
SageMath	2:	Number	Theory	and	
RSA	Cryptosystem	

Cheng-Hsin	Hsu	
Na#onal	Tsing	Hua	University	

Department	of	Computer	Science	

CS3330	Scien>fic	Compu>ng	 1	

Divisibility	

•  a	and	b	are	integers,	b	divides	a	if	there	exists	
an	integer	q	such	that	a=qb	
– b	is	a	divisor	of	a	
– b	is	a	factor	of	a	
– a	is	a	mul>ple	of	b	

•  Example	
– 12	divides	144,	because	144	=	12	x	12	
– Every	integer	divides	0	
– 0	does	not	divide	any	integer,	except	0	itself	

CS3330	Scien>fic	Compu>ng	 2	

Modular	Arithme>c	

•  Example:	

•  For	any																				,	there	exist	unique												such	
that		
–  SageMath/Python:	(i)									is	possible,	and			

•  Modulo	
•  		
•  		
	

CS3330	Scien>fic	Compu>ng	 3	

16÷ 3 = 5 · · · 1
Dividend		 Divisor	 Quo2ent	 Remainder	

16 mod 3 = 1

�12 mod 5 = 3

a, b P Z, b ° 0 q, r P Z
a “ qb ` r, 0 § r † b

br � 0, |r| < |b|b < 0

Modular	Arithme>c	in	SageMath	

CS3330	Scien>fic	Compu>ng	 4	

Quo2ent	

Modulo	

Valida2on	

q = a div b = ba/bc

r = a mod b = a� qb

a = qb+ r

Integers	in	Base	Other	than	10	

•  Write	6137	in	the	octal	system	(base	8).	In	other	
words,	finds	r0,	r1,	…,	rk	so	that	(6137)10=(rk…r2r1r0)8	

•  Write	3387	into	binary	(base	2)	and	hexadecimal	
(base	16)	

CS3330	Scien>fic	Compu>ng	 5	

Convert	Integers	into	Other	Bases	

CS3330	Scien>fic	Compu>ng	 6	

Valida2on	

Exact	Frac>ons:	a	Toy	Problem	

•  Start	from	our	familiar	10-based	(decimal)	
system,	for	a	frac>on	number	p/q	,	we	
some>me	can	represent	it	exactly	in	two-
decimal-place	(or	fewer)	
– 1/2	=	0.50	
– 1/3	=	0.3333333333333333333333333333333	
– 1/4	=	0.25	
– 1/5	=	0.20	

•  Any	rules??															à																à																		

CS3330	Scien>fic	Compu>ng	 7	

p

q
= 0.01z z =

100p

q
q|100

Divisors	of	100	

•  Turns	out	that	if	q	|	100,	we	can	write	p/q	as	a	
two-decimal-place	exact	decimal!	

•  Let’s	use	SageMath	to	find	all	divisors	of	100	
	
	
•  When	q	is	in	{3,	6,	7,	8,	9}:	two	decimals	are	
not	enough!	ß	What	does	this	mean?	
– Splidng	10k	TA	salary	among	3	students!	

CS3330	Scien>fic	Compu>ng	 8	

How	About	Other	Bases	

•  Consider	binary?	
•  Base-20?	

•  Base-60?	

•  20	and	60	are	highly	composite	numbers	
– Simplify	coun>ng,	e.g.,	with	base-60	system,	1/3	
can	be	easily	wrigen!	

	
CS3330	Scien>fic	Compu>ng	 9	

{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, . . . }

Who	Use	Base-20	Systems?	

CS3330	Scien>fic	Compu>ng	 10	

Maya	Numerals	

Source:	hgps://en.wikipedia.org/wiki/Maya_numerals	

How	About	Base-60	System?	

CS3330	Scien>fic	Compu>ng	 11	

Babylonian	Numerals	

•  We	s>ll	see	base-60	systems	in	trigonometry	and	>me	metrics	
Source:	hgps://en.wikipedia.org/wiki/Babylonian_numerals	

Prime	and	Composite	

•  Primes	are	integers	(n>1)	with	exactly	two	
posi>ve	divisors	

•  All	other	integers	(n>1)	are	called	composite	
•  If												is	composite,	then	there	is	a	prime	p	
such	that	

•  0	and	1	are	neither	prime	
nor	composite	

CS3330	Scien>fic	Compu>ng	 12	

n P Z`

p|n

Fundamental	Theorem	of	Arithme>c	

•  If														and	p	is	a	prime,	then		
– Can	be	generalized	to	n	posi>ve	integers	

•  Any	integer	n>1	can	be	wrigen	as	a	(unique)	
product	of	primes	
– Factoriza>on:	canonical	representa>on	

•  Exercise:	What	is	the	prime	factoriza>on	of	
980?		

