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Simple Example: Spectrum Analysis 

How do we keep the 
non-time critical path 
from interfering with 
the time-critical path? 

Time critical path 

Not time 
critical path 
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A Solution with Threads 

Time critical path 

Create two threads: 
•  A has low priority 
•  B has high priority 
Why? 

Thread A 

Thread B 

•  RMS does not apply because there 
are dependencies. 

•  EDF with precedences applies and 
is optimal w.r.t. feasibility, except for 
how to assign deadlines. 

•  How to implement the 
communication between threads? 
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Abstracted Version of the Spectrum Example: 
EDF scheduling 

Suppose that C requires 8  
data values from A to execute. Suppose further that C 
takes much longer to execute than A or B. EDF schedule: 

1 1 

8 

schedule 

Precedence graph 
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FIXME: Pthreads Buffer Implementation 

Version 1: Without arrivals 
Version 2: With arrivals 



6 

Dataflow Models 

Buffered communication between concurrent components (actors). 
Static scheduling: Assign to each thread a sequence of actor 
invocations (firings) and repeat forever. 
Dynamic scheduling: Each time dispatch() is called, determine 
which actor can fire (or is firing) and choose one. 
 
May need to implement interlocks in the buffers. 

Actor A 
FIFO buffer 

Actor B 
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Streams: The basis for Dataflow models 
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Dataflow 

Firing rules: 
the number of 
tokens 
required to fire 
an actor.   
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Buffers for Dataflow 

¢  Unbounded buffers require memory allocation and deallocation 
schemes. 

¢  Bounded size buffers can be realized as circular buffers or ring 
buffers, in a statically allocated array. 
l  A read pointer r is an index into the array referring to the first empty 

location. Increment this after each read. 
l  A fill count n is unsigned number telling us how many data items are 

in the buffer. 
l  The next location to write to is (r + n ) modulo buffer length. 
l  The buffer is empty if n == 0  
l  The buffer is full if n == buffer length 
l  Can implement n as a semaphore, providing mutual exclusion for 

code that changes n or r. 
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Abstracted Version of the Spectrum Example: 
Non-preemptive scheduling 

Suppose that C requires 8 data values from A to execute. 
Suppose further that C takes much longer to execute 
than A or B. Then a schedule might look like this: 

… 

Assume infinitely repeated 
invocations, triggered by 
availability of data at A. 

This suffers 
from jitter. 

1 1 

8 
Is this dataflow 
model dynamic?  
Is it homogeneous? 

schedule Note that each period is EDF, but it fails to account for arrivals of tasks. 
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Uniformly Timed Schedule 

A preferable schedule would space invocations of  
A and B uniformly in time, as in: 

… 

minimum latency 
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Non-Concurrent Uniformly Timed Schedule 

Notice that in this schedule, the rate at which A and B 
can be invoked is limited by the execution time of C. 

… 

No jitter, but utilization is poor. 
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Concurrent Uniformly Timed Schedule: 
Preemptive schedule 

With preemption, the rate at which A and B can be 
invoked is limited only by total computation: 

… 

… preemptions 

thread 1: 

thread 2: 

high priority 

low priority 
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Ignoring Initial Transients, 
Abstract to Periodic Tasks 

In steady-state, the execution follows a simple periodic 
pattern: 

… 

… 

thread 1: 

thread 2: 

sampleTime = 1 sampleTime = 1 

sampleTime = 8 

This follows the 
principles of rate-
monotonic 
scheduling (RMS). 
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Requirement 1 for Determinacy: Periodicity 

If the execution of C runs longer than expected, data 
determinacy requires that thread 1 be delayed 
accordingly. This can be accomplished with semaphore 
synchronization. But there are alternatives: 
¢   Throw an exception to indicate timing failure. 
¢   “Anytime” computation: use incomplete results of C 

… 

… 

thread 1: 

thread 2: 
sampleTime: 1 sampleTime: 1 

sampleTime: 8 

interlock 
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Requirement 1 for Determinacy: Periodicity 

If the execution of C runs shorter than expected, data 
determinacy requires that thread 2 be delayed 
accordingly. That is, it must not start the next execution 
of C before the data is available. 

… 

… 

thread 1: 

thread 2: 
sampleTime: 1 sampleTime: 1 

sampleTime: 8 

interlock 
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Semaphore Synchronization Required Exactly 
Twice Per Major Period 

Note that semaphore synchronization is not required if 
actor B runs long because its thread has higher priority. 
Everything else is automatically delayed. 

… 

… 

thread 1: 

thread 2: 
sampleTime: 1 sampleTime: 1 

sampleTime: 8 
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Simulink and Real-Time Workshop  
(The MathWorks) 

Typical usage pattern: 
¢  model the continuous dynamics 

of the physical plant 
¢  model the discrete-time 

controller 
¢  code generate the discrete-time 

controller using RTW 

continuous-time signal 

Discrete signals semantically are piecewise 
constant. Discrete blocks have periodic 
execution with a specified “sample time.” 
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Explicit Buffering is required in Simulink 

In Simulink, unlike dataflow, there is no buffering of data. 
To get the effect of presenting to C 8 successive 
samples at once, we have to explicitly include a buffering 
actor that outputs an array. 

sampleTime: 1 

sampleTime: 8 
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Requirement 2 for Determinacy: Data Integrity 
During Execution 

It is essential that input data remains stable during one 
complete execution of C, something achieved in Simulink 
with a zero-order hold (ZOH) block. 

thread 1: 

thread 2: 

sampleTime: 1 

sampleTime: 8 
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Simulink Strategy for Preserving Determinacy 

In “Multitasking Mode,” Simulink requires a Zero-Order 
Hold (ZOH) block at any downsampling point. The ZOH 
runs at the slow rate, but at the priority of the fast rate. 
The ZOH holds the input to C constant for an entire 
execution. 

thread 1: 

thread 2: 

ZOH ZOH 

sampleTime: 1 

sampleTime: 8 
RingBuffer 

… 
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In Dataflow, Interlocks and Built-in Buffering take 
care of these dependencies 

For dataflow, a one-time interlock ensures sufficient data 
at the input of C: 

… 

… first-time interlock 

thread 1: 

thread 2: 

high priority 

low priority 

periodic interlocks 

No ZOH 
block is 
required! 
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Consider a Low-Rate Actor Sending Data to a 
High-Rate Actor 

Note that data precedences make it impossible to 
achieve uniform timing for A and C with the periodic non-
concurrent schedule indicated above. 

sampleTime: 1 sampleTime: 4 

sequential 
schedule 
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Overlapped Iterations Can Solve This Problem 

This solution takes advantage of the intrinsic buffering 
provided by dataflow models. 
 
For dataflow, this requires the initial interlock as before, 
and the same periodic interlocks. 

produce/consume: 1 produce/consume: 4 

thread 1: 

thread 2: 
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Simulink Strategy 

Without buffering, the Delay provides just one initial 
sample to C (there is no buffering in Simulink). The Delay 
and ZOH run at the rates of the slow actor, but at the 
priority of the fast ones. 
Part of the objective seems to be to have no initial 
transient. Why? 

sampleTime: 1 sampleTime: 4 

thread 1: 

thread 2: 

ZOH ZOH Delay Delay ZOH Delay 
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Discussion Questions 

¢  What about more complicated rate conversions (e.g. a 
task with sampleTime 2 feeding one with sampleTime 
3)? 

¢  How can these ideas be extended to non-periodic 
execution? 


