
Matlab 12:	Performance Evaluation 

of Classifiers

Cheng-Hsin Hsu
National	Tsing	Hua	University

Department	of	Computer	Science

Slides	are	based	on	the	materials	from	Prof.	Roger	Jang	

CS3330	Scientific	Computing 1



Introduction	to	Performance	
Evaluation

• Performance	evaluation:	An	objective	
procedure	to	derive	the	performance	
index	(or	figure	of	merit)	of	a	given	model

• Typical	performance	indices
– Accuracy

• Recognition	rate:	↗
• Error	rate:	↘
• RMSE	(root	mean	squared	error):	↘
• R-square	↗

– Computation	load:	↘



• Sets	of	synonyms	to	be	used	
interchangeably	(since	we	are	focusing	on	
classification):
– Classifiers,	models
– Recognition	rate,	accuracy
– Training, design-time
– Test,	run-time

Synonyms



Performance	Indices	for	Classifiers

• Performance	indices	of	a	classifier
– Recognition	rate

• How	to	have	an	objective	method	or	procedure	to	derive	it

– Computation	load
• Design-time	computation	(training)
• Run-time	computation	(test)

• Our	focus
– Recognition	rate	and	the	procedures	to	derive	it
– The	estimated	accuracy	depends	on

• Dataset	partitioning
• Model	(types	and	complexity)



Methods	for	Performance	Evaluation

• Methods	to	derive	the	recognition	rates
– Inside	test	(resubstitution accuracy)
– One-side	holdout	test
– Two-side	holdout	test
– M-fold	cross	validation
– Leave-one-out	cross	validation



• Data	partitioning:	to	make	the	best	use	of	the	dataset
– Training	set
– Training	and	test	sets
– Training,	validating,	and	test	sets

Dataset	Partitioning

Dataset

Training	set Test	set

Training	
set

Validating	
set

For	model
evaluation

For	model
construction

For	model
construction

For	model
selection

Disjoint!



Inside	Test	(1/2)

• Dataset	partitioning
– Use	the	whole	dataset	for	training	&	evaluation

• Recognition	rate	(RR)
– Inside-test	or	resubstitution recognition	rate
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Inside	Test	(2/2)

• Characteristics
– Too	optimistic	since	RR	tends	to	be	higher
– For	instance,	1-NNC	always	has	an	RR	of	100%!
– Can	be	used	as	the	upper	bound	of	the	true	RR.

• Potential	reasons	for	low	inside-test	RR:
– Bad	features	of	the	dataset
– Bad	method	for	model	construction,	such	as

• Bad	results	from	neural	network	training
• Bad	results	from	k-means	clustering



• Dataset	partitioning
– Training	set	for	model	construction
– Test	set	for	performance	evaluation

• Recognition	rate
– Inside-test	RR
– Outside-test	RR

One-side	Holdout	Test	(1/2)
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• Characteristics
– Highly	affected	by	data	partitioning
– Usually	Adopted	when	training	(design-time)	
computation	load	is	high	(for	instance,	deep	
neural	networks)

One-side	Holdout	Test	(2/2)



Two-sided	Holdout	Test	(1/3)

• Dataset	partitioning
– Training	set	for	model	construction
– Test	set	for	performance	evaluation
– Role	reversal
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Two-side	Holdout	Test	(2/3)

• Two-side	holdout	test	(two-fold	cross-validation)
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Two-sided	Holdout	Test	(3/3)

• Characteristics
– Better	use	of	the	dataset
– Still	highly	affected	by	the	partitioning
– Suitable	for	models	with	high	training	
(design-time)	computation	load



• Data	partitioning
– Partition	the	dataset	into	m	folds
– One	fold	for	test,	the	other	folds	for	training
– Repeat	m	times

M-fold	Cross	Validation	(1/3)
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M-fold	Cross	Validation	(2/3)
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• Characteristics
– When	m=2	è Two-sided	holdout	test
– When	m=n	è Leave-one-out	cross	validation
– The	value	of	m	depends	on	the	computation	
load	imposed	by	the	selected	model.

M-fold	Cross	Validation	(3/3)



• Data	partitioning
– When	m=n	and	Di =	(xi,	yi)

Leave-one-out	Cross	Validation	(1/3)
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• Leave-one-out	CV

Leave-one-out	Cross	Validation	(2/3)

Model k

( )11 ; yx!

...

...
...n

i/o 
pairs

construction

evaluation

( )22 ; yx!

( )nn yx ;!

( )kk yx ;!

n

RR
RR

n

k
k

LOOCV

å
== 1

kRR

0% or 100%!

Outside	test!



• General	method	for	LOOCV
– Perform	model	construction	n	times	è Slow!

• To	speed	up	the	computation	LOOCV	
– Construct	a	common	part	that	is	used	
repeatedly,	such	as

• Global	mean	and	covariance	for	QC

Leave-one-out	Cross	Validation	(3/3)



• Applications	of	CV
– Input	(feature)	selection
– Model	complexity	determination
– Performance	comparison	among	different	
models

• Caveat	of	CV
– Do	not	try	to	boost	validation	RR	too	much,	
or	you	are	running	the	risk	of	indirectly	
training	on	the	left-out	data!

Applications	and	Misuse	of	Cross	
Validation	(CV)



Matlab #11	Homework	(M11)	3%
• (1%)	Compare	One-side	holdout	test	and	Leave-
one-out	cross	validation.	What	are	their	pros	and	
cons?

• (2%)	Pick	your	favorite	classifier	among	the	ones	
we	have	covered,	and	train	it	against	the	Wine	
dataset.	Use	the	following	methods	to	derive	your	
recognition	rates:	(i)	inside	test,	(ii)	Two-side	
holdout	test,	(iii)	10-fold	cross	validation,	and	(iv)	
leave-one-out	cross	validation.	Compare	the	
resulting	recognition	rates	and	running	time	
among	them.		
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Questions?
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