•  Prove	that	17|n	given		

CS3330	Scien>fic	Compu>ng	 13	

a, b P Z` p|ab ñ p|a or p|b

10 ¨ 9 ¨ 8 ¨ 7 ¨ 6 ¨ 5 ¨ 4 ¨ 3 ¨ 2 ¨ n “ 21 ¨ 20 ¨ 19 ¨ 18 ¨ 17 ¨ 16 ¨ 15 ¨ 14

a = pt11 pt22 · · · ptkk =
kY

i=1

ptii

Prime	Related	Fun	Func>ons	

CS3330	Scien>fic	Compu>ng	 14	

Prime	Related	Fun	Func>ons	(cont.)	

CS3330	Scien>fic	Compu>ng	 15	

Common	Divisors	

•  For												,								is	a	common	divisor	of	a	and	b	if		

•  Let											,	where																					.	Then										is	a	
greatest	common	divisor	(gcd)	of	a	and	b	if	
–  				
–  For	any	common	divisor	d	of	a	and	b,	we	know		

•  For	all											,	there	exists	a	unique	greatest	
common	divisor	of	a	and	b,	wrigen	as	gcd(a,b)	
–  it	is	actually	the	smallest	posi>ve	integer	that	is	a	linear	
combina>on	of	a	and	b	

CS3330	Scien>fic	Compu>ng	 16	

a, b P Z c ° 0

c|a and c|b

a, b P Z a ‰ 0 or b ‰ 0 c P Z`

c|a, c|b
d|c

a, b P Z`

gcd(a, b) = ax+ by

Common	Mul>ples	

•  Let												.	c	is	a	common	mul>ple	of	a	and	b.	
c	is	the	least	common	mul>ple	if	it	is	the	
smallest	posi>ve	common	mul>ple	of	a,	b,	we	
write	c=lcm(a,b)	

	
•  If														and																			.	For	any	d	that	is	a	
common	mul>ple	of	a	and	b,	we	know	c|d	

•  For	all												,	ab=lcm(a,b)gcd(a,b)	

CS3330	Scien>fic	Compu>ng	 17	

a, b P Z`

a, b P Z` c “ lcmpa, bq

a, b P Z`

Systema>c	Way	to	Find	GCD	and	LCM	

•  Exercise:	Count	the	#	of	posi>ve	divisors	of	360	
–  Find	2	ways	to	do	this	in	SageMath,	hint:	factor(.)	and	
divisors(.)	

•  Let																																																			,	with																																
we	have	

–  Find	the	gcd	and	lcm	of																																																										
and			

	
CS3330	Scien>fic	Compu>ng	 18	

m “ pe11 pe22 ¨ ¨ ¨ pett , n “ pf11 pf22 ¨ ¨ ¨ pftt ei, fi • 0, @ei, fi

gcdpm,nq “
tπ

i“1

pai
i , and lcmpm,nq “

tπ

i“1

pbii ,

where ai “ minpei, fiq, bi “ maxpei, fiq
491891400 “ 23335272111132

1138845708 “ 223271112133171

GCD	and	LCM	Related	Func>ons	

CS3330	Scien>fic	Compu>ng	 19	

Euclidean	Algorithm	

•  Compute	gcd(a,b)	
–  r0=a,	r1	=	b	
– For	i	>=	1,	stop	when	rn	=	0	

•  ri+1	=	ri	mod	ri-1	
– gcd(a,b)	=	rn-1	

•  Example:	gcd	(1650,	2420)	=	110	
	

CS3330	Scien>fic	Compu>ng	 20	

Extended	Euclidean	Algorithm	

•  Compute	x,	y	for	gcd(a,b)	=	ax	+	by	
–  r0=a,	x0=1,	y0=0	
–  r1=	b,	x0=0,	y0=1	
– For	i	>=	1,	stop	when	rn	=	0	

•  qi=ri-1	div	ri	
•  xi+1	=	xi-1	-	qixi		
•  yi+1	=	yi-1	-	qiyi		
•  ri+1	=	ri-1	-	qiri		

