Matlab 13: Data Fitting and
Regression Analysis

Cheng-Hsin Hsu

National Tsing Hua University
Department of Computer Science

Slides and sample codes are based on the materials from
Prof. Roger Jang

CS3330 Scientific Computing



What is Data Fitting

_— -

* For a set of data, both inputs and outputs,
construct a mathematical model to
approximate the outputs given the inputs

— Single input: e.g., height 2 weight

— Multiple inputs: e.g., height, sex, and body-fat
percentage =2 weight

* Ways to derive the mathematical models, e.g.,
— Single input: curve fitting
— Two inputs: surface fitting



Regression Analysis

 Statistical process to perform data fitting,

including modeling and analyzing variables
(inputs and outputs)

* Linear regression: linear models
* Non-linear regression: non-linear models

0.35

.

151 e 0.30 1 Vinax

) - o 0.254
| - "‘.'c E
10¢ o = 0.20
» - - 9
* g 0.15
(¥
(0
0.10
Km
0.05 4
26 .10 10 20 30 40 50 60 0.00 £

0 1000 2000 3000 4000
CS3330 Scientific Computing Substrate concentration 3



Data Fitting: Census Dataset
— e -
* The file census.mat contains U.S. population
data for the years 1790 through 1990
* Load it into Matlab, using
— load census

— observe the variables: cdate (years) and pop
(population in millions)

* Plot the data points
— plot(cdate, pop, '0');
— xlabel('Year'); ylabel('Population (millions)')




Model Selection

_/

//

e By visual inspection, we may choose to fit the
dataset to a quadratic function

— y:f(X;aoaalaaz) = d _I_alx_l_azx2

250 T T T T U

— X is the input )
— vy is the output °
— ap,—a, are model 5l h
parameters 3 o
* Goal: the best parametérs o
to minimize the deviatiq o

O 1
1750 1800 1850 1900 1950 2000
CS3330 Scientific Computing Year 5



/,

Objective Function for Data Fitting

\

—

* Objective func.: Sum of mean-squared errors

Dataset (x, y;) fori=1, 2, ..., 21; the outputis y.
when the input is x;

Modeled output is: f(x;a..a,a,)=a,+ax +ax;

Squared error: [y - r(x)f

Now we can write the objective function as:

E(a,,a,,a,)= E[yi - f(x,)

21

]2 = E[Yi - (ao tax; + azxiz)]z

i=1



Minimizing the Objective Function

e

//

* Note that E(...) is a function of a,, a,, 3,

* Find the partial derivative of E(...) wrt a,, a,,
a,, and then set them to zero for the extreme

values

oEF  OF

aE [ ] [ )
. - are linear functions
a, » Oa, » Oa,

e Setting them to be zeros, we get a system of
three linear eugations with three unknowns

* Solving the system leads to optimal solution



Matrix Representation

* Consider the 21 data points, puttmg them into
the quadratic function gives ao+ax1+a2x1 =)

a, +ax, + a2x2 =)

2
(y T a1 Xy A, X, =)y

* Written in matrices | | x xlz ~ -y
2 || %o
— Parameters are @ 1 x. x ¥,
2 2 al —
> | L%
b oxy X =7 D
- ~ _J %7_/

A
CS3330 Scientific Computing 8



Data Fitting in Matlab

_— -

* Observation: We have 3 parameters but 21
sample points €< Most likely there is no
“perfect” model parameters for all 21 points

* |nstead, we search for an optimal §* to

minimize the difference at the two side of the
equality

— Minimizing the sum of squared error (SSE)

E®)=|b— 46| = (b—40)" (b— 46)



Solving Systems of Linear Equations
i S I
 Tosolve A9 = b, we use theta = A\b in

Matlab

— If A is scalar, then A\b is the same as A.\b

—If Aisnxnandbisnx1, then A\b gives the
unique solution, if exists

—IfAismxnandbisnx1, where m>=n, then A\b
gives the least-squares solution

CS3330 Scientific Computing 10



Data Fitting Example

load census.mat

A = [ones(size(cdate)), cdate, cdate.*2];
b = pop;

theta = A\b;

plot(cdate, pop, '0', cdate, A*theta, '-');
legend('Actual’, 'Estimated’);
xlabel('Year');

ylabel('Population (millions)');

