
Solution 
Ex 4.1: 2, 8, 16, 19, 26 
Ex 4.2: 1, 8, 10, 12, 16 

Ex 4.3: 7, 15, 20, 22, 28 
Ex 4.4: 1, 2, 7, 14, 19 
Ex 4.5: 1, 2, 8, 24, 25 



𝑆 𝑛 :∑ 2𝑖−1 = 2𝑛 − 1𝑛
𝑖=1  

𝑆 1 :∑ 2𝑖−1 = 21−1 = 21 − 11
𝑖=1 , so 𝑆(1) is true. 

Assume 𝑆 𝑘 :∑ 2𝑖−1 = 2𝑘𝑘
𝑖=1 − 1 is true. 

Consider 𝑆 𝑘 + 1 . 
∑ 2𝑖−1 = ∑ 2𝑖−1 + 2𝑘 = 2𝑘 − 1 + 2𝑘𝑘

𝑖=1 = 2𝑘+1 − 1𝑘+1
𝑖=1 ,  

so 𝑆(𝑘) ⟹ 𝑆(𝑘 + 1) and the result is true for all 𝑛 ∈ ℤ+  
by the Principle of Mathematical Induction. 

Ex 4.1: (2.a) 



𝑆 𝑛 :∑ 𝑖𝑖𝑖 = 2 = 2 + (𝑛 − 1)2𝑛+1𝑛
𝑖=1  

𝑆 1 :∑ 𝑖𝑖𝑖 = 2 = 2 + (1 − 1)21+11
𝑖=1 , so 𝑆(1) is true. 

Assume 𝑆 𝑘 :∑ 𝑖𝑖𝑖 = 2 + (𝑘 − 1)2𝑘+1𝑘
𝑖=1  is true. 

Consider 𝑆 𝑘 + 1 . 
∑ 𝑖𝑖𝑖 = ∑ 𝑖𝑖𝑖 + (𝑘 + 1)2𝑘+1=𝑘

𝑖=1
𝑘+1
𝑖=1 2 + (𝑘 − 1)2𝑘+1 +

(𝑘 + 1)2𝑘+1= 2 + 𝑖𝑘 2𝑘+1 = 2 + 𝑘 2𝑘+2,  
so 𝑆(𝑘) ⟹ 𝑆(𝑘 + 1) and the result is true for all 𝑛 ∈ ℤ+  
by the Principle of Mathematical Induction. 

Ex 4.1: (2.b) 



𝑆 𝑛 :∑ 𝑖 𝑖! = 𝑛 + 1 ! − 11
𝑖=1  

𝑆 1 :∑ 𝑖 𝑖! = 1 = 1 + 1 ! − 11
𝑖=1 , so 𝑆(1) is true. 

Assume 𝑆 𝑘 :∑ 𝑖 𝑖! = 𝑘 + 1 ! − 1𝑘
𝑖=1  is true. 

Consider 𝑆 𝑘 + 1 . 
∑ 𝑖 𝑖! = ∑ 𝑖 𝑖! + 𝑘 + 1 𝑘 + 1 !𝑘

𝑖=1
𝑘+1
𝑖=1 = 𝑘 + 1 ! −

1 + 𝑘 + 1 𝑘 + 1 ! = 𝑘 + 2 ! − 1,  
so 𝑆(𝑘) ⟹ 𝑆(𝑘 + 1) and the result is true for all 𝑛 ∈ ℤ+  
by the Principle of Mathematical Induction. 

Ex 4.1: (2.c) 



Here we have  
∑ 𝑖2𝑛
𝑖=1 = 𝑛 𝑛+1 2𝑛+1

6
= 2𝑛 2𝑛+1

2
= ∑ 𝑖2𝑛

𝑖=1 ,  

and 𝑛 𝑛+1 2𝑛+1
6

= 2𝑛 2𝑛+1
2

⟹ 𝑛 = 5. 

