
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 1: Cyber Physical Systems (Ch. 1)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

2

Recep: What are Cyber-Physical Systems

Computational systems
l but not general-purpose computers

Integral with physical processes
l sensors, actuators, physical dynamics

Reactive
l at the speed of the environment (timing matters!)

Heterogeneous
l hardware/software/networks, mixed architectures

Networked
l concurrent, distributed, dynamic

3 Courtesy of Kuka Robotics Corp."

Cyber-Physical Systems (CPS):
Orchestrating networked computational
resources with physical systems

Courtesy of Doug Schmidt!

Power
generation and
distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation
(Air traffic
control at
SFO) Avionics

Telecommunications

Factory automation

Instrumentation
(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

4

CPS Example: Medical Devices

Emerging direction: Smartphone
based medical devices for
affordable healthcare
For example, “Telemicroscopy”
project at Berkeley

For example, Cell-phone based
blood testing device developed
at UCLA

5

CPS Example: Printing Press

•  High-­‐speed,	
 high	
 precision	

•  Speed:	
 1	
 inch/ms	

•  Precision:	
 0.01	
 inch	

-­‐>	
 Time	
 accuracy:	
 10us	

•  Open	
 standards	
 (Ethernet)	

•  Synchronous,	
 Time-­‐Triggered	

•  IEEE	
 1588	
 	
 Eme-­‐sync	
 protocol	

•  	
 ApplicaEon	
 aspects	

•  local	
 (control)	

•  distributed	
 (coordinaEon)	

•  global	
 (modes)	

Bosch-­‐Rexroth	

6

CPS Example: Automotive Electronics Today

About 80 computers (electronic control units, ECUs) in a
premium car today:

l engine control, transmission, anti-lock brakes, electronic
suspension, parking assistance, climate control, audio
system, “body electronics” (seat belt, etc.), display and
instrument panel, etc.

l  linked together by CAN bus (today), FlexRay (tomorrow)
with up to 2km of wiring.

l growing fraction of development costs, manufacturing
costs, and fuel consumption.

7

Where CPS Differs from
the Traditional Embedded System Problems

The traditional embedded systems problem:
 Embedded software is software on small computers. The technical
problem is one of optimization (coping with limited resources and
extracting performance).

The CPS problem:

 Computation and networking integrated with physical processes.
The technical problem is managing dynamics, time, and concurrency
in networked computational + physical systems.

8

A Key Challenge on the Cyber Side:
Real-Time Software

Correct execution of a program in C, C#, Java,
Haskell, etc. has nothing to do with how long it
takes to do anything. All our computation and
networking abstractions are built on this premise.

 Timing of programs is not repeatable,

except at very coarse granularity.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

9

Techniques Exploiting
the Fact that
Time is Irrelevant

Programming languages
Virtual memory
Caches
Dynamic dispatch
Speculative execution
Power management (voltage scaling)
Memory management (garbage collection)
Just-in-time (JIT) compilation
Multitasking (threads and processes)
Component technologies (OO design)
Networking (TCP)
…

10

Course Focuses

Embedded Systems
Courses

• Hardware interfacing
•  Interrupts
• Memory systems
• C programming
• Assembly language
• FPGA design
• RTOS design
• …

Cyber-Physical Courses
•  Modeling
•  Timing
•  Dynamics
•  Imperative logic
•  Concurrency
•  Verification
•  …

11

A Theme of Our Course:
Model-Based Design

Models are abstractions of systems:

•  structural (OO design)
•  ontological (type systems)
•  imperative logic (“procedural epistemology”)
•  functional logic
•  actor-oriented (including dataflow models)

All of these have their place…

12

Cyber Physical Systems:
Computational +

Physical

CPS is Multidisciplinary

Computer Science:

Carefully abstracts the
physical world

System Theory:

Deals directly with
physical quantities

13

First Challenge

Models for the physical world and for computation diverge.

l  physical: time continuum, ODEs, dynamics
l  computational: a “procedural epistemology,” logic

There is a huge cultural gap.

Physical system models must be viewed as semantic
frameworks, and theories of computation must be viewed as
alternative ways of talking about dynamics.

