
1 

Department of Computer Science 
National Tsing Hua University 

 

CS 5244: Introduction to Cyber 
Physical Systems 

 

Unit 1: Cyber Physical Systems (Ch. 1) 
 

Instructor: Cheng-Hsin Hsu 

 
Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit 

A. Seshia at UC Berkeley for sharing their course materials 

  
 

 
 



2 

Recep: What are Cyber-Physical Systems 

Computational systems 
l but not general-purpose computers 

Integral with physical processes 
l sensors, actuators, physical dynamics 

Reactive 
l at the speed of the environment (timing matters!) 

Heterogeneous 
l hardware/software/networks, mixed architectures 

Networked 
l concurrent, distributed, dynamic 
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Cyber-Physical Systems (CPS): 
Orchestrating networked computational  
resources with physical systems 

Courtesy of Doug Schmidt!

Power 
generation and 
distribution 

Courtesy of  
General Electric 

Military systems: 

E-Corner, Siemens 

Transportation 
(Air traffic 
control at 
SFO) Avionics 

Telecommunications 

Factory automation 

Instrumentation 
(Soleil Synchrotron) 

Daimler-Chrysler 

Automotive 

Building Systems 
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CPS Example: Medical Devices 

Emerging direction: Smartphone 
based medical devices for 
affordable healthcare 
For example, “Telemicroscopy” 
project at Berkeley 
 
For example, Cell-phone based 
blood testing device developed 
at UCLA 
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CPS Example: Printing Press  

•  High-­‐speed,	
  high	
  precision	
  
•  Speed:	
  1	
  inch/ms	
  
•  Precision:	
  0.01	
  inch	
  

-­‐>	
  Time	
  accuracy:	
  10us	
  

•  Open	
  standards	
  (Ethernet)	
  
•  Synchronous,	
  Time-­‐Triggered	
  
•  IEEE	
  1588	
  	
  Eme-­‐sync	
  protocol	
  

•  	
  ApplicaEon	
  aspects	
  
•  local	
  (control)	
  
•  distributed	
  (coordinaEon)	
  
•  global	
  (modes)	
  

Bosch-­‐Rexroth	
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CPS Example: Automotive Electronics Today 

About 80 computers (electronic control units, ECUs) in a 
premium car today: 

l engine control, transmission, anti-lock brakes, electronic 
suspension, parking assistance, climate control, audio 
system, “body electronics” (seat belt, etc.), display and 
instrument panel, etc. 

l  linked together by CAN bus (today), FlexRay (tomorrow) 
with up to 2km of wiring. 

l growing fraction of development costs, manufacturing 
costs, and fuel consumption. 
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Where CPS Differs from 
the Traditional Embedded System Problems 

The traditional embedded systems problem: 
 Embedded software is software on small computers. The technical 
problem is one of optimization (coping with limited resources and 
extracting performance).  

 
The CPS problem: 

 Computation and networking integrated with physical processes. 
The technical problem is managing dynamics, time, and concurrency 
in networked computational + physical systems. 
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A Key Challenge on the Cyber Side: 
Real-Time Software 

Correct execution of a program in C, C#, Java, 
Haskell, etc. has nothing to do with how long it 
takes to do anything. All our computation and 
networking abstractions are built on this premise. 
 
 Timing of programs is not repeatable, 

except at very coarse granularity.  
 
Programmers have to step outside the 
programming abstractions to specify 
timing behavior. 
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Techniques Exploiting 
the Fact that  
Time is Irrelevant 

Programming languages 
Virtual memory 
Caches 
Dynamic dispatch 
Speculative execution 
Power management (voltage scaling) 
Memory management (garbage collection) 
Just-in-time (JIT) compilation 
Multitasking (threads and processes) 
Component technologies (OO design) 
Networking (TCP) 
… 
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Course Focuses 

Embedded Systems 
Courses 

• Hardware interfacing 
•  Interrupts 
• Memory systems 
• C programming 
• Assembly language 
• FPGA design 
• RTOS design 
• … 

Cyber-Physical Courses 
•  Modeling 
•  Timing 
•  Dynamics 
•  Imperative logic 
•  Concurrency 
•  Verification 
•  … 
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A Theme of Our Course: 
Model-Based Design 

Models are abstractions of systems: 
 
•  structural (OO design) 
•  ontological (type systems) 
•  imperative logic (“procedural epistemology”) 
•  functional logic 
•  actor-oriented (including dataflow models) 
 
All of these have their place… 
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Cyber Physical Systems: 
Computational + 

Physical 
 

CPS is Multidisciplinary  

Computer Science: 
 

Carefully abstracts the 
physical world  

System Theory: 
 

Deals directly with  
physical quantities 
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First Challenge 

Models for the physical world and for computation diverge. 
 

l  physical: time continuum, ODEs, dynamics 
l  computational: a “procedural epistemology,” logic 

 
There is a huge cultural gap. 
 