Ex 4.1: (8) 



a)  3 
b)  𝑠2 = 2;  𝑠4 = 4 

Ex 4.1(16.a & 16.b) 



For 𝑛 ≥ 1, 𝑠𝑛 = ∑ 1
𝑝𝐴

= 𝑛∅≠𝐴⊆𝑋𝑛 . 

Proof: For 𝑛 = 1, 𝑠1 = 1
1

= 1, so this first case is true and establishes the basis 
step. Now, for the inductive step, assume the result true for 𝑛 = 𝑘(≥ 1). That is, 
𝑠𝑘+1 = ∑ 1

𝑝𝐴
=∅≠𝐴⊆𝑋𝑘+1 ∑ 1

𝑝𝐵
∅≠𝐵⊆𝑋𝑘 + ∑ 1

𝑝𝐶
{𝑘+1}⊆𝐶⊆𝑋𝑘+1 , where the first sum is 

taken over all nonempty subsets 𝐵 of 𝑋𝑘 and the second sum over all subsets 𝐶 
of 𝑋𝑘+1 that contain 𝑘 + 1.  
Then 𝑠𝑘+1  =  𝑠𝑘 + 1

𝑘+1
+ 1

𝑘+1
𝑠𝑘 = 𝑘 + 1

𝑘+1
+ 1

𝑘+1
𝑘 = 𝑘 + 1. Consequently, 

we have deduced the truth for 𝑛 = 𝑘 + 1 from that of 𝑛 = 𝑘. The result 
follows for all 𝑛 >= 1 by the Principle of Mathematical Induction. 

Ex 4.1(16.c) 



Assume 𝑆(𝑘) true for some 𝑘 ≥ 1.  

For 𝑆 𝑘 + 1 ,∑ 𝑖𝑘+1
𝑖=1 =

𝑘+12
2

2
+ 𝑘 + 1 =

𝑘2+𝑘 +14+2𝑘+2

2
=

𝑘+1 2+ 𝑘+1 +14
2

=
𝑘+1 +12

2

2
. So 𝑆(𝑘) ⟹ 𝑆(𝑘 + 1) .  

However, we have no first value of 𝑘 where 𝑆(𝑘) is true.  

For each 𝑘 ≥ 1,∑ 𝑖𝑘
𝑖=1 = 𝑘 𝑘+1

2
 and 1 1+1

2
=

1+12
2

2
⟹ 1 ≠ 9

8
. 

Ex 4.1(19) 



a)  𝑎1 = ∑ 0
𝑖 𝑎𝑖𝑎 1−1 −𝑖

1−1
𝑖=0 = 0

0 𝑎0𝑎0 = 𝑎02 
 𝑎2 = ∑ 1

𝑖 𝑎𝑖𝑎 2−1 −𝑖
2−1
𝑖=0 = 1

0 𝑎0𝑎1 + 1
1 𝑎1𝑎0 = 2𝑎03. 

b)  𝑎3 = ∑ 3−1
𝑖 𝑎𝑖𝑎(3−1)−𝑖 = ∑ 2

𝑖 𝑎𝑖𝑎2−𝑖
2
𝑖=0

3−1
𝑖=0 =

2
0 𝑎0𝑎2 + 2

1 𝑎1𝑎1 + 2
2 𝑎2𝑎0 = 𝑎0 2𝑎03 +

2 𝑎02 𝑎02 + 2𝑎03 𝑎0 = 6𝑎04    
 𝑎4 = ∑ 4−1

𝑖 𝑎𝑖𝑎 4−1 −𝑖 = ∑ 3
𝑖 𝑎𝑖𝑎3−𝑖

3
𝑖=0

4−1
𝑖=0 =

3
0 𝑎0𝑎3 + 3

1 𝑎1𝑎2 + 3
2 𝑎2𝑎1 + 3

3 𝑎3𝑎0 =
𝑎0 6𝑎04 + 3 𝑎02 2𝑎03 + 3 2𝑎03 𝑎02 +
6𝑎04 𝑎0 = 24𝑎05 

Ex 4.1(26.a & 26.b) 