14

Second Challenge

We typically learn to use modeling techniques, not to
evaluate modeling techniques.

l  “this is how computers work”
l  “this equation describes that feedback circuit”

rather than
l  “this is how Von Neumann proposed that we control

automatic machines”
l  “ignoring the intrinsic randomness and latency in this

circuit, Black proposed that we could idealize its behavior
in this way”

We need to think about meta-modeling, not just modeling.
They must learn to think critically about modeling methods,
not just about models.

15

What this course is about

A principled, scientific approach to designing and
implementing embedded systems

Not just hacking!!

Hacking can be fun, but it can also be very painful when
things go wrong…

Focus on model-based system design, and
on embedded software

16

Traditionally, embedded systems has been an industrial (not
academic) problem, principally about resource limitations.

¢  small memory
¢  small data word sizes
¢  relatively slow clocks

When these are the key problems, emphasize efficiency:
¢  write software at a low level (in assembly code or C)
¢  avoid operating systems with a rich suite of services
¢  develop specialized computer architectures:

l  programmable DSPs
l  network processors

¢  develop specialized networks
l  Can, FlexRay, TTP/C, MOST, etc.

This is how embedded SW has been designed for 30 years

17

But embedded systems do have more fundamental
differences from general-purpose computation:

time matters
l  “as fast as possible” is not good enough

concurrency is intrinsic
l  it’s not an illusion (as in time sharing), and
l  it’s not (necessarily) about exploiting parallelism

processor requirements can be specialized
l  predictable, repeatable timing
l  support for common operations (e.g. FIR filters)
l  need for specialized data types (fixed point, bit vectors)

programs need to run (essentially) forever
l  memory usage has to be bounded (no leaks!!)
l  rebooting is not acceptable

18

What about “real time”?

Make it faster!

What if you need “absolutely positively on time”?

Today, most embedded software engineers write code, build your system,
and test for timing. Model-based design seeks to specify dynamic behavior
(including timing) and “compile” implementations that meet the behavior.

19

Prioritize and Pray!

Real-Time Multitasking?

All too often, real-time operating
systems (RTOSs) are used in a
rather ad hoc way. Without any
particular principles, engineers
tweak priorities until the
prototype works under test.

The resulting system is brittle,
meaning the small changes in
the operating conditions (or in
the design of the system) can
cause big changes in behavior.
For example, replacing the
processor with a faster one can
cause real-time failures.

20

An engineer’s responsibility

¢  Korean Air 747 in Guam, 200 deaths (1997)
¢  30,000 deaths and 600,000 injuries from medical devices (1985-2005)

l  perhaps 8% due to software?

source: D. Jackson, M. Thomas, L. I. Millett, and the Committee on Certifiably
Dependable Software Systems, "Software for Dependable Systems: Sufficient
Evidence?," National Academies Press, May 9 2007.

21

A Real Story

A “fly by wire” aircraft, expected to be made for
50 years, requires a 50-year stockpile of the
hardware components that execute the software.

All must be made from the same mask set on the
same production line. Even a slight change or
“improvement” might affect timing and require
the software to be re-certified.

22

Abstraction Layers
The purpose for an
abstraction is to
hide details of the
implementation
below and provide
a platform for
design from above.

23

Abstraction Layers
Every abstraction
layer has failed for
time-sensitive
applications.

24

Is the problem intrinsic
in the technology?

Electronics technology delivers
highly repeatable and precise
timing…

… and the overlaying software
abstractions discard it.

20.000 MHz (± 100 ppm)

25

Some CPS applications:

telepresence
distributed physical games
traffic control and safety
financial networks
medical devices and systems
assisted living
advanced automotive systems,
energy conservation
environmental control
aviation systems
critical infrastructure (power, water)
distributed robotics
military systems
smart structures
biosystems (morphogenesis,…)

Potential impact
social networking and games
safe/efficient transportation
fair financial networks
integrated medical systems
distributed micro power generation
military dominance
economic dominance
disaster recovery
energy efficient buildings
alternative energy
pervasive adaptive communications
distributed service delivery
…

Dec. 11, 2006: Dancers
in Berkeley dancing in

real time with dancers in
Urbana-Champagne

26

Topics we will study

Model-Based Design
l  Implementation code based on a mathematical model

System Analysis
l Verify that your model & implementation will meet a spec.

Concurrency
l Run multiple tasks correctly and efficiently

Time & Resources
l Ensuring that tasks finish on time and within budgets

Networking and other Advanced Topics
l Automotive networks, mapping an area by a robot, etc.

