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Goals

e Let’s visualize what is K-means clustering
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K-Means Clustering

e -

* Find k points of a dataset to best represent
the dataset with minimum deviation
(distortion)

— k is a user-specified parameter, could be chosen
using validation

* These chosen points are called cluster centers

— Or prototypes, centroids, and codewords
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Sample Applications

e

e

* Data classification: remove noisy data and
reduce computational complexity

 Data compression: use the cluster centers to
represent the original dataset < fewer
possibilities, easier to code

— Homework: better indexed colors for the minion
picture, chosen by your K-mean code



High-Level Idea

e

* Objective function: the sum of square
distances between each data point and its
nearest cluster centers €< called distortion

e Have to make two crucial decisions
— Where are the cluster centers?
— Which cluster does each data point belong to?

* Approach: we iteratively find the optimal of a

decision while having the other decision fixed
< coordinate optimization
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Example of Coordinate Optimization
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Math Notations

e

Input:
— X ={x,x,,...,x,} Adata setin d-dim. space

— m: Number of clusters (we avoid using k here to avoid
confusion with other summation indices)

Output:
— m cluster centers: ¢;,l=j=m
— Assignment of each xi to one of the m clusters:

a,€{0,1},1si<nl<j<m

m

a,=1,Vi

j=1
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Math Notations (cont.)

— ———
_ 2 Objective function, we aim to minimize it
ej = X, — Cj
x,E€G; l
m
J(X;C,A)= E =E x—cH EE where

j=1 J=1 x,€G; j=1 i=1

X ={x,%X,,...,X,}

C = {Cl 3Coyuens Cm} Decision variaTbIes, notice that C has a dim ofd xm
and A has a dim of nxm

a, =1iff x,€G,, with Ea"f =1, Vi
=]
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Minimizing J(X; C,A)

— \ —

e Turns out to be NP-Hard

* Fall back to coordinate optimization
— It’s not perfect: we don’t get global optimum
— Yet it’s not terribly bad: we do get local optimum

-

\
"““‘O‘O;Q LIRSS
“‘o"////ff’l::&“\‘é\§\\\§§§“’ e
l;:;,_;‘

Sd & A M O M A O ® O
YA A S A S SR S A

o



Step 1: Finding the Best A (Association)

e \ —  _  —

* Analytic (closed-form) solution exists

e |ntuition: 9J(X,C,A)
Oaij

== ”.’I.'z - Cj”2 Va.&-,j

ij Optimal for this step

* Therefore: 4 - “ff=afgm;onf—ch2
0, otherwise

* Or formally:
A=arg minJ(X;C, 4) < J(X;C,4) = J(X;C, A)NC
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Step 2: Finding the Best C (Centers)

e

* Analytic (closed-form) solution also exists

T

imal for thi
e |ntuition: aJ()chA Zau[ 2z — ] Optimal for this step
C;

* To get the extreme value, we have: anx,.
¢, ="

5
* Or formally: =

C =arg min J(X;C, 4) < J(X;C, 4) = J(X; C, A),¥A
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K-Mean Algorithm

e

1. Initialize
« Select initial m cluster centers

2. Find associations
 For each xi, assign the cluster with nearest center
 =» Find A to minimize J(X; C, A) with fixed C

3. Find centers

« Compute each cluster center as the mean of data in
the cluster

= Find C to minimize J(X; C, A) with fixed A
4. Stopping criterion

« Stop if clusters stay the same. Otherwise go to step 2.
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Stopping Criteria

_—

*Two stopping criteria
— Repeating until no more change in cluster
assignment

— Repeat until distortion improvement is less
than a threshold

*Fact: Convergence is assured since J Is
reduced repeatedly < Distortion is
monotonically nonincreasing

J(X;C, )=J(X;C,A)=J(X;C,,4) = J(X;C,, 4,) = J(X;Cy, 4,) = J(X;Cy, Ay) = -+
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How K-Means Works

/

_/

Expectation Maximization (EM): distributions < association, parameters € centers
E step
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Demo of K-Mean Clustering

e

e

 Download the (demo version of) the Machine
Learning Toolbox from Prof. Jang’s website

— http://mirlab.org/jang/matlab/toolbox/
machinelearning/

* Try the two demos

— kMeansClustering.m < animations of k-
means algorithm

— vecQuantize.m < clustering versus
guantization

CS3330 Scientific Computing 15



Input-2
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Demo of K-Mean Clustering (cont.)