For 𝑛 ≥ 0,𝑎𝑛 = 𝑛! 𝑎0𝑛+1. 
Proof: (By the Alternative Form of the Principle of Mathematical Induction) 
The result is true for 𝑛 = 0 and this establishes the basis step. [In fact, the 
calculations in parts (a) and (b) show the result is also true for 𝑛 = 1,2,3 
and 4.] Assuming the result true for 𝑛 =  0,1,2,3, … , 𝑘(≥ 0) − that is, that 
𝑎𝑛 = 𝑛! 𝑎0𝑛+1 for 𝑛 = 0,1,2,3, … , 𝑘(≥ 0) − we find that 
𝑎𝑘+1 = ∑ 𝑘

𝑖
𝑘
𝑖=0 𝑎𝑖𝑎𝑘−𝑖 = ∑ 𝑘

𝑖
𝑘
𝑖=0 𝑖! 𝑎0𝑖+1 𝑘 − 𝑖 ! 𝑎0𝑘−𝑖+1 =

∑ 𝑘
𝑖

𝑘
𝑖=0 𝑖! 𝑘 − 𝑖 ! 𝑎0𝑘+2 = ∑ 𝑘! 𝑎0𝑘+2𝑘

𝑖=0 = 𝑘 + 1 𝑘!𝑎0𝑘+2 =
𝑘 + 1 !𝑎0𝑘+2. 

So the truth of the result for 𝑛 =  0,1,2, … , 𝑘(≥ 0) implies the truth of the 
result for 𝑛 = 𝑘 + 1. Consequently, for all 𝑛 ≥ 0,𝑎𝑛 = 𝑛! 𝑎0𝑛+1 by the 
Alternative Form of the Principle of Mathematical Induction. 

Ex 4.1(26.c) 



a)  𝑐1 = 7;  𝑎𝑛𝑎 𝑐𝑛+1 = 𝑐𝑛 + 7,𝑓𝑓𝑓 𝑛 ≥ 1. 
b)  𝑐1 = 7;  𝑎𝑛𝑎 𝑐𝑛+1 = 7𝑐𝑛,𝑓𝑓𝑓 𝑛 ≥ 1. 
c)  𝑐1 = 10;  𝑎𝑛𝑎 𝑐𝑛+1 = 𝑐𝑛 + 3,𝑓𝑓𝑓 𝑛 ≥ 1. 
d)  𝑐1 = 7;  𝑎𝑛𝑎 𝑐𝑛+1 = 𝑐𝑛,𝑓𝑓𝑓 𝑛 ≥ 1. 
e)  𝑐1 = 1;  𝑎𝑛𝑎 𝑐𝑛+1 = 𝑐𝑛 + 𝑖𝑛 + 1,𝑓𝑓𝑓 𝑛 ≥ 1. 
f)  𝑐1 = 3, 𝑐2 = 1;  𝑎𝑛𝑎 𝑐𝑛+2 = 𝑐𝑛,𝑓𝑓𝑓 𝑛 ≥ 1. 

 
 
 
 

Ex 4.2(1) 



1) For 𝑛 = 2, 𝑥1 + 𝑥2 denotes the ordinary sum of the real 
numbers 𝑥1 and 𝑥2. 

2) For real number 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑛+1, we have 
 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛 + 𝑥𝑛+1 = 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛 + 𝑥𝑛+1,  
the sum of the two real number 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑛 and 𝑥𝑛+1  

Ex 4.2(8.a) 



The truth of this result for 𝑛 = 3 follows from the Associative Law of 
Addition – since 𝑥1 + (𝑥2 + 𝑥3) = (𝑥1 + 𝑥2) + 𝑥3, there is no ambiguity in 
writing 𝑥1 + 𝑥2 + 𝑥3 . Assuming the result true for all 𝑘 ≥ 3 and all 
1 ≤ 𝑓 < 𝑘, let us examine the case for 𝑘 + 1 real numbers. We find that  
1)  𝑓 =  𝑘 we have (𝑥1 + 𝑥2 + ⋯+ 𝑥𝑟) + 𝑥𝑟+1 =  𝑥1 + 𝑥2 + ⋯+ 𝑥𝑟 +

