
Matlab 1:	User	Interface

Cheng-Hsin Hsu
National	Tsing	Hua	University

Department	of	Computer	Science

Slides	are	based	on	the	materials	from	Prof.	Roger	Jang	

CS3330	Scientific	Computing 1

What	is	Matlab

• Matlab stands	for	MATrix LABoratory
• It	was	first	released	by	Mathworks in	1984
• A	programming	language	for
–Matrix	manipulations
– Plotting	for	visualization
– Implementation	of	algorithms
– User	interfaces
– Integration	with	other	languages,	including	C/C++,	
Java,	Python,	and	Fortran

CS3330	Scientific	Computing 2

History	of	Matlab
• Prof.	Cleve	Moler,	at	University	of	New	
Mexico,	started	developing	Matlab in	1980’s

• Goal	was	to	allow	people	to	use	LINPACK	and	
EISPACK	without	knowing	Fortran

CS3330	Scientific	Computing 3
The authors of LINPACK:
Jack Dongarra, Cleve Moler, Pete Stewart, and Jim Bunch in 1978.

Cleve Moler

Commercialization

• John	Little	rewrote	Matlab in	C	and	funded	
Mathworks in	1984

• Switch	to	LAPACK	in	2000
• Huge	community,	check	Mathwork Central

CS3330	Scientific	Computing 4

Jack Little

Evolution	of	Matlab

• Matlab is	the	dominating	numerical	
computing	environment
– can	be	extended	for	symbolic	computing	

• Initially	designed	for	matrix	computation
– Version	4	introduces	graphic	handles
– Version	5	different	data	types/arrays

• Core	matlab can	be	extended	by	various	
toolboxes	ß sold	separately

CS3330	Scientific	Computing 5

Simulink	and	Statflow

• Simulink:	discrete- or	continuous-time	
dynamic	systems
• Stateflow:	finite-state	machines	and	event-
driven	systems

CS3330	Scientific	Computing 6

Matlab,	Simulink,	and	Stateflow

• Combining	them	allow	us	to	carry	out	diverse	
tasks,	ranging	from	complex	system	
simulations	to	integrated-circuit	design

CS3330	Scientific	Computing 7

MATLABToolboxes Compiler

Simulink

Stateflow

Blocksets RTW

Coder

Appearance	of	Matlab
• Matlab 8.5	(2015a)	was	released	in	Mar	2015
• On	OSX:	Use	spolight to	launch	it,	or	find	it	in	Finder	à
Applications

• On	Windows:	find	Matlab from	start

CS3330	Scientific	Computing 8

Windows	and	Layout

CS3330	Scientific	Computing 9

Command	Window
Where	you	type	commands

Workspace
Show	all	the	variables

Current	Folder
Show	files

Matlab Commands	for	Fun

• Similar	to	SageMath,	you	type	commands	in	
the	command	window,	and	will	get	immediate	
responses

• Try	
– version
– verß including	toolboxes
– bench	

CS3330	Scientific	Computing 10

Arithmetic	Operations	and	Variables

• After	the	prompt	(>>),	type	math	formula	and	press	
enter
>>	(5	*	3.5)	/	pi
ans	=	5.5704							ß a	builtin variable,	see workspace

• Use equal (=)	to	create or update a	variable
>>	x=3/5
x	=	0.6000
>>

• Add a	semicolon (;)	at the	end	of	each line to	supress
the	answer
>>	y=4/6;
>>	

CS3330	Scientific	Computing 11

Naming	Policy	of	Variable

• The	first	character	must	be	an	English	letter,	
followed	by	letters,	numbers,	or	underscore

• The	variable	names	must	be	<	64	characters	ß
truncated	if	otherwise

• Variables	are	used	without	declaration,	and	by	
default	they	are	8-byte	double

>> whos x
Name Size Bytes Class Attributes
x 1x1 8 double

CS3330	Scientific	Computing 12

Comments
function y = mean(x,dim,flag,flag2)
%MEAN Average or mean value.
% S = MEAN(X) is the mean value of the
elements in X if X is a vector.
% For matrices, S is a row vector containing
the mean value of each
% column.
% For N-D arrays, S is the mean value of the
elements along the first
% array dimension whose size does not equal
1.
%
.....