e
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Sample Code

% ====== Get the data set

DS = dcData(5);

subplot(2,2,1);

plot(DS.input(1,:), DS.input(2,:), ".");

% ====== Run kmeans

centerNum=6;

[center, U, distortion, allCenters] = kMeansClustering(DS.input, centerNum);
% ====== Plot the result

subplot(2,2,2);

vgDataPlot(DS.input, center);

subplot(2,1,2);

plot(distortion, 'o-');

xlabel('No. of iterations'); ylabel('Distortion'); grid on

CS3330 Scientific Computing

17



Sample Code
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Discussions

e

* While the distortion is monotonically
nonincreasing, we don’t always get the global
minimum €< may stuck in one of the local
minimums

— Solution: try a few random initial centers

— Alternate solution: select initial centers as the
dataset points with the largest sum of pairwise

squared distance < intuitively good, but still no
guarantees



Discussions (cont.)

* |tis possible that during the K-means
iterations, one of the clusters has zero dataset
point
— Solution: split a cluster into two, different

heuristics are possible, e.g., cluster with the
maximal number of dataset points

e What we introduced is called batch K-means
algorithm

— There is also an online version existing, also
known as sequential K-means algorithm



Image Compression: An Application

/,

—

* Convert a image from true colors to indexed
colors with minimum distortion

* Steps:
— Collect data from a true-color image

— Perform k-means clustering to obtain cluster
centers as the indexed colors

— Map each pixel’s true color into indexed color



Recap: True- versus Indexed-Colors

/,

True-color image

\

e

Each pixel is .
represented by a
vector of 3

components [R,

G, B]
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Index-color image

Each pixel is
represented by
an index into a
color map
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Read the Image, Check the Size

— \

X = imread('minion.jpg'); ..
image(X);

[m, n, p]=size(X) | R o
- pf | E'i&:);”mﬁgns e
* 640 x 640 x 3 matrix “joME® - LT Tw s lE

 Check the color
— dec2hex(X(200,200,:))
— dec2hex(X(300,300,:))
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How to Apply K-Means?

_— -

* (X, Y, :)are the RGB values of a single pixel
< A sample in a 3-dim space!

« Have to convert a pixel into a column of a 2-D
array

« Example: Indexing of pixels foran 2 x 3 x 3
image

1315 17 1 2 3 4 5 6]
14 ; 19 311 5 :> 7 8 9 10 11 12
2.4 6 13 14 15 16 17 18

* Related command (exercise): reshape
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How to Apply K-Means” (cont.)

e

* index=reshape(X(1:m*n*p), m*n, 3);
e >>sjze(index)
e ans=3 409600

* Now we have 409600 samples, find the
centers using K-means algorithm
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(Partially-Working?) Code

X = imread('minion.jpg");
image(X)
[m, n, p]=size(X);
index=reshape(1:m*n*p, m*n, 3)’;
data=double(X(index));
maxl|=4;
for i=1:maxl
centerNum=2";
fprintf('i=%d/%d: no. of centers=%d\n', i, maxl, centerNum);
center=kMeansClustering(data, centerNum);
distMat=distPairwise(center, data);
[minValue, minindex]=min(distMat);
X2=reshape(minindex, m, n);
map=center'/255;
figure; image(X2); colormap(map); colorbar; axis image;
end

e
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e
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e
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Compression Ratio

before = m*n*3*8 bits
after =m*n*log2(c)+c*3*8 bits
before m*n*3*8 24 24
) after =m*n*10g2(c)+c*3*8= )

24c log, (C)
m*n

log2(0)+

Note: Compared to raw 8-bit RGB image,
not PNG (lossless) nor JPG (lossy)
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e

1.

Matlab #5 Homework (M5)

e

(1%) We said that the K-Mean algorithm on slide 12
always converges in finite number of steps. Prove this
is indeed the case.

(1%) Generate 1000 sample points in 3-d space, where
each x, y, and z is uniformly distributed between 0 and
1. Write code to perform K-means of these points with
K=2, where the initial cluster centers also follow
uniform distribution. Run your code 3 times and plot
three 3-D figures. Print and submit your figures along
with your observations. In particular, what K-means
tells you? What is the truth?