– x=xi-1,	y=yi-1,		

CS3330	Scien>fic	Compu>ng	 21	

Example:	a=2420,	b=1650	

Linear	Diophan>ne	Equa>ons	

•  For	two	non-zero	integers	a	and	b	
•  There	exist	integer	solu>ons	for	gcd(x,y)=ax
+by	ß	extended	Euclidean	algorithm	

•  ax+by=c	has	integer	solu>ons	iff	gcd(a,b)	|	c	
•  ax+by=1	has	integer	solu>ons	iff	gcd(a,b)	=	1	
– Rela>ve	prime	(or	co-prime)	

CS3330	Scien>fic	Compu>ng	 22	

Congruence	

•  If	a	and	b	have	the	same	remainder	upon	division	
by	n,	a	is	congruent	to	b	modulo	n	
– Wrigen	as	
–  That	is		

•  Example	
–  		
–  			

•  Congruence	is	compa>ble	with	addi>ons	and	
mul>plica>ons:																							and																							
imply																																				and		

CS3330	Scien>fic	Compu>ng	 23	

a ⌘ b (mod n)
n|(a� b)

23 ⌘ 8 (mod 5)

5|(23� 8)

a ⌘ b (mod n) c ⌘ d (mod n)

a+ c ⌘ b+ d (mod n) ac ⌘ bd (mod n)

Why	Congruence	is	Useful?	

•  Compute	
•  Steps:	

1.  		
2.  		
3.  		
4.  		
5.  		

•  We	know	2016	=	6	x	336,	what’s	the	answer?		

CS3330	Scien>fic	Compu>ng	 24	

12

2016
(mod 19)

12

2
= 144 ⌘ 11 (mod 19)

12

3
= 11⇥ 12 = 132 ⌘ 18 (mod 19)

12

4
= 18⇥ 12 = 216 ⌘ 7 (mod 19)

12

5
= 7⇥ 12 = 84 ⌘ 8 (mod 19)

12

6
= 8⇥ 12 = 96 ⌘ 1 (mod 19)

Linear	Congruence	

•  Linear	congruence	refers	to	an	equa>on	

•  It	is	the	same	as:																,	meaning	that	there	
exists	an	y,	so	that			
– Equivalent	to	

•  The	linear	congruence	has	a	solu>on	iff		

CS3330	Scien>fic	Compu>ng	 25	

ax ⌘ b (mod m)

m|ax� b

ax� b = my

ax�my = b

gcd(a,m)|b

Slide	22	

Solving	Linear	Congruence	

•  First,	we	apply	the	extended	Euclidean	
algorithm	to	find	u,	v	so	that		

•  If																		,	we	have	a	solu>on	x0=	ub/gcd(a,m)	
ß	validate:	show		

•  There	are	more	solu>ons:	
		

CS3330	Scien>fic	Compu>ng	 26	

ax ⌘ b (mod m)

au+mv = gcd(a,m)

gcd(a,m)|b
m
���

aub

gcd(a,m)
� b?

ub

gcd(a,m)
+ i

m

gcd(a,m)
, where i = 0, 1, . . . , gcd(a,m)� 1

m	|	(a/gcd(a,m))	im	

Example	of	Linear	Congruence	

•  Use	extended	Euclidean	algorithm	to	get:	

•  One	solu>on:		x	=	ub	/	gcd(35,	240)	=	(-41	x	
10)/5	=-82	ß	158	(mod	240)	

•  Step	size:	240/5	=	48,	then	we	have	the	
following	solu>ons	{158,	158	+	48,	158	+	2	x	
48,	158	+	3	x	48,	158	+	4	x	48}	=	{158,	206,	14,	
62,	110}	under	(mod	240)	

CS3330	Scien>fic	Compu>ng	 27	

35x ⌘ 10 (mod 240)

35⇥ (�41) + 240⇥ 6 = 5 = gcd(35, 240)

Mul>plica>ve	Inverse	Modulo	m		

•  a	is	inver>ble	modulo	m	is	there	is	an	inverse	x	so	
that	
–  a	is	inver>ble	iff	

•  x	is	unique,	and	is	denoted	as	a-1,	where	0	<=	a-1	
<	|m|	

•  Example:	Find	the	inverse	of	65	mod	321	(if	
exists)		
–  First,	we	have:	
–  Then,	we	have	a-1	=	-79	mod	321	ß	what’s	the	ans?	