CS3330	Scientific	Computing 13

Vectors	and	Matrices

• Variables	can	also	be	vectors	and	matrices

>> s = [1, 2, 3, 5];

>> s * 2.5 / 12

ans = 0.2083 0.4167 0.6250 1.0417

CS3330	Scientific	Computing 14

Matrix	Operations

• Update	a	matrix	element
• Append	one	more	element
• Delete	an	element

>> s(2)=999
s = 1 999 3 5
>> s(5)=123
s = 1 999 3 5 123
>> s(2)=[]
s = 1 3 5 123

CS3330	Scientific	Computing 15

2-Dimensional	Arrays

• To	create	a	2-D	array,	add	a	semicolon	(;)	after	
each	row

>> a = [1, 2, 3; 4, 5, 6]
a =

1 2 3

4 5 6

CS3330	Scientific	Computing 16

2-Dimensional	Array	Operations

• Update	a	specific	array	element
>> a(2, 1)

ans = 4
>> a(2,1)=999

a = 1 2 3

999 5 6

• Store	a	row	of	an	existing	array	and	store	it	in	
a	different	variable

>> b = a(2,1:3)

b = 999 5 6

CS3330	Scientific	Computing 17

2-Dimensional	Array	Operations	
(cont.)

• Combine	two	arrays,	notice	the	;
>> c=[a;b*2]
c = 1 2 3

999 5 6
1998 10 12

• Remove	the	second	column,	:	means	whole	
column	(or	row)

>> c(:,2)=[]
c = 1 3

999 6
1998 12

CS3330	Scientific	Computing 18

2-Dimensional	Array	Operations	
(cont.)

• Add	one	more	column	in	an	array
>> c=[c(1,:), 10; c(2,:), 20; c(3,:), 30]
c = 1 3 10

999 6 20
1998 12 30

• Remove	two	columns
>> c(:,[1, 3])=[]
c =

3
6

12

CS3330	Scientific	Computing 19

2-Dimensional	Array	Operations	
(cont.)

• Transpose	a	matrix
>> c‘
ans =

3 6 12

• Exercise,	explain	what	does	the	following	
command	do	ß help	is	your	friend…

>> a=magic(12); b=a([2 5 3], [1 4])

b = 13 16
96 93

25 28

CS3330	Scientific	Computing 20

Popular	Functions
• Figure	out	what	do	the	functions	do
– abs(x)
– sin(x)
– exp(x)
– log(x)
– min(x)
– max(x)
– sort(x)
– sum(x)
– mean(x)

• Pass	a	matrix,	say	magic(5)	into	each	of	the	function	
and	figure	out	what	happens

CS3330	Scientific	Computing 21

For	Loops

for	i =	[vector]
commands

end
• Each	iteration,	i is	assigned	with	a	new	value,	
and	commands	are	executed

>> for i = [100, 150, 200]
disp(i)
end

100
150
200

CS3330	Scientific	Computing 22

While	Loops

While	expression
commands

end

>> i=0; while i < 3; disp(i); i=i+1;end

0

1

2

CS3330	Scientific	Computing 23

Conditional	Executions

If	expression
commands

else
commands

end

>> if 100 > 2; disp('true'); else; disp('false'); end
true
>> if 100 < 2; disp('true'); else; disp('false'); end
false

CS3330	Scientific	Computing 24

M	Files

• M	files	are	for	Matlab
• There	are	two	kinds	of	M	files:	scripts	and	
functions

• Scripts:	all	variables	are	stored	in	workspace
• Functions:	only	input	and	output	variables	are	
connected	to	the	workspace;	other	variables	
are	thrown	away	after	executions

