
1

Department of Computer Science
National Tsing Hua University

CS 5244: Introduction to Cyber
Physical Systems

Unit 15: Comparing State Machines

(Ch. 13)

Instructor: Cheng-Hsin Hsu

Acknowledgement: The instructor thanks Profs. Edward A. Lee & Sanjit

A. Seshia at UC Berkeley for sharing their course materials

2

Component
Substitution

Can we replace one
component in a system by
another and be assured that it
will continue to work correctly?

What if we replace the
Cortex-M3 core by
a Cortex-M4?

3

Comparing State Machines

How can we compare two state machines
¢  Are they ‘equivalent’?
¢  Does one do ‘more’ than the other? (e.g., exhibit
different behaviors? Produce different outputs?)

Why compare state machines?
¢  Check conformance with a specification.
¢  Optimize a model by reducing complexity.
¢  Check if component substitution is OK.
¢  …

4

FSM Controller for iRobot

Assume a time-triggered FSM.
•  If the level input is present, then it

drives forward for a fixed amount of
time by issuing a drive command.

•  If the level input is absent, then it
rotates for a fixed amount of time.

5

FSM Controller for iRobot

Assume a time-triggered FSM.
•  If the level input is present, then it

drives forward for a fixed amount of
time by issuing a drive command.

•  If the level input is absent, then it
rotates for a fixed amount of time.

Alternative FSM.

Is machine M2 equivalent to M1?
In what sense?

M2

M1

6

Equivalence: Part 1: Type Equivalence

Notice that the actor models for these
machines have the same input ports
and the same output ports.

Moreover, the ports have the same
types.

Therefore M2 is type equivalent to M1.

M2

M1

7

Equivalence: Part 2: Language Equivalence

Notice that for every input sequence,
the two machines produce the same
output sequence.

Therefore M2 is language equivalent
to M1.

M2

M1

8

Equivalence: Part 3: Bisimulation

This one is very subtle:
Notice that for every state of M1 there
is a corresponding state of M2 that will
react to inputs in exactly the same way
and will then transition to another
similarly corresponding state.

Therefore M2 is bisimilar to M1.

For deterministic machines, language
equivalence and bisimilarity are the
same. For nondeterministic machines
they are not.

We will come back to this!
But first, refinement.

M2

M1

corresponding

9

Equivalence vs. Refinement

Two state machines M1 and M2 that are not equivalent may nonetheless be
related:

• M2 may be type compatible with M1 in that it can replace M1 without
causing a type conflict. (type refinement)
• M2 may be a specialization of M1 in that it can produce only output
sequences that M1 can produce, given the same input sequences.
(language containment)
• M2 may be a specialization of M1 in that at every reaction M2 can produce
only output values that M1 can produce. (M1 simulates M2) (simulation)

In all cases, if M1 is “valid” in a system, then so is M2, where only the
meaning of “valid” varies.
• M2 is a type/language/simulation refinement of M1.
• M2 implements M1 (here, M1 is taken to be a specification).

10

Refinement: Part 1: Type Refinement

M2 is a type refinement of M1 if:

M2

M1

x: Vx

w: Vw

y: Vy

x: V'x

z: V'z

y: V'y

P1 = { x, w }

P2 = { x }

Q1 = { y }

Q2 = { y, z }

• P2 � P1

• Q1 � Q2

• ⌅ p ⇤ P2, Vp �V ⇥
p

• ⌅ p ⇤ Q1, V ⇥
p �Vp

M2 can replace M1 without
causing a type conflict.

11

Recall the Garage Counter

Input ports: P = {up,down}, with types Vup =Vdown = {present}.
Output port: Q = {count} with type Vcount = {0, · · · ,M}.
A behavior:

sup = (present,absent,present,absent,present, · · ·)
sdown = (present,absent,absent,present,absent, · · ·)
scount = (absent,absent,1,0,1, · · ·) .

12

Example of Type Refinement

Consider a garage counter M1 with M = 99 spaces.

Suppose another garage counter M2 has M = 90 spaces.

M2 is a type refinement of M1 .

Why might this matter?
Is it always OK to replace M1 with M2?

13

When is Replacement OK?

The counter machine above can be replaced by the
“equivalent” machine below:

14

When is Replacement OK?

The two machines are
again “equivalent.” How
to define equivalence?

For determinate
machines: language
equivalence.
For nondeterminate
machines: a stronger
condition called
simulation is needed.

M2

M1

15

Behavior (Execution Trace) of a State Machine

An execution trace is a sequence of the form

q0, q1, q2, q3, . . . ,

where q j = (x j,s j,y j) where s j is the state at step j, x j is
the input valuation at step j, and y j is the output valuation
at step j. Can also write as

s0
x0/y0���⇥ s1

x1/y1���⇥ s2
x2/y2���⇥ · · ·

For this lecture, traces will comprise only of inputs and outputs,
not of states.

16

Behavior of a State Machine

M1

x: Vx y: Vy

Consider a port p of a state machine with type Vp. This port
will have a sequence of values from the set Vp⇥{absent}, one
value at each reaction. We can represent this sequence as a
function of the form

sp : N�Vp⇥{absent} .

This is the signal received on that port (if it is an input) or
produced on that port (if it is an output).

A behavior of a state machine is an assignment of such
a signal to each port such that the signal on any output port
is the output sequence produced for the given input signals.