CS3330	Scien>fic	Compu>ng	 28	

ax ⌘ 1 (mod m)

gcd(a,m) = 1

65⇥ (�79) + 321⇥ 16 = 1

Congruence	Classes	

•  The	congruence	classes	of	mod	m	are:	

– Equivalent	classes:	reflec>ve,	symmetric,	and	
transi>ve	

– Note	that	[10]	=	[4]	(mod	6)	
•  	The	set	of	congruence	classes	mod	m	is	
wrigen	as:		
– Addi>ons	and	mul>plica>ons	are	well	defined	ß	
see	the	next	slide	

CS3330	Scien>fic	Compu>ng	 29	

[a] = {8x ⌘ a (mod m), x 2 Z},where a = 1, 2, . . . ,m� 1

Z/mZ = {[0], [1], . . . , [m� 1]}

																Opera>ons	on		

•  Two	opera>ons:	+	and	�	
–  [a]	+	[b]	=	[a+b]	
–  [a]�[b]	=	[a�b]	

•  (,	+,	�)	is	a	commuta>ve	ring	
– +	and	�	are:	commuta>ve,	associa>ve,	�		is	
distribu>ve	w.r.t	+,	1	is	the	iden>ty	of	
mul>plica>on	

–  	[a]	may	not	have	inverse,	only	if	gcd(a,m)=1		

CS3330	Scien>fic	Compu>ng	 30	

Z/mZ

Z/mZ

Hence,	it’s	not	a	field	

Euler’s	Phi	Func>on	

•  We	define									as	the	number	of															,	
where	
– What	is										?	

•  Write	code	to	compute	phi	func>on	
			

CS3330	Scien>fic	Compu>ng	 31	

�(n) 1  z  n

gcd(z, n) = 1

�(10)

Euler’s	Phi	Func>on	(cont.)	

•  Try	other	x	values	for	
•  Suppose	x	and	y	are	two	dis>nct	primes,	what	
are	the	rela>on	among																																				?	
– Why?	
–  In	fact,	as	long	as	x	and	y	are	co-prime,	the	above	
discussion	holds!	

•  SageMath	has	phi	built-in	

CS3330	Scien>fic	Compu>ng	 32	

�(x)

�(x),�(y), and �(x⇥ y)

Divisors	of	an	Integer	

•  We	define							be	the	number	of	divisors	of	x	
•  We	define							be	the	sum	of	all	the	divisors	of	x	

CS3330	Scien>fic	Compu>ng	 33	

⌧(x)

�(x)

�(250)

⌧(250)

Built-in	Sigma	Func>on	

•  Again,	actually	SageMath	has	a	sigma	func>on	
	

CS3330	Scien>fic	Compu>ng	 34	

1 + 3 + 5 + 9 + 15 + 45 = 78

12 + 32 + 52 + 92 + 152 + 452 = 2366

10 + 30 + 50 + 90 + 150 + 450 = 6
What	is	this?	

Amicable	Pairs	of	Numbers	

•  An	interes>ng	Arab	tradi>on:	put	two	
numbers	220	and	284	on	their	rings	and	give	
them	to	their	spouses	

CS3330	Scien>fic	Compu>ng	 35	

divisors(220) = {1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220}
1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284

1 + 2 + 4 + 71 + 142 = 220

divisors(284) = {1, 2, 4, 71, 142, 284}

Summary	(So	Far)	

•  We	introduced	various	number	theory	func>ons	in	
SageMath	

•  We	will	use	them	to	introduce	some	cryptography	
results	

•  References:	
– hgp://www.sagemath.org	ß	Official	Web	and	resources	
– hgp://www.gregorybard.com/SAGE.html	ß	Our	
textbook	

CS3330	Scien>fic	Compu>ng	 36	

How	to	Secretly	Send	Messages		

•  Plaintext:	human-readable	messages	
•  Ciphertext:	scrambled	message	
•  Encryp>on:	plaintext	à	ciphertext	
•  Decryp>on:	ciphertext	à	plaintext	
	

CS3330	Scien>fic	Compu>ng	 37	

Plaintext	 Ciphertext	 Plaintext	
Encrypt	 Decrypt	

Naïve	Way:	ASCII	Encoding	

•  Let																																	be	the	English	
(uppercase)	alphabet	ß	plaintext	

