Matlab 6: Data Fitting and
Regression Analysis

Cheng-Hsin Hsu

National Tsing Hua University
Department of Computer Science

Slides and sample codes are based on the materials from
Prof. Roger Jang

CS3330 Scientific Computing

What is Data Fitting

_— -

* For a set of data, both inputs and outputs,
construct a mathematical model to
approximate the outputs given the inputs

— Single input: e.g., height 2 weight
— Multiple inputs: e.g., height, sex, and body-fat
percentage =2 weight
* Ways to derive the mathematical models, e.g.,
— Single input: curve fitting
— Two inputs: surface fitting

Regression Analysis

e

 Statistical process to perform data fitting,
including modeling and analyzing variables
(inputs and outputs)

* Linear regression: linear models

0.35

L h
151 e 0.30 1 Vinax

* Non-linear regression: non-linear models

o
[
un

YoV ime

“-
"
:

10}

o
[
S

Reaction rate
o
e
v

Km

26 .10 10 20 30 40 50 &0 0.00 . i .
0 1000 2000 3000 4000

CS3330 Scientific Computing Substrate concentration 3

Data Fitting: Census Dataset

e

e

* The file census.mat contains U.S. population
data for the years 1790 through 1990

* Load it into Matlab, using
— load census

— observe the variables: cdate (years) and pop
(population in millions)

* Plot the data points
— plot(cdate, pop, '0');
— xlabel('Year'); ylabel('Population (millions)')

Model Selection

//

_/

* By visual inspection, we may choose to fit the
dataset to a quadratic function

— YV =f(X;aoaa1>a2) = d +a1x+a2x2

— x is the input
— vy is the output

— a,—a, are model
parameters

—

n (millions

* Goal: the best parameé‘
to minimize the deviatia

250

200 -

150 -

100

e

['S
N

10750
CS3330 Scientific Computing

/,

Objective Function for Data Fitting

\

—

* Objective func.: Sum of mean-squared errors

Dataset (x, y;) fori=1, 2, ..., 21; the output is y,
when the input is x.

Modeled output is: f(x:a,a,a,)=a, +ax, +a,x

Squared error: [y - f(x)f

Now we can write the objective function as:

E(a,,a,,a,)= E[yi - f(x,)

21

]2 = E[Yi - (ao tax; + azxiz)]z

i=1

Minimizing the Objective Function

e

//

* Note that E{...) is a function of a,, a,, a,

* Find the partial derivative of E(...) wrt a,, a,,
a,, and then set them to zero for the extreme

values

JoE J0E OF

. - are linear functions
a, , da, , da,

e Setting them to be zeros, we get a system of
three linear eugations with three unknowns

* Solving the system leads to optimal solution

Matrix Representation

* Consider the 21 data points, putting them into
the quadratic function gives [@+ax+ax =y,

2
a, +a,x, +a,x, =5,

2
Qo + A1 Xy Ay Xy =Yy

* Writteninmatrices [1 x x°|. . [»°
a
—Parametersare § |1 x, x’ || | |
a, | =
2 _a2
I Xy x| 5= |V
- ~ — —"

A
CS3330 Scientific Computing 8

Data Fitting in Matlab

_— -

* Observation: We have 3 parameters but 21
sample points < Most likely there is no
“perfect” model parameters for all 21 points

* Instead, we search for an optimal * to
minimize the difference at the two side of the
equality

— Minimizing the sum of squared error (SSE)

E(©) =|b- 46| = (b - 46)" (b - 46)

Solving Systems of Linear Equations
i = R
* Tosolve AG@ = b , we use theta = A\b in

Matlab

— If Ais scalar, then A\b is the same as A.\b

—If Aisnxnandbisnx1, then A\b gives the
uniqgue solution, if exists

—IfAismxnandbisnx1, where m>=n, then A\b
gives the least-squares solution

CS3330 Scientific Computing 10

Data Fitting Example

load census.mat
= [ones(size(cdate)), cdate, cdate.*2];
= pop;
theta = A\b;
plot(cdate, pop, '0', cdate, A*theta, '-');
legend('Actual’, 'Estimated’);
xlabel('Year');
ylabel('Population (millions)’);

Data Fitting Results

* We know ¢" =[a,,a,a,] =[21130,-23.51,0.00654]
* Then, our model is
y = f(x)=a, +ax+a,x> =21130 - 23.51x + 0.00654x° —

200 -

1 1 1
00 1850 1900 1950

0
C$3330 Scienfitic Computing Vear 12 2%

Forward Slash is Similar |

mrdivide, /
Solve systems of linear equations xA = B for x

Syntax

x = BfA

X = mrdivide (B,A)

Description

x = 2/Asolves the system of linear equations x*A -~ 2 for x. The matrices & and 2 must contain the same number of columns. MATLAB® displays a
warning message if & is badly scaled or nearly singular, but performs the calculation regardless.