CS3330 Scientific Computing 11



Data Fitting Results

S 4_JI-IIIIIIIIII---IIII.-....-..-.-...-r;, 4_____;——*”’

* We know g7 _[4 a.a ] =[21130,—23.51,0.00654]

* Then, our model is
Y= f(x)=a, +ax +ax* = 21130 - 23.51x + 0.00654x° —

200 -

s)

150 |-

n (million

Populatio
>
o

2000

0 1 1 1
53330 Sciedfffic ComputiAF® feso 100 1950 o,



Forward Slash is Similar

mrdivide, /
Solve systems of linear equations xA = B for x

Syntax

x = BfA

X = mrdivide (B,A)

Description

x = 2/nsolves the system of linear equations x*A -~ 2 for x. The matrices & and 2 must contain the same number of columns. MATLAB® displays a
warning message if & is badly scaled or nearly singular, but performs the calculation regardless.

« IfAis ascalar, then 2/ is equivalentto 2. /A,
= IfAis a square n-by-n matrix and =2 is a matrix with » columns, then x = 2/ s a solution to the equation x*~ - 2, ifit exists.

« If2is arectangular m-by-n matrix withm -~= n, and 2 is a matrix with n columns, then x = 2/ returns a least-squares solution of the system of equations

X*A = B.

x = mrdivide (2,A) IS an alternative way to execute x = 2/2, butis rarely used. It enables operator overloading for classes.

CS3330 Scientific Computing 13



Estimate the Populations

— \ —_—

Predict the populations using the derived

model
— t=2010; pop2010 =[1, t, t"2]*theta
— t=2014; pop2014 = [1, t, t"2]*theta !

U.S. Populatlon by Nativity: 2014 to 2060
(Population in millio

- p0p2014 - 313.0710 I Native born [l Foreign born  —s— Percent foreign born

416.8

CS3330 Scientific Computing 2014 2020 2030 2040 2050 14 2060
Source: U.S. Census Bureau, 2014 National Projections.



Polynomial Fitting

* Generalization of quadratic functions

* y=f(x)=a,+ax+--+ax"

 Matlab offers two commands for polynomial
fitting
— polyfit: finding the best model parameters
— polyval: evaluate the value for a given model

CS3330 Scientific Computing

15



Using Polyfit and Polyval

* For the same tasks, polyfit/polyval lead to
more readable code

load census.mat

theta = polyfit(cdate, pop, 2);
polyval(theta, 2000)
polyval(theta, 2014)

CS3330 Scientific Computing 16



More Accurate Data Fittings?

400 T T T I I

[ data
Census °© degree =1
degree =2
350 - degree = 3 p
degree =4
degree =5
degree =6
300 |- degree =7
degree =8
250 - -
200 -
150 -

Overfitti

100

1900 1920 1940 1960 1980 2000 2020

CS3330 Scientific Computing 17



Model Complexity and Accurac

 Selection of models is crucial

— More complexity models (more parameters) lead
to smaller sum of squared errors

— Extreme case in polynomial, if the order is the
same as the number data points, we may even
have zero squared errors

— But our model may faithfully reproduce
randomness and noise! =2 less accurate

* Known as over-fitting

CS3330 Scientific Computing 18



Overfitting

— —_—

e When the model describes the randomness
and noise rather than the actual relations

e Possible solution: K-fold cross validation

<«4— Total Number of Dataset ———p

Experiment 1

Experiment 2

Training

Experiment 3

Validation

Experiment 4

Experiment 5

CS3330 Scientific Computing 19



Multiple Inputs Single Output

e Mathematical model:

y=f(x)=6(x)+06,f,(x)+---+6,1,(x)
* xisinput,yis output, 81,605, -0, are
model parameters

