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eS(n): Y, 27t =2"n—1

®S5(1): X2t =211 =21 — 1,50 S(1) is true.

® Assume S(k): Y%, 2071 = 2k — 1 istrue.

® Consider S(k + 1).

Zil{<=+11 i1 Z£(=1 2i-1 4 ok — 2k _ 1 4 2k — pk+1 _ 1
s0 S(k) = S(k + 1) and the result is true forall n € Z*
by the Principle of Mathematical Induction.




\

OS(n): Y, i2t=2=2+(n—1)2"
0S5(1):Y; ,i2t=2=2+(1—-1)2"1 s0S(1) is true.
® Assume S(k): Y%, i2t = 2+ (k — 1)2F* is true.
® Consider S(k +1).

it =32t (k 4+ D2M =2+ (k- 1)2F +
(k + 1)2’<+1 2+ (k)28 = 2 + (k)2k+2,

s0 S(k) = S(k + 1) and the result is true forall n € Z*
by the Principle of Mathematical Induction.
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oS(n): XL, (DE) =+ -1

OS(1): Y, (MHEN =1={1+1)—1,50S5(1) is true.
® Assume S(k): 35 (DD = (k + 1! — 1 is true.

® Consider S(k + 1).

YETOE =YL, Q@+ k+ Dk + D! = (k+1)! -
1+k+DKk+D!'=((k+2) -1,

s0 S(k) = S(k + 1) and the result is true forall n € Z*
by the Principle of Mathematical Induction.



‘\

Here we have

n o (n)(n+1)(2n+1) (2n)(2n+1) m -
i= 1l p > = i

nd (n)(n+1)(2n+1) _ (2n)(2n+1)




Ex 4.1(16.2 & 16.b)

n) s,=2;s,=4



o

1
Forn=1,sn= Z¢¢A§an— =n.

A

Proof: Forn = 1,5, = % = 1, so this first case Is true and establishes the basis

step. Now, for the inductive step, assume the result true forn =k(=1). That s,

1 - .
Skt1 = ip#ACKps . ZQ);thXk o + Dik+1)ccex,,, — Where the first sum is

taken over all nonempty subsets B of X, and the second sum over all subsets C
1

of X, ., that contain k + 1.
Then sy,q = si + [k+1 P sk] k + 1t k = k + 1. Consequently,

we have deduced the truth forn = k + 1 from that of n = k. The result
follows for all n >= 1 by the Principle of Mathematical Induction.
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Assume S(k) true for some k > 1.

k+=|?
For Sk + 1), ti = [erg] J;Z] +(k+1) =

k+1)2+(k+1)+~ k+1)+=|?
G+ “2( e B ( +2)+2] S0S(k) = S(k+1) .

However, we have no first value of k where S(k) Is true.

1+=|?
For each k > 1,2{-;11' = (k)(;‘“) and (1)(;“) = [ 22] = 1+ g.

(k?+k)+i+2k+2
> —




Ex 4.1(26.a & 26.b)
\

a) a; = Z%;ol(?)aiau—l)—i = (g)aoao = ay°
a, = ZiZ;Ol %)aia(z_l)_i = (é)aoal -+ (1)a1a0 = 2a,°.
n) az= Z?;()l(gzl)aiam—n—i = Z?=o(?)aia2_i =
f,)aoaz + (i)a1a1 + @)azao = (ap)(Zag®) +
2(ap*)(ap*) + (2a¢°)(ay) = 6ay*
Ay = Z?;()l(4;1)aia(4—1)—i = Zi3=0(§)aia3—i =
(Haoas + (araz + (5)azas + (5)asao =

(ag)(6ap*) + 3(ap*)(2a0°) + 3(2a¢°)(ap?) +
(6ay*)(ap) = 24ay°




——

Forn > 0,a, = (nDal*!.

Proof: (By the Alternative Form of the Principle of Mathematical Induction)

The result is true for n = 0 and this establishes the basis step. [In fact, the

calculations in parts (a) and (b) show the result is also true forn = 1, 2 3

and 4.] Assuming the result true forn = 0,1,2,3, ..., k(= 0) — that is, that
= (n')a lforn=0,1, 2 3,...,k(=0) — we find that

ak+1 _ (k) a;a,._ l _ (k) (ll)(al+1)(k l)' (Clk l+1) _
o( )(L')(k l)'ao T2 = Zl Ok'a0+2 = (k+ D|klaf*?| =
(k + 1)' ak+
So the truth of the result forn = 0,1,2, ..., k(= 0) implies the truth of the

result for n = k + 1. Consequently, foralln > 0,a, = (nag** by the
Alternative Form of the Principle of Mathematical Inductlon






Ex 4.2(8.a)

‘\

1) Forn = 2,x; + x, denotes the ordinary sum of the real
numbers x; and x,.