•  Let																																				be	the	ASCII	encodings,	
where	

•  Example:		“SCIENCE”	à	83677369786769		
•  But	it’s	too	weak	

CS3330	Scien>fic	Compu>ng	 38	

f : ⌃ ! �

⌃ = {A,B, . . . , Z}

� = {65, 66, . . . , 90}

Symmetric	Cryptography	

CS3330	Scien>fic	Compu>ng	 39	

Asymmetric	Cryptography		

CS3330	Scien>fic	Compu>ng	 40	

A	Popular	Asymmetric	Algorithm:	RSA	

R.	Rivest,	A.	Shamir,	and	L.	Adleman.	A	method	for	obtaining	
digital	signatures	and	public-key	cryptosystems.	ACM	
Communica>ons,	21,	2	(February	1978),	120-126.	

CS3330	Scien>fic	Compu>ng	 41	

RSA	Pseudocode	

1.  Choose	two	huge	primes	p	and	q,	and	let	n=pq	
2.  Let													be	posi>ve	s.t.		
3.  Find	a													so	that		
4.  Public	key	(n,	e),	private	key	(p,	q,	d)	
5.  For	any	integer	m	<	n,	encrypt	m	by		
6.  Decrypt	c	using	
		

Let’s	try	to	walk	through	this	in	Sage!	

CS3330	Scien>fic	Compu>ng	 42	

e 2 Z

Mersenne	Primes	

•  Studied	by	Marin	Mersenne	in	17th	century	
•  Power	of	two	minus	1:	
•  If									is	a	prime,	the	it’s	called	Mersenne	
primes	
– Sounds	like	a	good	way	to	create	huge	primes	
–  is_prime(.)	tells	us	if	a	number	is	prime	

•  Alterna>vely,	we	may	use	random_prime(…)	

CS3330	Scien>fic	Compu>ng	 43	

Generate	the	Primes	for	Keys	
sage:	p	=	2^31	-	1	
sage:	is_prime(p)	
True	
sage:	q	=	2^61	-1	
sage:	is_prime(q)	
True	
sage:	n	=	p*q	
sage:	n	
4951760154835678088235319297	

CS3330	Scien>fic	Compu>ng	 44	

BTW,	far-apart	p	and	q	is	very	bad		
choices	in	the	sense	of	security	

RSA	Pseudocode,	Step	2	

1.  Choose	two	huge	primes	p	and	q,	and	let	n=pq	
2.  Let													be	posi>ve	s.t.		
3.  Find	a													so	that		
4.  Public	key	(n,	e),	private	key	(p,	q,	d)	
5.  For	any	integer	m	<	n,	encrypt	m	by		
6.  Decrypt	c	using	

CS3330	Scien>fic	Compu>ng	 45	

e 2 Z

Find	a	Coprime	of	Euler	Phi		

•  We	learned	how	to	calculate	euler_phi(.)	
•  Let’s	randomly	pick	a	number	<	phi,	and	wish	
they	are	coprime	

•  We	stop	only	when	we	find	a	coprime	e	
– Usage	of	while	loop….	

CS3330	Scien>fic	Compu>ng	 46	

While-Loop	to	Find	e	

sage:	phi=euler_phi(n);	phi	
4951760152529835076874141700	
sage:	e=int(random()	*	(phi-1))	+	1	
sage:	while	gcd(e,	phi)	!=1	:	
....:					e=int(random()	*	(phi-1))	+	1	
....:						
sage:	e	
3093458420861290024932474881	

CS3330	Scien>fic	Compu>ng	 47	

What	does	this	do?	

RSA	Pseudocode,	Step	3	

1.  Choose	two	huge	primes	p	and	q,	and	let	n=pq	
2.  Let													be	posi>ve	s.t.		
3.  Find	a													so	that		
4.  Public	key	(n,	e),	private	key	(p,	q,	d)	
5.  For	any	integer	m	<	n,	encrypt	m	by		
6.  Decrypt	c	using	

CS3330	Scien>fic	Compu>ng	 48	

e 2 Z

How	to	Find	d?	