𝑥𝑟+1 by virtue of the recursive definition.  
2) For 1 ≤ 𝑓 < 𝑘 we have  

(𝑥1 + 𝑥2 + ⋯+ 𝑥𝑟) + (𝑥𝑟+1 + ⋯+ 𝑥𝑘 + 𝑥𝑘+1)
=  (𝑥1 + 𝑥2 + ⋯+ 𝑥𝑟) + [(𝑥𝑟+1 + ⋯+ 𝑥𝑘) + 𝑥𝑘+1]
=  [(𝑥1 + 𝑥2 + ⋯+ 𝑥𝑟) + (𝑥𝑟+1 + ⋯+ 𝑥𝑘)] + 𝑥𝑘+1
=  (𝑥1 + 𝑥2 + ⋯+ 𝑥𝑟 + 𝑥𝑟+1 + ⋯+ 𝑥𝑘) + 𝑥𝑘+1
=  𝑥1 + 𝑥2 + ⋯+ 𝑥𝑟 + 𝑥𝑟+1 + ⋯+ 𝑥𝑘 + 𝑥𝑘+1.  

So the result is true for all 𝑛 ≥ 3 and all 1 ≤ 𝑓 < 𝑛, by the Principle of 
Mathematical Induction. 

Ex 4.2(8.b) 



The result is true for 𝑛 = 2 by the material presented at the 
start of the problem. Assuming the truth for 𝑛 = 𝑘 real 
numbers, we have, for 
𝑛 = 𝑘, 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑘 + 𝑥𝑥+1 =
(𝑥1+𝑥2 + ⋯+ 𝑥𝑘) + 𝑥𝑥+1 ≤
𝑥1 + 𝑥2 + ⋯+ 𝑥𝑘| + |𝑥𝑥+1 ≤
𝑥1| + |𝑥2| + ⋯+ |𝑥𝑘| + |𝑥𝑥+1 , 

so the result is true for all 𝑛 ≥ 2 by the Principle of 
Mathematical Induction. 

Ex 4.2(10) 



Proof: (By Mathematical Induction) 
We find that 𝐹0 = ∑ 𝐹𝑖0

𝑖=0 = 0 = 1 − 1 = 𝐹2 − 1, so the given statement 
holds in this first case − and this provides the basis step of the proof. 
For the induction step we assume the truth of the statement when 
𝑛 = 𝑘(≥ 0) − that is , that ∑ 𝐹𝑖𝑘

𝑖=0 = 𝐹𝑘+2 − 1.  
Now we consider what happens when 𝑛 = 𝑘 + 1. We find for this case 
that ∑ 𝐹𝑖𝑘+1

𝑖=0 = ∑ 𝐹𝑖𝑘
𝑖=0 + 𝐹𝑘+1 = 𝐹𝑘+2 + 𝐹𝑘+1 − 1 = 𝐹𝑘+3 − 1, so the 

truth of the statement at 𝑛 = 𝑘 implies the truth at 𝑛 = 𝑘 + 1. 
Consequently, ∑ 𝐹𝑖𝑛

𝑖=0 = 𝐹𝑛+2 − 1 for all 𝑛 ∈ N − by the Principle of 
Mathematical Induction. 

Ex 4.2(12) 



a) Let 𝐸 denote the set of all positive even integers.  
We define 𝐸 recursively by 

1)  2 ∈ E; and 
2) For each 𝑛 ∈ E, 𝑛 + 2 ∈ E. 

b) If 𝐺 denotes the set of all nonnegative even integers.  
We define 𝐺 recursively by 

1)  0 ∈ G; and  
2) For each 𝑚 ∈ G, 𝑚 + 2 ∈ G. 