« IfAis ascalar, then 2/ is equivalentto 2. /A,
= IfAis a square n-by-n matrix and =2 is a matrix with » columns, then x = 2/ s a solution to the equation x*~ - 2, ifit exists.

« If2is arectangular m-by-n matrix withm -~= n, and 2 is a matrix with n columns, then x = 2/ returns a least-squares solution of the system of equations

X*A = B.

x = mrdivide (2,A) IS an alternative way to execute x = 2/2, butis rarely used. It enables operator overloading for classes.

CS3330 Scientific Computing 13

Estimate the Populations

— \ —_—

Predict the populations using the derived

model
— t=2010; pop2010 =[1, t, t"2]*theta
— t=2014; pop2014 =[1, t, t*2]*theta roue.

U.S. Populatlon by Nativity: 2014 to 2060

(Population in millio

i p0p2014 - 313.0710 I Native bor [l Foreign bor —a— Percent foreign born

416.8

Source: U.S. Census Bureau, 2014 National Projections.

Polynomial Fitting

* Generalization of quadratic functions

* y=f(x)=a,+ax+--+ax"

 Matlab offers two commands for polynomial
fitting
— polyfit: finding the best model parameters

— polyval: evaluate the value for a given model

CS3330 Scientific Computing

15

Using Polyfit and Polyval

* For the same tasks, polyfit/polyval lead to
more readable code

load census.mat

theta = polyfit(cdate, pop, 2);
polyval(theta, 2000)
polyval(theta, 2014)

CS3330 Scientific Computing 16

More Accurate Data Fittings?

400 T T T I I
o O data
Census degree =1
degree =2
350 - degree = 3 p
degree =4
degree =5
degree =6
300 degree =7
degree =8
250
200
150
ns
100
&
50
O 1 1 1 1 1
1900 1920 1940 1960 1980 2000 2020

CS3330 Scientific Computing 17

Model Complexity and Accurac

e Selection of models is crucial

— More complexity models (more parameters) lead
to smaller sum of squared errors

— Extreme case in polynomial, if the order is the
same as the number data points, we may even
have zero squared errors

— But our model may faithfully reproduce
randomness and noise! = less accurate

* Known as over-fitting

CS3330 Scientific Computing 18

Overfitting

— —_—

e When the model describes the randomness
and noise rather than the actual relations

e Possible solution: K-fold cross validation

«4— Total Number of Dataset ———p

Experiment 1

Experiment 2

Training

Experiment 3

Validation

Experiment 4

Experiment 5

CS3330 Scientific Computing 19

Multiple Inputs Single Output

e Mathematical model:

y=f(x)=6/(x)+6,1,(x)+---+6,1,(x)
 xisinput,yisoutput, 1,05, - -0, are model
parameters

e f(x),i=1---n are known functions, called basis
functions

* (x,»)i=1--m are the sample data or training
data

CS3330 Scientific Computing 20

Matrix Representation

* What we have
o =f(x)=0/(x)+0,f,(x)+--+0 f (X))

Y =S (X)) =0 /(X)) + 0,1, (X)) +- 40, 1,(X,)

* |n matrix representation
i) e L)][] []

LA fix)][a] |,

~) I — 7
A 0 b

CS3330 Scientific Computing 21

Sum of Squared Error

* Since m>n (number of data points is more
than number of parameters), we need to add
an error vector e, so that : 40 +e=b

o Squared error: E®)=|e| =e"e=(b-40) (b- 46)
e Optimal solutions

— Partial derivative of E(9) wrt g and set it be zero
for a system of n linear equations with n
unknowns

Sum of Squared Error (cont.) |

* Optimal solutions

— Using matrix operations, the optimal solution can
be written as (474} 4p & derive later

— Matlab’s backslash can also be used = 4\b

e Backslash adopts some variations of the
optimal solution ((474]'4™») based on the
properties of A for more stable and accurate
results