•  Sounds	tricky:	
–  		
–  	or																																						for	some	integer	k	
–  	or				

•  Think	again	
– What	are	given?	ß	e	and	phi	
– What	do	we	want	to	determine?	ß	d	and	k	

•  How	can	we	find	two	integers	d	and	k?		
– Recall	that	e	and	phi	are	coprime	

CS3330	Scien>fic	Compu>ng	 49	

Extended	Euclidean	Algorithm!	
•  We	know																																						for	some	x	and	y	
•  Sage	command	xgcd(a,	b)	returns	(gcd(a,b),	x,	y)	as	a	
3-tuple		

	
sage:	tuple=xgcd(e,	phi);	tuple	
(1,	-1652278469976548922862474579,	
1032209676784414363356071253)	
sage:	d	=	Integer(mod(tuple[1],	phi));	d	
3299481682553286154011667121	
sage:	mod(d*e,	phi)	
1		

CS3330	Scien>fic	Compu>ng	 50	

Found	our	d	

Validate	d	

RSA	Pseudocode,	Step	4	

1.  Choose	two	huge	primes	p	and	q,	and	let	n=pq	
2.  Let													be	posi>ve	s.t.		
3.  Find	a													so	that		
4.  Public	key	(n,	e),	private	key	(p,	q,	d)	
5.  For	any	integer	m	<	n,	encrypt	m	by		
6.  Decrypt	c	using	

CS3330	Scien>fic	Compu>ng	 51	

e 2 Z

Public	and	Private	Keys	

sage:	(n,e)	
(4951760154835678088235319297,	
3093458420861290024932474881)	
	
sage:	(p,q,d)	
(2147483647,	2305843009213693951,	
3299481682553286154011667121)	

CS3330	Scien>fic	Compu>ng	 52	

Public	Key	

Private	Key	

RSA	Pseudocode,	Step	5	

1.  Choose	two	huge	primes	p	and	q,	and	let	n=pq	
2.  Let													be	posi>ve	s.t.		
3.  Find	a													so	that		
4.  Public	key	(n,	e),	private	key	(p,	q,	d)	
5.  For	any	integer	m	<	n,	encrypt	m	by		
6.  Decrypt	c	using	

CS3330	Scien>fic	Compu>ng	 53	

e 2 Z

Encrypt	the	Message	(and	Fail)	
•  “SCIENCE”	à	m=83677369786769		
•  		

sage:	m=83677369786769		
sage:	c=mod(m^e,	n)	

Run>meError																														Traceback	(most	recent	call	last)	
<ipython-input-19-c5605db94841>	in	<module>()	
---->	1	c=mod(m**e,	n)	
/usr/lib/sagemath/local/lib/python2.7/site-packages/sage/rings/
integer.so	in	sage.rings.integer.Integer.__pow__	(sage/rings/integer.c:
14001)()	
Run>meError:	exponent	must	be	at	most	9223372036854775807	

CS3330	Scien>fic	Compu>ng	 54	

e=3093458420861290024932474881	

Repeated	Squaring	

•  Start	from	d	=	1	
•  Convert	b	into	binary	(b1,	b2,	…,	bk)	
•  Iterate	i	from	1	to	k	
– d	=	d	*	d	mod	n	
–  If	bi	=	1,	let	d	=	d	*	a	mod	n	

CS3330	Scien>fic	Compu>ng	 55	

Move	1	digit	toward	le}	

If	there	is	a	1,	mul>ply	by	a	

Example	of	Repeated	Squaring	

•  Derive	36	ß	6	=	(110)2	
•  Step	1:	d=1	
•  Step	2:	i=1,	d=1*1	=	1,	d	=	1*3	=	3	
•  Step	3:	i=2,	d=3*3	=	9,	d=9*3	=	27	
•  Step	4:	I=3,	d=27*27=729	

•  Note	that	I	ignore	modulus	here	for	brevity		

CS3330	Scien>fic	Compu>ng	 56	

Repeated	Square	Func>on	
•  Save	the	following	code	as	rsmod.sage	ß	Uah,	pay	

agen>ons	to	indents,	like	all	python	sources	
•  Load	it	using	%runfile	rsmod.sage	
•  Test	it	
	
def	rsmod(a,	b,	n):	
				d=1	
				for	i	in	list(Integer.binary(b)):	
								d=mod(d*d,	n)	
			 		if	Integer(i)	==	1:	
								 	d	=	mod(d*a,	n)	
				return	Integer(d)	
	