* f.(x),i=1---n are known functions, called basis
functions

* x,y)i=1-m are the sample data or training
data

CS3330 Scientific Computing 20



Matrix Representation

 What we have
( n=rx)=06/x)+0,/,(x)+-+06,1,(x)

V= f(x,)=0f(x,)+6,/,(x )++6,f,(x,)

* |n matrix representation
_f1(X1) fn(Xl)_ d M

LN&E) o L&)]a ] L,

~ e — [(—
A 0 b

CS3330 Scientific Computing 21



Sum of Squared Error

* Since p>; (number of data points is more
than number of parameters), we need to add
an error vector e, sothat : 40+e=>b

* Squared error: E@®)=|e[ =e’e=(b—40)" (b—46)
e Optimal solutions

— Partial derivative of E(6) Wrt g and set it be zero
for a system of n linear equations with n
unknowns



Least-squares Estimate

/ \

* Derivation of LSE

E®)=(406-b) (46 -D)
=(874" -b" 40 -D)
~074740-08"Ab—b" 40 +b"b
=0"4"46-206"4'b+b'b

VoE(0)=V,(0" 4’ 48-26" 4"b+b"b)

=24746-24"b
VoE@)=0= 4 AB=A"b =8 =(4"4) A"

Normal equation

Pseudo inverse of A




Least-squares Estimate (cont.)

e Optimal solutions

— Using matrix operations, the optimal solution can
be written as (47 4)" 4™

— Matlab’s backslash can also be used g§-= 4\p

e Backslash adopts some variations of the
optimal solution ( (474)' 4™ ) based on the
properties of A for more stable and accurate
results

CS3330 Scientific Computing 24



Geometric View of Least Squared Error

e

\ ——

 Derivation of LSE via geometric view

< Ax+e=b<ax+a,y+e=D>b

al (a,f+a,9-b)=0
al(ax+a,p-b)=0

= A" (4% -b)=10
= ATA%=A"b= 3 =(4"4) 4"b
—> Best projection = AX = A(ATA>_1 A'b

\

Y

Pseudo inverse of A




Example of Surface Fitting (1/6

/

* Recall that peaks gives a surface with 3 local
minimums and 3 local maximums

f “3"\\\&\“

A
1\

I\
DY

e Let s cheat, and assume that we know peaks is
generated using this function:

z=3(1- )c)ze—xz—(yﬂ)2 _ 10(% —x’ =y jexzy - % g (Y’



Example of Surface Fitting (2/6

e

* That 1s, we assume the basis functions are known;
in addition, we assume that training data contain
zero-mean unit-variance (Gaussian noise

* So our training data can be written as

z = 3(1-x) e —10(%-363 —ysjexzy2 —%e‘("”)z_yz +n

= 3f1(x,y)—10f2(x,y)—%e_(“l)z_y2 +n
= 0,/,(x,y)+0,f,(x,y)+0,f,(x,y)+n

— where 6, 6, ,and 0, are unknowns and n is the Gaussian
noise



e

Example of Surface Fitting (3/6

e Let s generate some training data:

pointNum = 10;

[XX, VY, zz] = peaks(pointNum);
zz = 7z + randn(size(zz));
surf(xx, vy, zz);

axis tight

* Notice that the resulting surface of training data is
quite different from the original one generated by
peaks € but we will still figure out the unknowns



Example of Surface Fitting (4/6

e

e Let s use the assumed basis functions to find the

best 6, 6, , and 0,

pointNum = 10;
[XX, VY, zz] = peaks(pointNum);
zz = 7z + randn(size(zz))/10;

X = xx(:); theta =

y = vyy(:); 3.0021
z =27z(:); -0.9764
A = [(1-x)."2.*exp(-(x.N2)-(y+1).72), (X/5-x."3- -0.4387

V.A5). *exp(-x.N2-y."2), exp(-(x+1).12-y.~2)];
theta = A\z % The backslash trick!

. 1
— The resulting theta values are close to (3, - 10, —gj

— Run 1t multiple times, what you observe? Why?



