
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 18: Dataflow Models 1 (Ch. 6)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

2

Simple Example: Spectrum Analysis

How do we keep the
non-time critical path
from interfering with
the time-critical path?

Time critical path

Not time
critical path

3

A Solution with Threads

Time critical path

Create two threads:
•  A has low priority
•  B has high priority
Why?

Thread A

Thread B

•  RMS does not apply because there
are dependencies.

•  EDF with precedences applies and
is optimal w.r.t. feasibility, except for
how to assign deadlines.

•  How to implement the
communication between threads?

4

Abstracted Version of the Spectrum Example:
EDF scheduling

Suppose that C requires 8
data values from A to execute. Suppose further that C
takes much longer to execute than A or B. EDF schedule:

1 1

8

schedule

Precedence graph

5

FIXME: Pthreads Buffer Implementation

Version 1: Without arrivals
Version 2: With arrivals

6

Dataflow Models

Buffered communication between concurrent components (actors).
Static scheduling: Assign to each thread a sequence of actor
invocations (firings) and repeat forever.
Dynamic scheduling: Each time dispatch() is called, determine
which actor can fire (or is firing) and choose one.

May need to implement interlocks in the buffers.

Actor A
FIFO buffer

Actor B

7

Streams: The basis for Dataflow models

8

Dataflow

Firing rules:
the number of
tokens
required to fire
an actor.

9

Buffers for Dataflow

¢  Unbounded buffers require memory allocation and deallocation
schemes.

¢  Bounded size buffers can be realized as circular buffers or ring
buffers, in a statically allocated array.
l  A read pointer r is an index into the array referring to the first empty

location. Increment this after each read.
l  A fill count n is unsigned number telling us how many data items are

in the buffer.
l  The next location to write to is (r + n) modulo buffer length.
l  The buffer is empty if n == 0
l  The buffer is full if n == buffer length
l  Can implement n as a semaphore, providing mutual exclusion for

code that changes n or r.

10

Abstracted Version of the Spectrum Example:
Non-preemptive scheduling

Suppose that C requires 8 data values from A to execute.
Suppose further that C takes much longer to execute
than A or B. Then a schedule might look like this:

…

Assume infinitely repeated
invocations, triggered by
availability of data at A.

This suffers
from jitter.

1 1

8
Is this dataflow
model dynamic?
Is it homogeneous?

schedule Note that each period is EDF, but it fails to account for arrivals of tasks.

11

Uniformly Timed Schedule

A preferable schedule would space invocations of
A and B uniformly in time, as in:

…

minimum latency

12

Non-Concurrent Uniformly Timed Schedule

Notice that in this schedule, the rate at which A and B
can be invoked is limited by the execution time of C.

…

No jitter, but utilization is poor.

13

Concurrent Uniformly Timed Schedule:
Preemptive schedule

With preemption, the rate at which A and B can be
invoked is limited only by total computation:

…

… preemptions

thread 1:

thread 2:

high priority

low priority

14

Ignoring Initial Transients,
Abstract to Periodic Tasks

In steady-state, the execution follows a simple periodic
pattern:

…

…

thread 1:

thread 2:

sampleTime = 1 sampleTime = 1

sampleTime = 8

This follows the
principles of rate-
monotonic
scheduling (RMS).

15

Requirement 1 for Determinacy: Periodicity

If the execution of C runs longer than expected, data
determinacy requires that thread 1 be delayed
accordingly. This can be accomplished with semaphore
synchronization. But there are alternatives:
¢  Throw an exception to indicate timing failure.
¢  “Anytime” computation: use incomplete results of C

…

…

thread 1:

thread 2:
sampleTime: 1 sampleTime: 1

sampleTime: 8

interlock

16

Requirement 1 for Determinacy: Periodicity

If the execution of C runs shorter than expected, data
determinacy requires that thread 2 be delayed
accordingly. That is, it must not start the next execution
of C before the data is available.

…

…

thread 1:

thread 2:
sampleTime: 1 sampleTime: 1

sampleTime: 8

interlock

17

Semaphore Synchronization Required Exactly
Twice Per Major Period

Note that semaphore synchronization is not required if
actor B runs long because its thread has higher priority.
Everything else is automatically delayed.

…

…

thread 1:

thread 2:
sampleTime: 1 sampleTime: 1

sampleTime: 8

18

Simulink and Real-Time Workshop
(The MathWorks)

Typical usage pattern:
¢  model the continuous dynamics

of the physical plant
¢  model the discrete-time

controller
¢  code generate the discrete-time

controller using RTW

continuous-time signal

Discrete signals semantically are piecewise
constant. Discrete blocks have periodic
execution with a specified “sample time.”

19

Explicit Buffering is required in Simulink

In Simulink, unlike dataflow, there is no buffering of data.
To get the effect of presenting to C 8 successive
samples at once, we have to explicitly include a buffering
actor that outputs an array.

sampleTime: 1

sampleTime: 8

20

Requirement 2 for Determinacy: Data Integrity
During Execution

It is essential that input data remains stable during one
complete execution of C, something achieved in Simulink
with a zero-order hold (ZOH) block.

thread 1:

thread 2:

sampleTime: 1

sampleTime: 8

21

Simulink Strategy for Preserving Determinacy

In “Multitasking Mode,” Simulink requires a Zero-Order
Hold (ZOH) block at any downsampling point. The ZOH
runs at the slow rate, but at the priority of the fast rate.
The ZOH holds the input to C constant for an entire
execution.

thread 1:

thread 2:

ZOH ZOH

sampleTime: 1

sampleTime: 8
RingBuffer

…

22

In Dataflow, Interlocks and Built-in Buffering take
care of these dependencies

For dataflow, a one-time interlock ensures sufficient data
at the input of C:

…

… first-time interlock

thread 1:

thread 2:

high priority

low priority

periodic interlocks

No ZOH
block is
required!

23

Consider a Low-Rate Actor Sending Data to a
High-Rate Actor

Note that data precedences make it impossible to
achieve uniform timing for A and C with the periodic non-
concurrent schedule indicated above.

sampleTime: 1 sampleTime: 4

sequential
schedule

24

Overlapped Iterations Can Solve This Problem

This solution takes advantage of the intrinsic buffering
provided by dataflow models.

For dataflow, this requires the initial interlock as before,
and the same periodic interlocks.

produce/consume: 1 produce/consume: 4

thread 1:

thread 2:

25

Simulink Strategy

Without buffering, the Delay provides just one initial
sample to C (there is no buffering in Simulink). The Delay
and ZOH run at the rates of the slow actor, but at the
priority of the fast ones.
Part of the objective seems to be to have no initial
transient. Why?

sampleTime: 1 sampleTime: 4

thread 1:

thread 2:

ZOH ZOH Delay Delay ZOH Delay

26

Discussion Questions

¢  What about more complicated rate conversions (e.g. a
task with sampleTime 2 feeding one with sampleTime
3)?

¢  How can these ideas be extended to non-periodic
execution?