CS3330	Scien>fic	Compu>ng	 57	

sage:	%runfile	rsmod.sage	
sage:	rsmod(3,6,100000)	
729	

Now	We	are	Back	on	Track	

•  Use	e	and	n	(=pq)	to	encrypt	m	into	c	
sage:	c=rsmod(m,	e,	n)	
sage:	c	
1406082576299748012744893983	
	
•  Last	step,	decode	c	using	d	and	n	
sage:	m2=rsmod(c,	d,	n);	m2==m	
True	

CS3330	Scien>fic	Compu>ng	 58	

Recap:	RSA	Pseudocode	

1.  Choose	two	huge	primes	p	and	q,	and	let	n=pq	
2.  Let													be	posi>ve	s.t.		
3.  Find	a													so	that		
4.  Public	key	(n,	e),	private	key	(p,	q,	d)	
5.  For	any	integer	m	<	n,	encrypt	m	by		
6.  Decrypt	c	using	
		

We	have	done	this!	

CS3330	Scien>fic	Compu>ng	 59	

e 2 Z

Naïve	Way	to	Break	It	
•  Figure	out	the	p	and	q	values.	But,	how	hard	is	
factoriza>on?	

	
sage:	>me	factor(random_prime(2^32)*random_prime(2^32))	
CPU	>mes:	user	0.01	s,	sys:	0.00	s,	total:	0.01	s	
sage:	>me	factor(random_prime(2^64)*random_prime(2^64))	
CPU	>mes:	user	0.05	s,	sys:	0.00	s,	total:	0.05	s	
sage:	>me	factor(random_prime(2^96)*random_prime(2^96))	
CPU	>mes:	user	3.54	s,	sys:	0.04	s,	total:	3.58	s	
sage:	>me	factor(random_prime(2^128)*random_prime(2^128))	
CPU	>mes:	user	534.39	s,	sys:	0.12	s,	total:	534.51	s	

•  Well	there	are	many	primes	between	2511	and	2512	ß	
Agackers	cannot	be	that	lucky	

	
CS3330	Scien>fic	Compu>ng	 60	

Growing	into		
something	

Flawed	Random	Number	Generators	

•  1995	Goldberg-Wagner:	During	any	par>cular	
second,	the	Netscape	browser	generates	only	
about	247	possible	keys	

•  2008	Bello:	Debian	and	Ubuntu	generate	<220	
possible	keys	for	SSH,	OpenVPN,	etc	

•  What	we	can	do	is:	
– Generate	many	private	keys	on	a	device	
– Check	if	any	of	these	private	keys	divide	n	
– Finding	p	(and	q)	is	no	longer	impossible	

CS3330	Scien>fic	Compu>ng	 61	

Pollard’s	p-1	Agack	

•  Due	to	John	Pollard	in	1974	
•  Only	work	on	special	primes	ß	Smooth	
primes	

•  A	number	is	k-smooth	if	all	of	its	prime	factors	
are	smaller	than	k	

•  Example:	10,	100,	and	21024	are	all	6-smooth,	
but	14	is	not	

CS3330	Scien>fic	Compu>ng	 62	

Background	of	Pollard’s	p-1	Agack	

•  RSA’s	n	can	be	readily	factorized	if	p-1	or	q-1	
are	smooth	ß	only	have	small	factors	
– Wait,	but	we	don’t	know	p	nor	q,	right?	Indeed	…	

•  Checking	if	an	integer	k	is	B-smooth	may	be	to	
computa>onally	demanding	
– Compare	it	against	if	k|B!	

CS3330	Scien>fic	Compu>ng	 63	

Integer	k	Divides	B!	

Lemma:	k	|	B!	implies	k	is	B-smooth	
Proof:		
•  Assume	k	is	not	B-smooth,	then	there	exis>ng	
an	integer	f|k,	where	f	>	B.		

•  f	does	not	divide	any	b’	<=	B.		
•  Since	we	know	p|ab	iff	p|a	or	p|b,	k	does	not	
divide	B!	for	sure.		

Note:	the	converse	is	false,	proof	is	le}	as	exercise	
	
	

CS3330	Scien>fic	Compu>ng	 64	

Fermat’s	Ligle	Theorem	

Theorem:	Given	a	prime	number	p,	and	any	
			 	 	 	 	 	 	 	 	 	,	we	know	
	 	 					or	

Proof:			
The	first	p-1	posi>ve	mul>ples	of	a	are:	a,	2a,	
3a,	…,	(p-1)a.	These	mul>ples	are	all	dis>nct,	
because	if	xa	=	ya	(mod	p),	we	know	x=y	(since	p	
is	a	prime).				

