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Component 
Substitution 

Can we replace one 
component in a system by 
another and be assured that it 
will continue to work correctly? 

What if we replace the  
Cortex-M3 core by  
a Cortex-M4? 
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Comparing State Machines 

How can we compare two state machines 
¢  Are they ‘equivalent’? 
¢  Does one do ‘more’ than the other? (e.g., exhibit 
different behaviors? Produce different outputs?) 
 
Why compare state machines? 
¢  Check conformance with a specification. 
¢  Optimize a model by reducing complexity. 
¢  Check if component substitution is OK. 
¢  … 
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FSM Controller for iRobot 

Assume a time-triggered FSM. 
•  If the level input is present, then it 

drives forward for a fixed amount of 
time by issuing a drive command. 

•  If the level input is absent, then it 
rotates for a fixed amount of time. 
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FSM Controller for iRobot 

Assume a time-triggered FSM. 
•  If the level input is present, then it 

drives forward for a fixed amount of 
time by issuing a drive command. 

•  If the level input is absent, then it 
rotates for a fixed amount of time. 

Alternative FSM. 
 
Is machine M2 equivalent to M1? 
In what sense? 

M2 

M1 
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Equivalence: Part 1: Type Equivalence 

Notice that the actor models for these 
machines have the same input ports 
and the same output ports. 
 
Moreover, the ports have the same 
types. 

Therefore M2 is type equivalent to M1. 

M2 

M1 
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Equivalence: Part 2: Language Equivalence 

Notice that for every input sequence, 
the two machines produce the same 
output sequence. 

Therefore M2 is language equivalent 
to M1. 

M2 

M1 
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Equivalence: Part 3: Bisimulation 

This one is very subtle: 
Notice that for every state of M1 there 
is a corresponding state of M2 that will 
react to inputs in exactly the same way 
and will then transition to another 
similarly corresponding state. 
 
Therefore M2 is bisimilar to M1. 
 
For deterministic machines, language 
equivalence and bisimilarity are the 
same. For nondeterministic machines 
they are not. 
 
We will come back to this! 
But first, refinement. 

M2 

M1 

corresponding 
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Equivalence vs. Refinement 

Two state machines M1 and M2 that are not equivalent may nonetheless be 
related: 
 

• M2 may be type compatible with M1 in that it can replace M1 without 
causing a type conflict. (type refinement) 
• M2 may be a specialization of M1 in that it can produce only output 
sequences that M1 can produce, given the same input sequences. 
(language containment) 
• M2 may be a specialization of M1 in that at every reaction M2 can produce 
only output values that M1 can produce. (M1 simulates M2) (simulation) 
 

In all cases, if M1 is “valid” in a system, then so is M2, where only the 
meaning of “valid” varies.  
• M2 is a type/language/simulation refinement of M1.  
• M2 implements M1 (here, M1 is taken to be a specification). 
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Refinement: Part 1: Type Refinement 

M2 is a type refinement of M1 if: 

M2 

M1 

x: Vx 

w: Vw 

y: Vy 

x: V'x 

z: V'z 

y: V'y 

P1 = { x, w } 

P2 = { x } 

Q1 = { y } 

Q2 = { y, z } 

• P2 � P1

• Q1 � Q2

• ⌅ p ⇤ P2, Vp �V ⇥
p

• ⌅ p ⇤ Q1, V ⇥
p �Vp

M2 can replace M1 without 
causing a type conflict. 
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Recall the Garage Counter 

Input ports: P = {up,down}, with types Vup =Vdown = {present}.
Output port: Q = {count} with type Vcount = {0, · · · ,M}.
A behavior:

sup = (present,absent,present,absent,present, · · ·)
sdown = (present,absent,absent,present,absent, · · ·)
scount = (absent,absent,1,0,1, · · ·) .
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Example of Type Refinement 

Consider a garage counter M1  with M = 99  spaces. 
 
Suppose another garage counter M2 has M = 90  spaces. 
 
M2 is a type refinement of M1 . 
 
Why might this matter? 
Is it always OK to replace M1 with M2? 
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When is Replacement OK?  

The counter machine above can be replaced by the 
“equivalent” machine below: 
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When is Replacement OK? 

The two machines are 
again “equivalent.” How 
to define equivalence? 
 
For determinate 
machines: language 
equivalence. 
For nondeterminate 
machines: a stronger 
condition called 
simulation is needed. 

M2 

M1 
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Behavior (Execution Trace) of a State Machine 

An execution trace is a sequence of the form

q0, q1, q2, q3, . . . ,

where q j = (x j,s j,y j) where s j is the state at step j, x j is
the input valuation at step j, and y j is the output valuation
at step j. Can also write as

s0
x0/y0���⇥ s1

x1/y1���⇥ s2
x2/y2���⇥ · · ·

For this lecture, traces will comprise only of inputs and outputs, 
not of states. 
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Behavior of a State Machine 

M1 

x: Vx y: Vy 

Consider a port p of a state machine with type Vp. This port
will have a sequence of values from the set Vp⇥{absent}, one
value at each reaction. We can represent this sequence as a
function of the form

sp : N�Vp⇥{absent} .

This is the signal received on that port (if it is an input) or
produced on that port (if it is an output).

A behavior of a state machine is an assignment of such
a signal to each port such that the signal on any output port
is the output sequence produced for the given input signals.
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Language Refinement M1 

x: Vx y: Vy 

M2 

x: Vx y: Vy 

The language L(M) of a state machine M is the set of all
behaviors.

