 x4 = d5 = d6

Example due to Y.T. Li and S. Malik

22

Timing Analysis and Compositionality

Consider a task T with two parts A and B composed in
sequence: T = A; B

Is WCET(T) = WCET(A) + WCET(B) ?

 NOT ALWAYS!

WCETs cannot simply be composed L
à Due to dependencies “through environment”

23

Timing Anomalies

[from R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.]

Scenario 1: Block A hits in I-cache, triggers branch
speculation, and prefetch of instructions, then predicted
branch is wrong, so Block B must execute, but it’s been
evicted from I-cache, execution of B delayed.

Scenario 2: Block A misses in I-cache, no branch prediction,
then B hits in I-cache, B completes.

I-Cache Hit!

I-Cache Miss!

A! B (I$ miss due to pre-fetch)!

B!A (miss in I$)!

pre-fetch! A!

B!

Branch evaluated!

24

How to Measure Run-Time

Several techniques, with varying accuracy:
¢  Instrument code to sample CPU cycle counter

l  relatively easy to do, read processor documentation for
assembly instruction

¢  Use cycle-accurate simulator for processor
l  useful when hardware is not available/ready

¢  Use Logic Analyzer
l  non-intrusive measurement, more accurate

¢  …

25

Cycle Counters

Most modern systems have built in registers that are
incremented every clock cycle
Special assembly code instruction to access
On Intel 32-bit x86 machines since Pentium:

l  64 bit counter
l  RDTSC instruction (ReaD Time Stamp Counter) sets
%edx register to high order 32-bits, %eax register to low
order 32-bits

Wrap-around time for 2 GHz machine
l  Low order 32-bits every 2.1 seconds
l  High order 64 bits every 293 years

[slide due to R. E. Bryant and D. R. O’Hallaron]

26

Measuring with Cycle Counter
Idea

l  Get current value of cycle counter
•  store as pair of unsigned’s cyc_hi and cyc_lo

l  Compute something
l  Get new value of cycle counter
l  Perform double precision subtraction to get elapsed cycles

/* Keep track of most recent reading of cycle counter
*/
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

void start_counter()
{
 /* Get current value of cycle counter */
 access_counter(&cyc_hi, &cyc_lo);
}

[slide due to R. E. Bryant and D. R. O’Hallaron]

27

Accessing the Cycle Counter

l  GCC allows inline assembly code with mechanism for
matching registers with program variables

l  Code only works on x86 machine compiling with GCC

l Emit assembly with rdtsc and two movl instructions

void access_counter(unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

[slide due to R. E. Bryant and D. R. O’Hallaron]

28

Completing Measurement

l  Get new value of cycle counter
l  Perform double precision subtraction to get elapsed

cycles
l  Express as double to avoid overflow problems

double get_counter()
{
 unsigned ncyc_hi, ncyc_lo
 unsigned hi, lo, borrow;
 /* Get cycle counter */
 access_counter(&ncyc_hi, &ncyc_lo);
 /* Do double precision subtraction */
 lo = ncyc_lo - cyc_lo;
 borrow = lo > ncyc_lo;
 hi = ncyc_hi - cyc_hi - borrow;
 return (double) hi * (1 << 30) * 4 + lo;
}

[slide due to R. E. Bryant and D. R. O’Hallaron]

29

Timing With Cycle Counter
Time Function P

l  First attempt: Simply count cycles for one execution of P

l  What can go wrong here?

 double tcycles;
 start_counter();
 P();
 tcycles = get_counter();

[slide due to R. E. Bryant and D. R. O’Hallaron]

30

Measurement Pitfalls

¢  Instrumentation incurs small overhead
l  measure long enough code sequence to compensate

¢  Cache effects can skew measurements
l  “warm up” the cache before making measurement

¢  Multi-tasking effects: counter keeps going even when the
task of interest is inactive

l  take multiple measurements and pick “k best” (cluster)
¢  Multicores/hyperthreading

l  Need to ensure that task is ‘locked’ to a single core
¢  Power management effects

l  CPU speed might change, timer could get reset during
hibernation

31

Some WCET Estimation Tools

Commercial Tools: aiT, RapiTime, …

University/Research Tools: GameTime, Chronos, …

See sidebar in Ch 15 for more information.

PROGRAM

PREDICT
TIMING

PROPERTIES
(worst-case,

distribution, etc.)

Compile Program
for Platform!

LEARNING
ALGORITHM

i1
i2
i3

…

42
75

101

…

online

Measure timing on
Test Suite directed by

Learning Algorithm!

CONTROL-FLOW
GRAPH (DAG)

Generate Control-Flow
Graph, Unroll Loops, Inline

Functions, etc.!

SMT SOLVER

i1

i2
i3

Extract FEASIBLE
BASIS PATHS with

corresponding Test Cases!
TEST
SUITE

GameTime
Overview

33

Open Problems
¢  Architectures are getting much more complex.

l  Can we create processor models without the agonizing
pain?

l  Can we change the architecture to make timing analysis
easier? [See PRET machine project]

¢  Analysis methods are “Brittle” – small changes to code
and/or architecture can require completely re-doing the
WCET computation
l  Use robust techniques that learn about processor/

platform behavior
l  Need to deal with concurrency, e.g., interrupts

¢  Need more reliable ways to measure execution time

34

Dealing with Overhead & Cache Effects

l Always execute function once to “warm up” cache
l Keep doubling number of times execute P() until reach

some threshold
•  Used CMIN = 50000

 int cnt = 1;
 double cmeas = 0;
 double cycles;
 do {
 int c = cnt;
 P(); /* Warm up cache */
 get_counter();
 while (c-- > 0)
 P();
 cmeas = get_counter();
 cycles = cmeas / cnt;
 cnt += cnt;
 } while (cmeas < CMIN); /* Make sure have enough */
 return cycles / (1e6 * MHZ);

35

Timing With Cycle Counter
Determine Clock Rate of Processor

l  Count number of cycles required for some fixed number
of seconds

Time Function P

l  First attempt: Simply count cycles for one execution of P
 double tsecs;
 start_counter();
 P();
 tsecs = get_counter() / (MHZ * 1e6);

 double MHZ;
 int sleep_time = 10;
 start_counter();
 sleep(sleep_time);
 MHZ = get_counter()/(sleep_time * 1e6);

[slide due to R. E. Bryant and D. R. O’Hallaron]