CS3330	Scien>fic	Compu>ng	 65	

Fermat’s	Ligle	Theorem	(cont.)	

The	p-1	mul>ples	are	congruent	to	1,	2,	…,	p-1,	
in	some	order		(the	precise	permuta>on	is	not	
important).	Let’s	mul>ply	all	of	them	together	
and	we	have	
,	and	then																																																							.	
Gedng	rid	of	(p-1)!	at	both	sides	yields	the	
theorem.		

CS3330	Scien>fic	Compu>ng	 66	

How	Fermat’s	Ligle	Theorem	Helps?	

•  Say	p-1	|	B!,	there	is	a	k	so	that	k(p-1)	=	B!	
•  Then	we	have		

•  Or																									is	a	mul>ple	of	p		
– Both	in	ordinary	integers	and	under	mod	p	
–  I	skip	some	technical	details	

•  OK.	What	I’m	talking	about?	Since	n=pq,	a	
mul>ple	of	p;	gcd(c,	n)	is	a	mul>ple	of	p	

CS3330	Scien>fic	Compu>ng	 67	

The	Pollard’s	p-1	Agack	

•  We	compute	c=2B!	-1	mod	n	
•  We	compute	gcd(c,n)	
•  If	it	is	between	1	and	n,	it	is	p	(because	q	is	a	
prime)	ß	we	can	then	compute	q	=	n/p	

•  We	have	broken	the	public	key!	
•  But,	if	gcd(c,n)=n,	we	fail	ß	this	only	happens	
if	both	p-1	and	q-1	divide	B!	
– Well,	we	ignore	these	corner	cases	for	brevity.	
Just	remember	p-1	does	not	always	work	

CS3330	Scien>fic	Compu>ng	 68	

There	is	a	Catch…..	

•  How	to	compute	c=2B!	-1	mod	n?	Is	it	realis>c?	
•  Remember	p-1	must	be	B-smooth,	and	B	is	
not	going	to	be	small!	
– Say	2(10000!)	mod	n	

•  Can	we	really	do	this?	NO….	
•  Need	the	last	twist….	

CS3330	Scien>fic	Compu>ng	 69	

n
n
n
n

n

The	Last	Twist	

CS3330	Scien>fic	Compu>ng	 70	

Similarly																																										,	and	we	can	recursively	
calculate	CB			

n
n
n
n

n

n

Put	Pollard’s	p-1	Together	
Sage:n=44426601460658291157725536008128017
2978907874637194279031281180366057	
sage:	B_fac=factorial(2^25)		
sage:	c=Integer(pow(2,B_fac,n))	-	1	
sage:	p=gcd(c,n);	p	
1267650600228229401496703217601	
sage:	q=n/p;	q	
350464090441480248555642900357719682857	
sage:	p*q	==	n	
True	
	

CS3330	Scien>fic	Compu>ng	 71	

Well,	I	did	not	apply	the		
last	op>miza>on	

Yeah,	it	works	

Summary	(Second	Half)	
•  We	introduced	symmetric	and	asymmetric	
cryptography	systems	

•  We	walked	through	RSA	algorithm	
•  We	discussed	one	of	the	RSA	agacks	
•  There	are	many	other	agacks	ß	out	of	scope	
•  References:	
–  hgp://www.gregorybard.com/SAGE.html	ß	Our	textbook	
–  hgp://doc.sagemath.org/html/en/thema>c_tutorials/
numtheory_rsa.html	ß	Introduc>on	on	RSA	

–  hgps://www.hyperellip>c.org/tanja/vortraege/
facthacks-29C3.pdf	ß	Many	more	agacks	

CS3330	Scien>fic	Compu>ng	 72	

SageMath	#2	Homework	(S2)	

1.  (2%)	Write	a	SageMath	program	to	find	out	at	
least	3	amicable	pairs,	including	(220,	284)	

2.  (1%)	Use	Pollard’s	p-1	agack	to	factorize	this	
number:	
n=86202154764363158239699821220872291
4288258644234791307950582916442747222
039795609417741932278317121	

You	need	to	explain	and	run	your	code	in	front	of	
the	TA,	or	you	get	zero	point	
	

CS3330	Scien>fic	Compu>ng	 73	