Example of Surface Fitting (5/6

—

e Let s next plot the derived model surface

pointNum = 10;

[XX, VY, zz] = peaks(pointNum);

zz = 7z + randn(size(zz))/10;

X =xx(:); Yy = yy(:); z = zz(2);

A = [(1-X)."2.*%exp(-(x.N2)-(y+1).22), (X/5-X.~3-y.N5). *exp(-x.N2-y."2), exp(-
(X+1).M2-y.~2)];

theta = A\z;

pointNum = 64;

[xX, Yy] = meshgrid(linspace(-3, 3, pointNum), linspace(-3, 3, pointNum));

x = xx(:); y = yy(:);

A = [(1-X)."2.*%exp(-(x.N2)-(y+1).22), (X/5-X.~3-y.~5). *exp(-x.N2-y."2), exp(-
(X+1).M2-y.~2)];

zz = reshape(A*theta, pointNum, pointNum);

surf(xx, vy, zz);

axis tight




Example of Surface Fitting (6/6 )

* The resulting surface follows the original peaks function
closely

* The least-squared fitting works when 1f
— The basis functions are correct € our assumption #1

— The noise term follows Gaussian distribution € our assumption
#H2

/

/

/

///l[, Q ¢ ‘
”/;/,:'o:o:
PN \ Wy, "0“‘\\ N\
: \
t“\\\
///, ‘\\\\

/

/

/

\ /

' ' '
@ o N N o N S [} (¢4
/



Non-Linear Regression

e

* Nonlinear regression is harder because

— Cannot find the optimal solution 1n one step (analytic or
closed-form solution) < iterative approaches?

— May not even know where 1s the optimal solution
— Have to leverage non-linear optimization algorithms

— Usually don' t have clear mathematic properties

e Mathematically, we write the model ag =/ (* ,0)

— Where X is the input vector, @ is the vector of non-
linear functions, and vy 1s the output vector

— The total squared error is: E(0) = i[y,- -/ (561,67)]2



Minimizing the Error

* Apply mathematic optimization algorithms to
minimize the error E£(6) (objective function)

— Gradient Descent

— Simplex Downhill Search< adopted by fminsearch

X

e Example of math model: y=ae" +a,e

— Where a,, a, are linear parameters, but A,, A,are

nonlinear >

E(a,,a,,A,A,) = Z (yl. — alel‘x" + aze%x2 )
— Total squared error =

— Goal: write E() as a function of a;, a,, A;, A,; then
minimize E(.)



Example of fminsearch (1/3)

e (Create a function: errorMeasurel.m

function squaredError = errorMeasurel(theta, data)

X = data(:,1);

y = data(:,2);

y2 = theta(1)*exp(theta(3)*x)+theta(2)*exp(theta(4)*x);
squaredError = sum((y-y2).72);

* theta is the vector of all parameters, containing a,,

a,, Ay, A,
* data are the training data points

* return value is the total squared error



Example of fminsearch (2/3)

load data.txt

thetaO = [0 0 0 0];

tic

theta = fminsearch(@errorMeasurel, thetaO, [], data);
fprintf('running time = %g\n’, toc);

X = data(:, 1);

y = data(:, 2);

y2 = theta(1)*exp(theta(3)*x)+theta(2)*exp(theta(4)*x);
p|0t(X, Y, 'roll X, yzl 'b_');

legend('Sample data’, 'Regression curve');

fprintf("total squared error = %d\n', sum((y-y2).72));




—

L T T

Example of fminsearch (3/3)

running time = 0.0435498
total squared error = 5.337871e-01

— The fitted curve is created by fminsearch

— fminsearch implements Simplex Downhill Search
algorithm

— We use it to find the minimum value of E(.) for
optimal theta values



Enhancing the Above Algorith

e

A

7 azeﬂgx

* We treat all parameters in Y = a,€
as nonlinear parameters!