Ex 4.2(16) 



a)  (𝑎, 𝑏, 𝑐) = (1,5,2) 𝑓𝑓 = (5,5,3) … 
b) Proof: 

31 5𝑎 + 7𝑏 + 11𝑐 ⟹ 31 10𝑎 + 14𝑏 + 22𝑐 .  
Also, 31|(31𝑎 + 31𝑏 + 31𝑐),  
so 31|[(31𝑎 + 31𝑏 + 31𝑐) − (10𝑎 + 14𝑏 + 22𝑐)].  
Hence 31|(21𝑎 + 17𝑏 + 9𝑐). 

Ex 4.3(7) 



Base 10 Base 2 Base 16 
(a) 22 10110 16 
(b) 527 1000001111 20F 
(c) 1234 10011010010 4D2 
(d) 6923 1101100001011 1B0B 

Ex 4.3(15) 



a) 00001111 
b) 11110001 
c) 01100100 
d) At Right  
e) 01111111 
f) 10000000 

Ex 4.3(20) 

(d) 
Start with the binary representation of 65 
 
 
Interchanges the 0’s and 1’s to obtain the 
one’s complement 
 
Add 1 to the one’s complement 

65 
↓ 

01000001 
↓ 

10111110 
↓ 

10111111 



(a) 0101 = 5 (c) 0111 = 7 
+0001 = 1 +1000 = −8 

0110 = 6 1111 = −1 
(b) 1101 = −3 (d) 1101 = −3 

+1110 = −2 +1010 = −6 
1011 = −5 0111 ≠ −9  overflow error 

Ex 4.3(22) 



Proof: Let 𝑌 = {3𝑘|𝑘 ∈ Z+}, the set of all positive integers divisible by 3. 
In order to show that 𝑋 = 𝑌 we shall verify that 𝑋 ⊆ 𝑌 and 𝑌 ⊆ 𝑋. 
(i) (𝑋 ⊆ 𝑌): By part (1) of the recursive definition of 𝑋 we have 3 in 𝑋. 
And since 3 = 3 ∙ 1, it follows that 3 is in 𝑌. Turning to part (2) of this 
recursive definition suppose that for 𝑥,𝑦 ∈ X we also have 𝑥,𝑦 ∈ Y. Now 
𝑥 + 𝑦 ∈ X by the definition and we need to show that 𝑥 + 𝑦 ∈ Y. This 
follows because 𝑥,𝑦 ∈ Y ⇒ 𝑥 = 3𝑚,𝑦 = 3𝑛 for some 𝑚,𝑛 ∈ Z+ ⇒ 𝑥 +
𝑦 = 3𝑚 + 3𝑛 = 3(𝑚 + 𝑛), with 𝑚 + 𝑛 ∈ Z+ ⇒ 𝑥 + 𝑦 ∈ Y. Therefore 
every positive integer that results from either part (1) or part (2) of the 
recursive definition of 𝑋 is an element in 𝑌, and, consequently, 𝑋 ⊆ 𝑌. 

Ex 4.3(28)1/2 



(ii) (𝑌 ⊆ 𝑋): In order to establish this inclusion we need to show that every 
positiveinteger multiple of 3 is in 𝑋. This will be accomplished by the Principle of 
Mathematical Induction. 
Start with the open statement  

𝑆(𝑛): 3𝑛 is an element in 𝑋, 
which is defined for the universe 𝑍+. The basis step − that is, 𝑆(1)  − is true because 
3 ⋅ 1 =  3 is in 𝑋 by part (1) of the recursive definition of 𝑋.  
For the inductive step of this proof we assume the truth of 𝑆(𝑘) for some 𝑘(≥ 1) and 
consider what happens at 𝑛 = 𝑘 + 1. From the inductive hypothesis 𝑆(𝑘) we know 
that 3𝑘 is in 𝑋. Then from part (2) of the recursive definition of 𝑋 we find that 
3 𝑘 + 1 = 3𝑘 + 3 ∈ X because 3𝑘, 3 ∈ X. Hence 𝑆 𝑘 ⇒ S(𝑘 + 1).  
So by the Principle of Mathematical Induction it follows that 𝑆(𝑛) is true for all 
𝑛 ∈ Z+ −and, consequently, 𝑌 ⊆ 𝑋. With 𝑋 ⊆ 𝑌 and 𝑌 ⊆ 𝑋 it follows that 𝑋 = 𝑌. 