Physical system models must be viewed as semantic 
frameworks, and theories of computation must be viewed as 
alternative ways of talking about dynamics. 
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Second Challenge 

We typically learn to use modeling techniques, not to 
evaluate modeling techniques. 

l  “this is how computers work” 
l  “this equation describes that feedback circuit” 

rather than 
l  “this is how Von Neumann proposed that we control 

automatic machines” 
l  “ignoring the intrinsic randomness and latency in this 

circuit, Black proposed that we could idealize its behavior 
in this way” 

 
We need to think about meta-modeling, not just modeling. 
They must learn to think critically about modeling methods, 
not just about models. 
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What this course is about 

A principled, scientific approach to designing and 
implementing embedded systems 

 
Not just hacking!! 
 
Hacking can be fun, but it can also be very painful when 
things go wrong… 

Focus on model-based system design, and                                
on embedded software 
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Traditionally, embedded systems has been an industrial (not 
academic) problem, principally about resource limitations. 

¢   small memory 
¢   small data word sizes 
¢   relatively slow clocks 
 
When these are the key problems, emphasize efficiency: 
¢   write software at a low level (in assembly code or C) 
¢   avoid operating systems with a rich suite of services 
¢   develop specialized computer architectures: 

l  programmable DSPs 
l  network processors 

¢   develop specialized networks 
l  Can, FlexRay, TTP/C, MOST, etc. 

This is how embedded SW has been designed for 30 years 
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But embedded systems do have more fundamental 
differences from general-purpose computation: 

time matters 
l  “as fast as possible” is not good enough 

concurrency is intrinsic 
l  it’s not an illusion (as in time sharing), and 
l  it’s not (necessarily) about exploiting parallelism 

processor requirements can be specialized 
l  predictable, repeatable timing 
l  support for common operations (e.g. FIR filters) 
l  need for specialized data types (fixed point, bit vectors) 

programs need to run (essentially) forever 
l  memory usage has to be bounded (no leaks!!) 
l  rebooting is not acceptable 
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What about “real time”? 

Make it faster! 

What if you need “absolutely positively on time”? 
 
Today, most embedded software engineers write code, build your system, 
and test for timing. Model-based design seeks to specify dynamic behavior 
(including timing) and “compile” implementations that meet the behavior. 
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Prioritize and Pray! 

Real-Time Multitasking? 

All too often, real-time operating 
systems (RTOSs) are used in a 
rather ad hoc way. Without any 
particular principles, engineers 
tweak priorities until the 
prototype works under test. 

 

The resulting system is brittle, 
meaning the small changes in 
the operating conditions (or in 
the design of the system) can 
cause big changes in behavior. 
For example, replacing the 
processor with a faster one can 
cause real-time failures. 
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An engineer’s responsibility 

¢   Korean Air 747 in Guam, 200 deaths (1997) 
¢   30,000 deaths and 600,000 injuries from medical devices (1985-2005) 

l  perhaps 8% due to software? 

source: D. Jackson, M. Thomas, L. I. Millett, and the Committee on Certifiably 
Dependable Software Systems, "Software for Dependable Systems: Sufficient 
Evidence?," National Academies Press, May 9 2007. 
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A Real Story 

A “fly by wire” aircraft, expected to be made for 
50 years, requires a 50-year stockpile of the 
hardware components that execute the software. 
 
All must be made from the same mask set on the 
same production line. Even a slight change or 
“improvement” might affect timing and require 
the software to be re-certified. 
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Abstraction Layers 
The purpose for an 
abstraction is to 
hide details of the 
implementation 
below and provide 
a platform for 
design from above. 
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Abstraction Layers 
Every abstraction 
layer has failed for 
time-sensitive 
applications. 



24 

Is the problem intrinsic 
in the technology? 

 
Electronics technology delivers 
highly repeatable and precise 
timing… 
 
… and the overlaying software 
abstractions discard it. 

20.000 MHz (± 100 ppm) 
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Some CPS applications: 

telepresence 
distributed physical games 
traffic control and safety 
financial networks 
medical devices and systems 
assisted living 
advanced automotive systems, 
energy conservation 
environmental control 
aviation systems 
critical infrastructure (power, water)  
distributed robotics 
military systems 
smart structures 
biosystems (morphogenesis,…) 

Potential impact 
social networking and games 
safe/efficient transportation 
fair financial networks 
integrated medical systems 
distributed micro power generation  
military dominance 
economic dominance 
disaster recovery 
energy efficient buildings 
alternative energy 
pervasive adaptive communications 
distributed service delivery 
… 

Dec. 11, 2006: Dancers 
in Berkeley dancing in 

real time with dancers in 
Urbana-Champagne 
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Topics we will study 

Model-Based Design 
l  Implementation code based on a mathematical model 

System Analysis  
l Verify that your model & implementation will meet a spec. 

Concurrency 
l Run multiple tasks correctly and efficiently 

Time & Resources 
l Ensuring that tasks finish on time and within budgets 

Networking and other Advanced Topics 
l Automotive networks, mapping an area by a robot, etc. 