Example of Surface Fitting (1/6)

—

« Recall that peaks gives a surface with 3 local
minimums and 3 local maximums

PPPPP

po ///'“‘ “\ \\\:
A0 RN

7

% 0‘"“‘:“‘ T

J
s

* Let's cheat, and assume that we know peaks is
generated using this function:

z=3(1-x)2e "0 10(% —x -y)e-xz—yz _ %e—mf—yz

Example of Surface Fitting (2/6)

—

 That is, we assume the basis functions are
known; in addition, we assume that training data
contain zero-mean unit-variance Gaussian noise

* S0 our training data can be written as

z = 3(-x)2e 0 —10(?—)63 —ys)e'xz'y2 —%e'(“”z'f +n

315 =101, 63 = e
= 0,/,(x,y)+60,1,(x,y)+6,f;(x,y)+n

— whereg,,0, ,and6, are unknowns and n is the
Gaussian noise

Example of Surface Fitting (3/6)

—

* Let's generate some training data:

pointNum = 10;

[XX, VY, zz] = peaks(pointNum);
zz = zz + randn(size(zz));
surf(xx, vy, zz);

axis tight

* Notice that the resulting surface of training data
IS quite different from the original one generated
by peaks < but we will still figure out the
unknowns

—

Example of Surface Fitting (4/6)

 Let's use the assumed basis functions to find the

best 4, 6,, and 6,

pointNum = 10;
[XX, VY, zz] = peaks(pointNum);
zz = 7z + randn(size(zz))/10;

X = xx(3); theta =

y =vyy(:); 3.0021
z =27z(:); -0.9764
A = [(1-x).M2.*exp(-(x.~2)-(y+1).22), (x/5-x."3- -0.4387

V.A5). *exp(-x."2-y.N2), exp(-(x+1).22-y.~2)];
theta = A\z % The backslash trick!

— The resulting theta values are close to (3, - 10, —é)

— Run it multiple times, what you observe? Why?

Example of Surface Fitting (5/6)

—

» Let’s next plot the derived model surface

pointNum = 10;

[XX, VY, zz] = peaks(pointNum);

zz = 7z + randn(size(zz))/10;

x = xx(:); y = yy(:); z = zz(2);

A = [(1-x).22.*%exp(-(X."2)-(y+1).22), (X/5-x.A3-y.N5). *exp(-x.N2-y."2), exp(-(X
+1).72-y.~2)];

theta = A\z;

pointNum = 64;

[xX, Yy] = meshgrid(linspace(-3, 3, pointNum), linspace(-3, 3, pointNum));

X = xxX(2); Yy = yy(:);

A = [(1-x).22.*%exp(-(X."2)-(y+1).22), (X/5-x.A3-y.N5).*exp(-Xx.N2-y."2), exp(-(X
+1).M2-y.N2)];

zz = reshape(A*theta, pointNum, pointNum);

surf(xx, vy, zz);

axis tight

Example of Surface Fitting (6/6)

e

* The resulting surface follows the original peaks
function closely

* The least-squared fitting works when if

— The basis functions are correct < our assumption #1

— The noise term follows Gaussian distribution €< our
assumption #2

/

/

/

\

\§
\\\\\R‘ 2

A “\\\\\\\\\‘}::"I//’/////,'l, NN

,////I;;/;::“\“\
TSN

/

'“0,” 7 BN
OO/ STN
e\
//;/,:‘\\\\\ \
A\

/

/

' ' '
@ o N V] o N S [} (¢4
/

\ /

Non-Linear Regression

e

* Nonlinear regression is harder because

— Cannot find the optimal solution in one step (analytic
or closed-form solution) < iterative approaches?

— May not even know where is the optimal solution
— Have to leverage non-linear optimization algorithms
— Usually don’t have clear mathematic properties

« Mathematically, we write the model as y = 7(x,0)

— Where X is the input vector, g is the vector of non-
linear functions, and vy is the output vector

— The total squared error is: E(©) = i[y,. —f(a‘c’,.,é)]2

Minimizing the Error

"

e

* Apply mathematic optimization algorithms to
minimize the errorE(8) (objective function)
— Gradient Descent
— Simplex Downhill Search< adopted by fminsearch

« Example of math model: y=ge" +a,e™*

— Where a,, a, are linear parameters, but A,, A, are
nonlinear

— Total squared error E(a,,a,,4,4,) = Z(yi - ae +ae |

— Goal: write E(.) as a function of a,, a, , A, A,; then
minimize E(.)