2) For real number x4, x5, ..., x,,, X, 41, We have
X1+ X+ o+ x, Fxp01 =g +x, -+ x) + X011,
the sum of the two real number x; + x, + -+ x,; and x,,4 ¢



Ex 4.2(8.b)
_’

The truth of this result for n = 3 follows from the Associative Law of
Addition —since x; + (x; + x3) = (x1 + x3) + x3, there Is no ambiguity in
writing x; + x, + x3 . Assuming the result true for all k > 3 and all
1 < r <k, let us examine the case for k + 1 real numbers. We find that
1) r = kwehave (x; +x, + -+ X)) + X010 = Xy + x5+ -+ X +

X471 DY virtue of the recursive definition.
2) For1 <r <k wehave

(X1 + x5+ +xp) + (Xppq + o+ X + Xpegq)

(1 + %2 + o+ x) + [(Xgq + o+ X)) + Xpeyq ]
[Cer o o+ 2x0) + (g1 + o0+ X)) ]+ Xpyq
(X1 +x, + -+ x + X010+ -+ X)) + Xpep1
X1 +Xp ++ X+ Xppq + o+ X+ Xpegq-
So the result is true for alln = 3 and all 1 < r < n, by the Principle of
Mathematical Induction.
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The result is true for n = 2 by the material presented at the
start of the problem. Assuming the truth for n = k real
numbers, we have, for

n==k|x;+x,+ - +xp+ Xpp1| =

(X1 +x5 + -+ X)) + Xyyq| <

X1+ x5+ x| F ] S

Xp| F 2] e x| + el

so the result is true for all n > 2 by the Principle of
Mathematical Induction.




o

Proof: (By Mathematical Induction)

We find that Fy = Y?_,F; =0 =1—1 = F, — 1, so the given statement
holds in this first case — and this provides the basis step of the proof.

For the induction step we assume the truth of the statement when
n=k(=0)—thatis,that X¢  F; = Fpy, — 1.

Now we consider what happens when n = k + 1. We find for this case
that Y120 F; = (Z{F:o F;) + Fis1 = (Fgsz + Fiqq) — 1 = Fy3 — 1,50 the
truth of the statement at n = k implies the truthatn = k + 1.

Consequently, >, F; = F,4, — 1 for all n € N — by the Principle of
Mathematical Induction.
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a) Let E denote the set of all positive even integers.
We define E recursively by

1) 2 €E;and
2) Foreachne€eE, n+ 2 €E.

b) If G denotes the set of all nonnegative even integers.
We define G recursively by
1) 0€gG;and
2) Foreachme G, m+ 2 €.
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a) (a,b,c)=1(1,52)or =(55,3) ..

b) Proof:
31|(5a+ 7b + 11c) = 31|(10a + 14b + 22¢).
Also, 31|(31a + 31b + 31¢),
so 31|[(31a + 31b + 31c) — (10a + 14b + 22¢)].
Hence 31|(21a + 17b + 9c¢).



(a)
(b)
(c)
(d)

‘\

Base 10
22
527

1234
6923

Base 2
10110
1000001111
10011010010
1101100001011

Base 16
16
20F
4D2
1B0B



00001111
11110001
01100100
At Right

01111111
10000000

\

(d)

Start with the binary representation of 65

Interchanges the 0’s and 1’s to obtain the
one’s complement

Add 1 to the one’s complement

65

!
01000001

l
10111110

l
10111111
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(c)

(a) 0101
+0001
0110

(b) 1101
+1110
1011

0111
+1000
1111
1101
+1010
0111

+ —9 overflow error
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Proof: Let Y = {3k|k € Z*}, the set of all positive integers divisible by 3.
In order to show that X = Y we shall verifythat X € YandY c X.

(1) (X € Y): By part (1) of the recursive definition of X we have 3 in X.
And since 3 = 3 -1, it follows that 3 is in Y. Turning to part (2) of this
recursive definition suppose that for x, y € X we also have x,y € Y. Now
x + y € X by the definition and we need to show that x + y € Y. This
follows because x,y €Y = x = 3m,y = 3nforsomem,n € Z* = x +
y=3m+3n=3(m+n),withm+neZ"=x+yeY.Therefore
every positive integer that results from either part (1) or part (2) of the
recursive definition of X is an element in Y, and, consequently, X € Y.
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(i1) (Y < X): In order to establish this inclusion we need to show that every
positiveinteger multiple of 3 is in X. This will be accomplished by the Principle of
Mathematical Induction.

Start with the open statement
S(n): 3nisanelementin X,

which is defined for the universe Z*. The basis step — that is, S(1) — is true because
3.1 = 3isin X by part (1) of the recursive definition of X.