« Hybrid method: uses different algorithm for
linear and non-linear parameters

— Linear parameters: use least squared error, or backslash
— Non-linear parameters: use Simplex Downhill Search <
fminsearch
* Why hybrid? Number of variables for fminsearch is
largely reduced from 4 to 2



Example of Hybrid Approach (1/3)

e

e

e New error measure function: errorMeasure2.m

function squaredError = errorMeasure2(lambda, data)
X = data(:,1);

y = data(:,2);

A = [exp(lambda(1)*x) exp(lambda(2)*x)];

a = Aly;

y2 = a(1)*exp(lambda(1)*x)+a(2)*exp(lambda(2)*x);
squaredError = sum((y-y2).72);

— lambda are the vector nonlinear parameters

— other aspects are not changed



Example of Hybrid Approach (2/3)

e

e

load data.txt

lambda0 = [0 0];

tic

lambda = fminsearch(@errorMeasure2, lambda0, [], data);
fprintf(‘running time = %g\n’, toc);

X = data(:, 1);

y = data(:, 2);

A = [exp(lambda(1)*x) exp(lambda(2)*x)];

a = Aly;

y2 = A*a;

plOt(X, Y 'roll X, yz/ 'b'l);

legend('Sample data’, 'Regression curve');
fprintf(‘total squared error = %d\n', sum((y-y2)."2));




Example of Hybrid Approach (3/3)

//

running time = 0.0363858
total squared error = 1.477226e-01 |

— Smaller total squared error and shorter running time



Transformation

_— —

 Approach: Let’s transform a nonlinear math model
into a linear one!

e Consider a sample function y = ae™
* Take a natural log, we have lny =1Ina + bx

e Let s consider In(@a) and b as our parameters, since
they are linear, we can apply least squared error
algorithm

load data2.txt

x = data2(:, 1);

y = data2(:, 2);

A = [ones(size(x)) X];




Data2.txt

\

0.0000000e+000 4.8294773e+000

1.0000000e-001
2.0000000e-001
3.0000000e-001
4.0000000e-001
5.0000000e-001
6.0000000e-001
7.0000000e-001
8.0000000e-001
9.0000000e-001
1.0000000e+000
1.1000000e+000
1.2000000e+000
1.3000000e+000
1.4000000e+000
1.5000000e+000
1.6000000e+000
1.7000000e+000
1.8000000e+000
1.9000000e+000
2.0000000e+000

4.1213066e+000
3.3910515e+000
2.7342027e+000
2.2642898e+000
1.6556118e+000
1.3557419e+000
1.3149045e+000
9.8602581e-001

6.6333465e-001

6.4488254e-001
4.7438692e-001
5.2266978e-001
3.6716688e-001
3.3645444e-001
2.9958098e-001
1.0095206e-001
1.7680898e-001
1.2498356e-001
1.8077775e-001
2.7990727e-001

CS3330 Scientific Computing

42



Example of Transformation (1/2)

/,

theta = A\log(y);

subplot(2,1,1)

plot(x, log(y), '0', x, A*theta); xlabel('x"); ylabel('In(y)");
title("In(y) vs. x);

legend('Actual value', 'Predicted value');

a = exp(theta(1))

b = theta(2)

y2 = a*exp(b*x);

subplot(2,1,2);

plot(x, y, '0', x, y2); xlabel('x"); ylabel('y");
legend('Actual value', 'Predicted value');

title('y vs. x);

fprintf(‘total squared error = %d\n', sum((y-y2).72));

a =4.3282

b =-1.8235
total squared error = 8.744185e-01




Example of Transformation (2/2)

e

The top figure 1s In(y) on x
The bottom figure 1s y on x

After transformation, the least
squared approach gives the

minimum of: m

E'= Z(lnyl. —Ina—bx,)

i=1

Not the original one:

E=(y —ae™ |
i=1

. . 9 b
Minimum E  doesn

e

t mean
minimum E; but they should be
close! €< what if we are picky?