Example of fminsearch (1/3)

—

e

 Create a function: errorMeasure1.m

function squaredError = errorMeasurel(theta, data)

X = data(:,1);

y = data(:,2);

y2 = theta(1)*exp(theta(3)*x)+theta(2)*exp(theta(4)*x);
squaredError = sum((y-y2).72);

 theta is the vector of all parameters, containing
a; a,, N, A,

« data are the training data points
* return value is the total squared error

Example of fminsearch (2/3)

e

e

load data.txt

thetaO = [0 0 0 O];

tic

theta = fminsearch(@errorMeasurel, thetaO, [], data);
fprintf(‘running time = %g\n’, toc);

X = data(:, 1);

y = data(:, 2);

y2 = theta(1)*exp(theta(3)*x)+theta(2)*exp(theta(4)*x);
pIOt(X, Y |r0|, X, y2/ 'b'|);

legend('Sample data’, 'Regression curve');

fprintf("total squared error = %d\n', sum((y-y2).72));

Example of fminsearch (3/3)

running time = 0.0435498
total squared error = 5.337871e-01

— The fitted curve is created by fminsearch

— fminsearch implements Simplex Downhill Search
algorithm

— We use it to find the minimum value of E(.) for
optimal theta values

Enhancing the Above Algorith

e

A

* +a,e™

« We treat all parameters in y = q,e
as nonlinear parameters!

» Hybrid method: uses different algorithm for

linear and non-linear parameters

— Linear parameters: use least squared error, or backslash
— Non-linear parameters: use Simplex Downhill Search <
fminsearch

* Why hybrid”? Number of variables for fminsearch is
largely reduced from 4 to 2

Example of Hybrid Approach (1/3)

—

* New error measure function: errorMeasure2.m

function squaredError = errorMeasure2(lambda, data)
x = data(:,1);

y = data(:,2);

A = [exp(lambda(1)*x) exp(lambda(2)*x)];

a = Aly,;

y2 = a(1)*exp(lambda(1)*x)+a(2)*exp(lambda(2)*x);
squaredError = sum((y-y2).M2);

— lambda are the vector nonlinear parameters
— other aspects are not changed

Example of Hybrid Approach (2/3)

e

load data.txt

lambda0 = [0 0];

tic

lambda = fminsearch(@errorMeasure2, lambda0, [], data);
fprintf('running time = %g\n’, toc);

X = data(:, 1);

y = data(:, 2);

A = [exp(lambda(1)*x) exp(lambda(2)*x)];

a = Aly;

y2 = A*a;

plOt(X, Y Iro'/ X, y2/ 'bJ);

legend('Sample data', 'Regression curve');
fprintf(‘total squared error = %d\n', sum((y-y2).72));

Example of Hybrid Approach (3/3)

e

running time = 0.0363858
total squared error = 1.477226e-01 |

— Smaller total squared error and shorter running time

Transformation

e

* Approach: Let's transform a nonlinear math
model into a linear one!

» Consider a sample function y =ae”
- Take a natural log, we have Iny=Ina+bx

» Let's consider In(a) and b as our parameters,

since they are linear, we can apply least squared
error algorithm

load data2.txt

X = data2(:, 1);

y = data2(:, 2);

A = [ones(size(x)) x];

Note: The dataset file (data2.txt) can be downloaded from
http://mirlab.org/jang/books/matlabProgramming4guru/example/10-B #z #F & Ed {E 55 43 4T /data2.txt

Example of Transformation (1/2)

/,

theta = A\log(y);

subplot(2,1,1)

plot(x, log(y), '0', x, A*theta); xlabel('x"); ylabel('In(y)");
title("In(y) vs. x');

legend('Actual value', 'Predicted value');

a = exp(theta(1))

b = theta(2)

y2 = a*exp(b*x);

subplot(2,1,2);

plot(x, y, '0', X, y2); xlabel('x"); ylabel('y");
legend('Actual value', 'Predicted value');

title('y vs. x');

fprintf(‘total squared error = %d\n', sum((y-y2).72));

a =4.3282

b =-1.8235
total squared error = 8.744185e-01

The top figure is In(y) on x
The bottom figure is y on x

After transformation, the least
squared approach gives the

minimum of: . &

E'= z(lnyl. —lna—bxl.)