For the inductive step of this proof we assume the truth of S(k) for some k(= 1) and
consider what happens at n = k + 1. From the inductive hypothesis S(k) we know
that 3k is in X. Then from part (2) of the recursive definition of X we find that

3(k+ 1) = 3k + 3 € X because 3k, 3 € X. Hence S(k) = S(k + 1).

So by the Principle of Mathematical Induction it follows that S(n) is true for all
n € ZT —and, consequently, Y € X. With X € Y and Y € X it follows that X =Y.
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a) 1820 =7(231) + 203
231 =1(203) + 28
203 =7(28) +7
28 = 7(4), so gcd(1820,23) =7
1=203-7(28) =203 -7[231- 203] = (-7)(231) + 8(203)
= (-7)(231) + 8[1820 -7(231)] = 8(1820) + (-63)(231)
b) gcd(1369,2597) =1 =2597(534) + 1369(-1013)
c) gcd(2689,4001) =1 =4001(-1117) + 2689(1662)
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If as+bt= 2, then gcd(a,b) =1 or 2, for the gcd of a,b
divides a,b so it divides as+bt=2.

as+bt=3 = gcd(a,b)=1 or 3.
as+bt=4 = gcd(a,b)=1,2 or 4.
as+bt=6 = gcd(a,b)=1,2,3 or 6.
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+ Letged(a,b) = h,gcd(b,d) = g.
gcd(a,b) = h
= hla, h|b
= h|(a -1+ bc) = h|d.

* h|b, h|d
= h|g.gcd(b,d) = g
= g|b, g|d
= g|(d -1+ b(—c))
= gla.g|b, gla,h = gcd(a, b)
= g|h.h|g, g|h,with g,h € Z%
=g=~h




\

* 33x + 29y = 2490
gcd(33,29) =1,and 33 =1(29) + 4,29 =7(4) + 1,501
=29 —7(4) = 29 — 7(33 — 29) = 8(29) — 7(33).1
= 33(=7) + 29(8) = 2490 = 33(—17430) + 29(19920)
= 33(—17430 + 26k) + 29(19920 — 33k), for all k € 7.
* x =—17430 + 29k, y = 19920 — 33k
x=>0= 29k >17430 = k = 602
y=0= 19920 = 33k = 603 >k
+ k=602:x =28,y = 54;
k=603:x =57,y =21
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+ From Theorem 4.10 we know that
ab = lcm(a,b) - gcd(a, b).

« Consequently,
[lem(a, b) - ged(a,b)]  (242,500)(105)

a 630




e —

a) 24-3%3.53.11
) 2%.3.52.72.112
c) 32.53.7%2.11-13
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gcd(148500,7114800) = 223152111 = 3300
Icm(148500,7114800) = 24335372112 = 320166000
ocd(148500,7882875) = 3253111 = 12375
Icm(148500,7882875) = 22335372111131

= 94594500
ocd(7114800,7882875) = 315272111 = 40425
lcm(7114800,7882875) = 24325372112131

= 1387386000



a)

b)

—

There are (15)(10)(9)(11)(4)(6)(11)=3920400 positive
divisors of n = 21439587101131353710,

(i) (14-3+1)(9-4+1)(8-7+1)(10-0+1)(3-2+1)(5-0+1)(10-
2+1)=(12)(6)(2)(11)(2)(6)(9)=171072

(ii) Since 1166400000=2°35°, the number of divisors
here is (14-9+1)(9-6+1)(8-5+1)(10-0+1)(3-0+1)(5-
0+1)(10-0+1)=(6)(4)(4)(11)(4)(6)(11)=278784
(11)(8)(5)(5)(6)(2)(3)(6)=43200
(Iv)(7)(3)(4)(6)(1)(3)(6)=9072

(V) (5)(4)(3)(4)(2)(2)(4)=3840
(v1)(1)(1)(2)(2)(1)(1)(3)=12
(ViN)(3)(2)(2)(2)(1)(1)(2)=48



-,G% +0)

[T (1 + %71
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Proof: (By mathematical Induction)

For n = 2 we find that [T ,(1 — 2) = (1—212) = (1 —i) =% % so the
result is true in this first case and this establishes the basis step for our

Inductive proof.

Next we assume the result true for some (particular) k € Z* where k > 2.

This gives us [T, (1 — —2) = ﬂ . When we consider the case forn = k + 1,

using the inductive step, we flnd that
k14 _ 1\ _ (k 1 1 k+2 (k+1)+1
[li= ( i2 ) B ( (=2 (1 iz)) (1 (k+1)2) 2(k+1)  2(k+1)

The result now follows for all positive integers n = 2 by the Principle of
Mathematical Induction.
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