CS3330	Scientific	Computing 25

Script	File	Example
%	segment	a	bookshelf	picture	into	multiple	racks.....
%	note	that	we	didn't	implement	the	landscape/portrait	modes..
%	We	save	a	region	for	the	second	phase:	book	segmentation

url =	'file:///Users/cheng-hsinhsu/work/dt/asset/src/image/30724732f03_o.jpg';
pic	=	imread(url);
picg =	rgb2gray(pic);

d_theta =	10;	%	degree	deviation	threshold	is	acceptable..
d_xy =	50;				%	filter	out	closeby lines

picedge =	edge(picg,'canny');
[pichough,	theta,	rho]	=	hough(picedge);
peaks	=	houghpeaks(pichough,	100,	'Threshold',	0.5	*	max(pichough(:)));
lines	=	houghlines(picg,	theta,	rho,	peaks,	'FillGap',	20,	'MinLength',	100);
…...

CS3330	Scientific	Computing 26

Function	File	Example
%	LOWPASSFILTER	- Constructs	a	low-pass	butterworth filter.
%
%	usage:	f	=	lowpassfilter(sze,	cutoff,	n)
%	
%	The	frequency origin of the returned filter is at the corners.
%
%	See	also:	HIGHPASSFILTER,	HIGHBOOSTFILTER,	BANDPASSFILTER
%

function	f	=	lowpassfilter(sze,	cutoff,	n)

if	cutoff	<	0	|	cutoff	>	0.5
error('cutoff	frequency	must	be	between	0	and	0.5');
end

......
f=abs(x*y);

......

CS3330	Scientific	Computing 27

Scripts	versus	Functions

• Scripts	store	all	the	variables	in	workspace	à
easier	to	check	and	manipulate	their	values

• Functions	offer	better	encapsulation	à don’t	
need	to	worry	about	overwriting	variables	in	
workspace	

• Recursive	function:

CS3330	Scientific	Computing 28

function	out=fact02(n)

if	n==1
out=1;
return

end
out=n*fact02(n-1);

Search	Path

• path:	display	the	current	path	setting
• which:	figure	out	where	is	a	specific	function
• addpath:	add	a	new	path	into	the	search	
paths

• rmpath:	remove	a	path	from	the	search	paths	

CS3330	Scientific	Computing 29

Variables	in	Workspace

• who:	list	all	the	variables	in	workspace
• whos:	list	details	about	the	variable	in	workspace
• clear:	clean	up	the	workspace	variables
– Default	is	clear	all	variables,	or	you	may	specify	a	
specific	variable

• save:	save	variables	into	a	file
– save	ß save	all	variables	to	matlab.mat binary	file
– save	filename	x,	y,	z	ß save	variables	x,	y,	z	to	
filename.mat

CS3330	Scientific	Computing 30

Quit	Matlab

• exit
• quit
• or	just	close	the	window

CS3330	Scientific	Computing 31

Opensource Alternative

• GNU	Octave	[from	https://www.gnu.org/software/octave/]

– is	a	high-level	interpreted	language,	primarily	
intended	for	numerical	computations

– provides	capabilities	for	the	numerical	solution	of	
linear	and	nonlinear	problems,	and	for	performing	
other	numerical	experiments

– provides	extensive	graphics	capabilities	for	data	
visualization	and	manipulation

– can	also	be	used	to	write	non-interactive	programs
– is	quite	similar	to	Matlab so	that	most	programs	are	
easily	portable

CS3330	Scientific	Computing 32

Matlab #1 Homework	(M1)

1. (1%)	Write	a	one-line	MATLAB	statement	for	
the	following	short	questions:
– Delete	columns	1	and	4	from	matrix	A
– Change	element	2	of	vector	X	by	multiplying	it	by	5
– Swap	column	2	and	3	of	matrix	A
– Extract	row	3,	1,	and	5	of	matrix	A	and	assign	them	

to	matrix	B

CS3330	Scientific	Computing 33

Matlab #1 Homework	(M1)	(cont.)

2. (2%)	We	learned	the	extended	Euclidean	
algorithm	when	introducing	SageMath.	
Reimplement a	Matlab version	of	it.	You	must	
use	recursive	calls,	or	you	won’t	get	any	point.	

CS3330	Scientific	Computing 34