Not the original one:

E = E(yi _aein)z
=

Minimum E’ doesn’'t mean
minimum E; but they should be
close! € what if we are picky?

Example of Transformation (2/2)

/,

r r r r r
0 0.2 0.4 0.6 0.8 1

|[I(y) v > Actu alue
2
~Q___ l)
@G; Q
-3

r r r r
1.2 1.4 1.6 1.8 2

y vs. x
5 | | L L
ANE O Actual value

N Predicted value |
3 L N

~Q
| ~O
@“\“@——»Q _
i O o
O S50

0 o 1 e 18

r r r r r
0 0.2 0.4 0.6 0.8 1

1.2 1.4 1.6 1.8 2

' Revised Transformation (1/3)

e

/,

 If we really want to get the minimum E value, we
can use the results from the transformation
approach as the starting point, and the invoke
fminsearch

 The error function looks like this

function squaredError = errorMeasure3(theta, data)
if nargin<1; return; end

X = data(:,1);

y = data(:,2);

y2 = theta(1)*exp(theta(2)*x);

squaredError = sum((y-y2).72);

- Revised Transformation (2/3)

e

/,

load data2.txt

x = data2(:, 1);

y = data2(:, 2);

A = [ones(size(x)) x];

theta = A\log(y);

a = exp(theta(1))

b = theta(2)

thetaO = [a, b];

theta = fminsearch(@errorMeasure3, theta0, [], data2);
x = data2(:, 1);

y = data2(:, 2);

y2 = theta(1)*exp(theta(2)*x);

plot(x, y, '0', x, y2); xlabel('x"); ylabel('y");
legend('Actual value', 'Predicted value');

title('y vs. x');

fprintf('total square error = %d\n', sum((y-y2).72));

total square error = 1.680455e-01

Revised Transformation (3/3)

e

/,

y VS. X
T

Q
1.6

= [he resulting error is smaller than the
ordinary transformation approach

e

\

Mapping for Transformation (1/3)

e

No. Nonlinear Model |Transformed Model Parameters
ax t_11.»6 1 B
1 y= y_‘g-‘x gH a=—,b=_
1+bx HYFJ a p (04 04

a 1 1 b 1
2 y = ;=;x+g a=—,b=é
x+b s ~ 194 104

ax 1 1 b* 1 |
3 V=" 2|y d ax a=_»b2=é
x“+b” |2 T & 24 a

Mapping for Transformation (2/3)

/,

—_— —
b _
y=ax |lny=blnx+lnalz_¢f p=q
Y a B
_ 1 1-y B
y= ; |Inl—=|=blnx+a g=e", b=
1+ ax Y p»),
Y
-1
1 1- b1 1 1 04
' = HTy) a4 = b=
1+eXp(+x)\ ¢ - " /)’ [))
_ L, b .1 1 a
!)| S8 Ta |90
na+x-—Iin\e + Y
= 2 p p

Mapping for Transformation (3/3)

/,

_ m——————
2 2 2
X 2 b° , 2 2 _ _é 2 _
8 _2+y_2=1 L=——2X +b a = aab _/))
a- b P
y = a=exp(y—/3—)
) L, 2 ¢’
5 X—c Iny=-—x"+Sr+hna-— bow |-t
acxp| - -~) b b N o
b Y —— Y
a p y C=_ﬁ
200
y= , a=+\/40{ b=2—a
a L=b—2x4+% 2 C-Zl - /3 , /5’
10 y,oa 4 4l 4ey
\/(l+bx2)z+c v g ’ =4 4

Curve Fitting Tool (1/4)

* Curve fitting steps
— Observe the data points, remove the outliers

— Based on the data points and select mathematical
models (and maybe parameters)

— Using linear and nonlinear regression to derive the
optimal parameters based on a set of training data

— Use a set of test data to validate the quality of the
derived model; if passes then stop, otherwise, try a
different model and go back to step 2

e

e

Curve Fitting Tool (2/4)

 The above steps takes time and extensive
experience

* Curve fitting toolbox allows Matlab users to
perform curve fitting in GUI and quickly check
the fitting results and quality

Curve Fitting Tool (3/4)