In(y) vs
2 . T T T
~ Qg O  Actual value
1L Q. i I
Predicted value
0 O
O o—
1 © QO
L ©—Q
o 9
3 r r r r r L t . s
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X
y VS. X
5 T T T
. O  Actual value
= Predicted value ||
@]
Sk @)
Q.
2L
1k To—
O—O—g_ il
0 r r o @rw@i@**@*@’*

0

r r r r
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

X



Revised Transformation (1/3)

e

/,

* If we really want to get the minimum E value, we can
use the results from the transformation approach as
the starting point, and the invoke fminsearch

e The error function looks like this

function squaredError = errorMeasure3(theta, data)
if nargin<1; return; end

X = data(:,1);

y = data(:,2);

y2 = theta(1)*exp(theta(2)*x);

squaredError = sum((y-y2).72);




| Revised Transformation (2/3)

e

/,

load data2.txt

x = data2(:, 1);

y = data2(:, 2);

A = [ones(size(x)) x];

theta = A\log(y);

a = exp(theta(1))

b = theta(2)

thetaO = [a, b];

theta = fminsearch(@errorMeasure3, thetaO, [], data2);
X = data2(:, 1);

y = data2(:, 2);

y2 = theta(1)*exp(theta(2)*x);

plot(x, y, '0', x, y2); xlabel('x"); ylabel('y");
legend('Actual value', 'Predicted value');

title('y vs. x);

fprintf("total square error = %d\n', sum((y-y2).”"2));

total square error = 1.680455e-01



Revised Transformation (3/3) %

e

//

VS. X
5 y T

1 1 1 1 1 1 1 I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

s The resulting error 1s smaller than the ordinary
transformation approach



Mapping for Transformation (1/3)

e

No. Nonlinear Model |Transformed Model Parameters
ax 1_11.5 1 B
1 V= ax a a=—,b="~—
1+bx y a p
1
2 y: a _:lx+é :l bzé
b Yy a a a 5
X+ T T F 04 04
2
3 y: ax l:lx+b_l a:l b2:£
P ab’ |2 4 ax ¢ " a




I I I QAU I |
|l |l T T
ba ba T T
ﬁ ﬁ « «
L ) — _ Sag _ Q
|l |l I I
S S S S
S
Se | 27 ] LS =) e
in - — = +
= - Q| I} v_A
(- SRS _ | | \Y
N I L Q| I}
] yi . J .
™ —
M@Y NI, S _eT‘
— IS L
= \.w/
< < +
= g + .
3 N I N
__ — % _
. I X T
-~ I S
~ >~ =
<t o) Ne} e~

Mapping for Transformation (2/3)



Mapping for Transformation (3/3)

2 2 2
X b 15
: _2+y_2=1 y=—satbl| @ = 0= p
a b ¥ 4 p a
y: a:exp(;/—%J
x—cY || ——ix2+§x+lna—i !
9 aexplZ—( j :l Se/ARY b b b=t~
Y —— -
p y C:_ﬁ
2a
y= 2 a—+—4a b—2—a
10 a Rl IR .
Yy, & 4. 4 4
\/(1+bx2)2+c r ¢ / ! c= ;27—1




Circle & Ellipse Fitting

e

* Circle fitting

* Ellipse fitting

[ 2

=

X+ 0

Xi TV

(x—a) +(y-b) =
=x" —2ax+a’+y’ —2by+b’ =¢’
= 2ax+2by+c’—a’-b*=x"+y°
_ . _
=[2x2y1 b = x>+’
C2_a2_b2
2x, 2y, 1
: : i a |
=|2x, 2x, 1 b =
: : ¢’ —a’-b’ |
| 2x, 2y, 1]

2 2
X, )]




Curve Fitting Tool (1/4)

e

e

* Curve fitting steps
— Observe the data points, remove the outliers
— Based on the data points and select mathematical models
(and maybe parameters)
— Using linear and nonlinear regression to derive the
optimal parameters based on a set of training data

— Use a set of test data to validate the quality of the
derived model; if passes then stop, otherwise, try a
different model and go back to step 2