For type equivalent state machines M1 and M2, M2 is a lan-
guage refinement of M1 if L(M2)� L(M1).

M2 can replace M1 
without producing 
anything that M1 could 
not have produced. L(M2) 

L(M1) 
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Language Equivalence is not Enough in General 

Note that these two machines are language equivalent.  
We will see that M2 is a simulation refinement of M1, but 
not vice versa. 
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Language Equivalence is not Enough in General 

Specifically, even though these machines have exactly 
the same input/output behaviors, there is a context in 
which M1 is not a valid replacement for M2 . 
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Language Equivalence is not Enough in General 

Suppose M1 is the specification (everything it does is OK).  
It is fine to replace it with M2 because at each step, any 
move M2 can make is OK (because any move M1 can 
make is OK). 
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Language Equivalence is not Enough in General 

Conversely, 
Suppose M2 is the specification (everything it does is OK).  
It is not OK to replace it with M1 because in state b, M1 is 
always capable of making a move that M2 cannot make 
(think of a malicious M1 that watches M2). 
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Simulation Relation: The Matching Game 

M1 simulates M2. 

S1 = {a,b,c,d}, S2 = {e, f,g,h, i}
S⇥ S2�S1 is a simulation relation
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Simulation Relation: The Matching Game 

M1 simulates M2. 
Game: each machine starts in its initial state. 

S1 = {a,b,c,d}, S2 = {e, f,g,h, i}
S⇥ S2�S1 is a simulation relation
S = {(e,a), · · ·}
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Simulation Relation: The Matching Game 

M1 simulates M2. 
Game: M2 moves first, and then M1 matches the move. 

S1 = {a,b,c,d}, S2 = {e, f,g,h, i}
S⇥ S2�S1 is a simulation relation
S = {(e,a),(f,b), · · ·}

first possibility 
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Simulation Relation: The Matching Game 

M1 simulates M2. 
Game: “matching” the move: same input, same output. 

second possibility 

S1 = {a,b,c,d}, S2 = {e, f,g,h, i}
S⇥ S2�S1 is a simulation relation
S = {(e,a),(f,b),(h,b), · · ·}



26 

Simulation Relation: The Matching Game 

M1 simulates M2. 
Game: Get to all reachable states of M2. 

S1 = {a,b,c,d}, S2 = {e, f,g,h, i}
S⇥ S2�S1 is a simulation relation
S = {(e,a),(f,b),(h,b),(g,c),(i,d)} the simulation relation 
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Simulation Relation: The Matching Game 

Since M1 simulates M2, M2 refines M1, M2 can replace M1, 
everywhere M1 is OK, so is M2.   

S1 = {a,b,c,d}, S2 = {e, f,g,h, i}
S⇥ S2�S1 is a simulation relation
S = {(e,a),(f,b),(h,b),(g,c),(i,d)}
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Formal definition of Simulation 

Given M1 = (S1, I1,O1,U1,s10) and M2 = (S2, I2,O2,U2,s20)
where M2 is a type refinement of M1, M1 simulates M2 if
there is a relation S ⇥ S2�S1 where:

1. (s20,s10) ⌅ S

2. for all (s2,s1) ⌅ S, the following condition holds:
For all i ⌅ I2 and (s⇤2,o2) ⌅U2(s2, i)
there exists an (s⇤1,o1) ⌅U1(s1, i) such that
(s⇤2,s

⇤
1) ⌅ S and o2 ⇥ o1
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Bisimulation 

A still stronger form of equivalence is called bisimulation. 
 
M1 is bisimilar to M2 if they are type equivalent and, when 

playing the game, on each move, either machine can 
move first, and the other machine can match its move. 

 



30 

Bisimulation  

It is possible to have two machines that simulate each 
other that are not bisimilar. 

M1 simulates M2 and 
vice versa, but they 
are not bisimilar. 
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Bisimulation, Formally 

Given M1 = (S1, I,O,U1,s10) and M2 = (S2, I,O,U2,s20), M1
is bisimilar to M2 if there is a relation S ⇥ S2�S1 where:

1. (s20,s10) ⌅ S

2. for all (s2,s1) ⌅ S, the following condition holds:
For all i ⌅ I and (s⇤2,o2) ⌅U2(s2, i)
there exists an (s⇤1,o1) ⌅U1(s1, i) such that
(s⇤2,s

⇤
1) ⌅ S and o2 = o1

and
For all i ⌅ I and (s⇤1,o1) ⌅U1(s1, i)
there exists an (s⇤2,o2) ⌅U2(s2, i) such that
(s⇤2,s

⇤
1) ⌅ S and o2 = o1.
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Simulation and Trace Containment 

Theorem: If M1 simulates M2, then L(M2)� L(M1).

Note: If L(M2)� L(M1), it is not necessarily the case that
M1 simulates M2.
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Summary 
 

•  M2 is a type refinement of M1:  
M2 can replace M1 without causing a type conflict. 

•  M2 is a language refinement of M1: 
M2 can produce only output sequences that M1 can produce, given the 
same input sequences. 

•  M2 is a simulation refinement of M1: 
(equivalently, M1 simulates M2 ) 
At every reaction, M2 can produce only outputs that M1 can produce. 

•  M2 is bisimilar to M1: 
At every either machine can produce only outputs that the other can 
produce. 

 

In all cases, if M1 is “valid” in a system, then so is M2, where only the 
meaning of “valid” varies. Alternative terminology: 

•  M2 implements M1 (here, M1 is taken to be a specification). 

 