« Example: first load enso.mat, which has two
parameters

— Month: the month when the measurements were
taken

— Pressure: the air pressure between Easter Island and

Darwin € some how this affects the Trade Winds in
the south hemisphere

« Load and launch the curve fitting toolbox&:

load enso.mat
cftool(month, pressure);

Curve Fitting Tool (4/4)

— \

[NN) Curve Fitting Tool
File Fit View Tools Desktop Window Help
xa v e @ R OE S BE Y B o =8
[untitled fit1 | + |
Fit name: untitled fit 1 Sum of Sine 2] Auto fit
X data: month B Number of terms: 8 B Fit
Y data: pressure B Equation: al*sin(bl*x+cl) + ... + a8*sin(b8*x+c8) Stop
Center and scale
Z data: (none) B
Fit Options...
Weights: (none) B

Results
i . « pressure vs. month
General model Sin8: S
f(x) =

al*sin(bl*x+cl) + a2*s
a4*sin(b4*x+c4) + a5*s
a7*sin(b7*x+c7) + a8*s

Coefficients (with 95% confidence bi 5
al = 17.75 (-3.992e+05, 3 8
bl = 0.02088 (-220.9, 221) e
cl= -0.2148 (-1.781e+04,
a2 = 8.27 (-3.855e+05, 3.
b2 = 0.03866 (-475.8,475.¢
2= 1.468 (-3.952e+04, 3
a3 = 3.152 (2.675, 3.629)
month
Table of Fits ®
Fit name 4 Data Fit type SSE R-square DFE Adj R-sq RMSE # Coeff Validation D... Validation SSE Validation R...

untitled ... pressure v... sin8 643.7456 0.6721 144 0.6197 2.1143 24

Matlab #6 Homework (M6)

* (3% + 1% Bonus) < total

Ellipse fitting: In this exercise, we will transform a nonlinear ellipse model into a model with both linear and nonlinear parameters. And then we shall empoly
LSE (least-squares estimate) for linear parameters and fminsearch for nonlinear parameters.
a. The equation for a general ellipse model can be expressed as follows:

2
52y« (52) -
7 ry
where the parameter set is {¢,, Cys T'ps Ty }. In particular, it is rather easy to reorganize the model and treat {c,, Cy} as nonlinear parameters, while
{re ,-y} can be identified via LSE which minimize the following SSE (sum of squared error):

2
n _ 2 : = 2
sse(data; Cx» Cys T ry) = 2 [(Xi Cx) + (yi C)‘) - 1] ’

=1 e ry

where data = {(x;, y)li = 1 --- n} is the sample dataset.

CS3330 Scientific Computing 52

Matlab #6 Homework (M6) cont.

\ —

— (1%) Present your function to the TA to get this

point
b. Write a function sseOfEllipseFit.m with the following 1/O formats:

[sse, radius])=sseOfEllipseFit(center, data);

where the inputs are

1. center: [c,, cy]

2. data: the sample dataset packed as a matrix of size n X 2, with row i being (x;, y;)
And the outputs are

1. sse: SSE

2. radius: [r,, r,], which is identified by LSE.

CS3330 Scientific Computing 53

Matlab #6 Homework (M6) cont.

P \ — _ —

— (1%) Present your function to the TA to get this
point

c. Write another function ellipseFit.m (which calls sseOfEllipseFit.m) with the following I/O format

[sse, theta]=ellipseFit(data, showPlot);

where the inputs are
1. data: the sample dataset packed as a matrix of size n X 2, with row i being (x;, y;)
2. showPlot: 1 for plotting the data and the resulting ellipse
And the outputs are
1. theta: {c,, Cys Txs ry}, which is the identified parameter sets, with the first two identified by fminsearch (with the default optimization options) and
the second two by LSE.
2. sse: SSE

CS3330 Scientific Computing 54

Matlab #6 Homework (M6) cont.

\ —

— (1%) Create your own test file, in which each line
presents a sample point x and y real values
separated by a single space. Invoke your function
like this: B
data=load('ellipse.txt');

[theta, sse]=ellipseFit(data, 1)
We want to see the outputs of theta and sse.
Also please a figure like this:

Matlab #6 Homework (M6) cont.

\ e

— (1% Bonus) TA will run your code with another
sample dataset. You get one point if you code
doesn’t crash and generate the expected results,
including theta, sse, and figure. No partial credit will
be given in this bonus point.

CS3330 Scientific Computing 56