Curve Fitting Tool (2/4)

_—

 The above steps takes time and extensive
experience

e Curve fitting toolbox allows Matlab users to
perform curve fitting in GUI and quickly check the
fitting results and quality



Curve Fitting Tool (3/4)

e

_—

 Example: first load enso.mat, which has two
parameters
— Month: the month when the measurements were taken

— Pressure: the air pressure between Easter Island and
Darwin € some how this affects the Trade Winds in the
South Hemisphere

 Load and launch the curve fitting toolbox

load enso.mat
cftool(month, pressure);




Curve Fitting Tool (14)

/

[ NN ) Curve Fitting Tool

File Fit View Tools Desktop Window Help

xa o [l RSO A B o =

: | untitled fit1 | + |
Fit name:  untitled fit 1 Sum of Sine 2] Auto fit
X data: month B Number of terms: | 8 B Fit
Y data: pressure Equation: al*sin(bl*x+cl) + ... + a8*sin(b8*x+c8) Stop

| Center and scale
Z data: (none)
Fit Options...

Weights: (none) B

Results
General model Sin8: . pt:\e;si‘:;eﬁv;ijrmm

f(x) =
al*sin(bl*x+cl) + a2*s
a4*sin(b4*x+c4) + a5*s
a7*sin(b7*x+c7) + a8*s

Coefficients (with 95% confidence b ;
al = 17.75 (-3.992e+05, 3 8
bl = 0.02088 (-220.9, 221) e
cl= -0.2148 (-1.781e+04,
a2 = 8.27 (-3.855e+05, 3.
b2 = 0.03866 (-475.8,475.¢
2= 1.468 (-3.952e+04, 3
a3 = 3.152 (2.675, 3.629)
0 20 40 60 80 100 120 140 160
month
Table of Fits ®
Fit name 4 Data Fit type SSE R-square DFE Adj R-sq RMSE # Coeff Validation D... Validation SSE Validation R...

untitled ... pressure v... sin8 643.7456 0.6721 144 0.6197 2.1143 24




Matlab #12 Homework (M12)

(3%) In this exercise, you need to write a MATLAB function that can select
the order of a fitting polynomial based on the leave-one-out criterion
described in the text. More specifically, you need to write a function
polyOrderSelect.m with the following input/output format:
bestOrder=polyOrderSelect(data, maxOrder, showPlot)
where

— "data" is the single-input-single-output dataset for the problem. The first row is
the input data, while the second row is the corresponding output data.

— "maxOrder" is the maximum order to be tried by the function. Note that
maxOrder should not be greater than size(data,2)-1. (Why?)

— "showPlot" is an option for plotting. If it is 1, the function plots the training and
validating RMSE with respect to the order. Otherwise there is no plotting.

— "bestOrder" is the order that generates the minimum validating RMSE.

Please use your function on the population dataset.



Matlab #12 Homework (M12) cont.

P \ —  _  —

Your first figure may look like this:

90

80

Validating RMSE
—<— Min. of validating RMSE

70

60 -

50

RMSE

40+

30+

20+

10+

| 1 | | | | | |
0 2 4 6 8 10 12 14 16 18
Orders of fitting polynomials

CS3330 Scientific Computing 57



Matlab #12 Homework (M12) cont.

e

//

From the plot, you can observe that the training RMSE
sometimes goes up when the order increases. This is not
quite right, since as we have a higher order (which implies
more model complexity and larger modelling power), the
fitting error should be smaller.

Solution: Apply some form of normalization

1. Convert the input data to have zero sample mean and
unit sample variance.

2. Scale the input data to be within [0, n], where nis a
small integer.

3. Scale the input data to be within [-n, n], where n is a
small integer.




Matlab #12 Homework (M12) cont.

J— e, —

Now apply one of the normalization approach to
your training dataset, and replot the figure. Please
write a short report to discuss what is the best order
of polynomials your program has found.

Please submit the following files in ILMS without

compressing them:
— Your .m file
— Your .eps file of the final figure
— Your .pdf report