17

Language Refinement M1

x: Vx y: Vy

M2

x: Vx y: Vy

The language L(M) of a state machine M is the set of all
behaviors.

For type equivalent state machines M1 and M2, M2 is a lan-
guage refinement of M1 if L(M2)� L(M1).

M2 can replace M1
without producing
anything that M1 could
not have produced. L(M2)

L(M1)

18

Language Equivalence is not Enough in General

Note that these two machines are language equivalent.
We will see that M2 is a simulation refinement of M1, but
not vice versa.

19

Language Equivalence is not Enough in General

Specifically, even though these machines have exactly
the same input/output behaviors, there is a context in
which M1 is not a valid replacement for M2 .

20

Language Equivalence is not Enough in General

Suppose M1 is the specification (everything it does is OK).
It is fine to replace it with M2 because at each step, any
move M2 can make is OK (because any move M1 can
make is OK).

21

Language Equivalence is not Enough in General

Conversely,
Suppose M2 is the specification (everything it does is OK).
It is not OK to replace it with M1 because in state b, M1 is
always capable of making a move that M2 cannot make
(think of a malicious M1 that watches M2).

22

Simulation Relation: The Matching Game

M1 simulates M2.

S1 = {a,b,c,d}, S2 = {e, f,g,h, i}
S⇥ S2�S1 is a simulation relation

23

Simulation Relation: The Matching Game

M1 simulates M2.
Game: each machine starts in its initial state.

S1 = {a,b,c,d}, S2 = {e, f,g,h, i}
S⇥ S2�S1 is a simulation relation
S = {(e,a), · · ·}

24

Simulation Relation: The Matching Game

M1 simulates M2.
Game: M2 moves first, and then M1 matches the move.

S1 = {a,b,c,d}, S2 = {e, f,g,h, i}
S⇥ S2�S1 is a simulation relation
S = {(e,a),(f,b), · · ·}

first possibility

25

Simulation Relation: The Matching Game

M1 simulates M2.
Game: “matching” the move: same input, same output.

second possibility

S1 = {a,b,c,d}, S2 = {e, f,g,h, i}
S⇥ S2�S1 is a simulation relation
S = {(e,a),(f,b),(h,b), · · ·}

26

Simulation Relation: The Matching Game

M1 simulates M2.
Game: Get to all reachable states of M2.

S1 = {a,b,c,d}, S2 = {e, f,g,h, i}
S⇥ S2�S1 is a simulation relation
S = {(e,a),(f,b),(h,b),(g,c),(i,d)} the simulation relation

27

Simulation Relation: The Matching Game

Since M1 simulates M2, M2 refines M1, M2 can replace M1,
everywhere M1 is OK, so is M2.

S1 = {a,b,c,d}, S2 = {e, f,g,h, i}
S⇥ S2�S1 is a simulation relation
S = {(e,a),(f,b),(h,b),(g,c),(i,d)}

28

Formal definition of Simulation

Given M1 = (S1, I1,O1,U1,s10) and M2 = (S2, I2,O2,U2,s20)
where M2 is a type refinement of M1, M1 simulates M2 if
there is a relation S ⇥ S2�S1 where:

1. (s20,s10) ⌅ S

2. for all (s2,s1) ⌅ S, the following condition holds:
For all i ⌅ I2 and (s⇤2,o2) ⌅U2(s2, i)
there exists an (s⇤1,o1) ⌅U1(s1, i) such that
(s⇤2,s

⇤
1) ⌅ S and o2 ⇥ o1

29

Bisimulation

A still stronger form of equivalence is called bisimulation.

M1 is bisimilar to M2 if they are type equivalent and, when

playing the game, on each move, either machine can
move first, and the other machine can match its move.

30

Bisimulation

It is possible to have two machines that simulate each
other that are not bisimilar.

M1 simulates M2 and
vice versa, but they
are not bisimilar.

31

Bisimulation, Formally

Given M1 = (S1, I,O,U1,s10) and M2 = (S2, I,O,U2,s20), M1
is bisimilar to M2 if there is a relation S ⇥ S2�S1 where:

1. (s20,s10) ⌅ S

2. for all (s2,s1) ⌅ S, the following condition holds:
For all i ⌅ I and (s⇤2,o2) ⌅U2(s2, i)
there exists an (s⇤1,o1) ⌅U1(s1, i) such that
(s⇤2,s

⇤
1) ⌅ S and o2 = o1

and
For all i ⌅ I and (s⇤1,o1) ⌅U1(s1, i)
there exists an (s⇤2,o2) ⌅U2(s2, i) such that
(s⇤2,s

⇤
1) ⌅ S and o2 = o1.

32

Simulation and Trace Containment

Theorem: If M1 simulates M2, then L(M2)� L(M1).

Note: If L(M2)� L(M1), it is not necessarily the case that
M1 simulates M2.

33

Summary

•  M2 is a type refinement of M1:
M2 can replace M1 without causing a type conflict.

•  M2 is a language refinement of M1:
M2 can produce only output sequences that M1 can produce, given the
same input sequences.

•  M2 is a simulation refinement of M1:
(equivalently, M1 simulates M2)
At every reaction, M2 can produce only outputs that M1 can produce.

•  M2 is bisimilar to M1:
At every either machine can produce only outputs that the other can
produce.

In all cases, if M1 is “valid” in a system, then so is M2, where only the
meaning of “valid” varies. Alternative terminology:

•  M2 implements M1 (here, M1 is taken to be a specification).