Ex 4.3(28)2/2 



a) 1820 = 7(231) + 203 
231 = 1(203) + 28 
203 = 7(28) + 7 
28 = 7(4), so gcd(1820,23) = 7 
1 = 203 - 7(28) = 203 -7[231- 203] = (-7)(231) + 8(203) 
= (-7)(231) + 8[1820 -7(231)] = 8(1820) + (-63)(231) 

b) gcd(1369,2597) = 1 = 2597(534) + 1369(-1013) 
c) gcd(2689,4001) = 1 = 4001(-1117) + 2689(1662) 

 

Ex 4.4(1) 



a) If as+bt= 2, then gcd(a,b) = 1 or 2, for the gcd of a,b 
divides a,b so it divides as+bt=2. 

b) as+bt=3 ⇒ gcd(a,b)=1 or 3. 
c) as+bt=4 ⇒ gcd(a,b)=1,2 or 4. 
d) as+bt=6 ⇒ gcd(a,b)=1,2,3 or 6. 

 

Ex 4.4(2) 



∗ Let gcd 𝑎, 𝑏 = ℎ, gcd 𝑏,𝑎 = 𝑔. 
gcd 𝑎, 𝑏 = ℎ  
⇒ ℎ 𝑎, ℎ 𝑏 
⇒ ℎ 𝑎 ⋅ 1 + 𝑏𝑐 ⇒ ℎ 𝑎. 

∗ ℎ 𝑏, ℎ 𝑎 
⇒ ℎ|𝑔. gcd (𝑏,𝑎) = 𝑔 
⇒ 𝑔 𝑏,𝑔 𝑎 
⇒ 𝑔|(𝑎 ⋅ 1 + 𝑏(−𝑐)) 
⇒ 𝑔|𝑎.𝑔|𝑏,𝑔|𝑎, ℎ = gcd (𝑎, 𝑏) 
⇒ 𝑔|ℎ. ℎ|𝑔,𝑔|ℎ,𝑤𝑖𝑤ℎ 𝑔, ℎ ∈ Z+ 
⇒ 𝑔 = ℎ 

Ex 4.4(7) 



∗ 33𝑥 + 29𝑦 = 2490 
gcd 33,29 = 1,𝑎𝑛𝑎 33 = 1 29 + 4, 29 = 7 4 + 1, 𝑠𝑓 1

= 29 − 7 4 = 29 − 7 33 − 29 = 8 29 − 7 33 . 1
= 33 −7 + 29 8 ⇒ 2490 = 33 −17430 + 29 19920
= 33 −17430 + 26𝑘 + 29 19920 − 33𝑘 , 𝑓𝑓𝑓 𝑎𝑎𝑎 𝑘 ∈ Z. 

∗ 𝑥 = −17430 + 29𝑘,𝑦 = 19920 − 33𝑘 
𝑥 ≥ 0 ⇒ 29𝑘 ≥ 17430 ⇒ 𝑘 ≥ 602 
𝑦 ≥ 0 ⇒ 19920 ≥ 33𝑘 ⇒ 603 ≥ k 

∗ 𝑘 = 602: 𝑥 = 28, 𝑦 = 54;  
𝑘 = 603: 𝑥 = 57, 𝑦 = 21 

Ex 4.4(14) 



∗ From Theorem 4.10 we know that  
𝑎𝑏 = 𝑎𝑐𝑚 𝑎, 𝑏 ⋅ gcd(𝑎, 𝑏).  

∗ Consequently,  

𝑏 =
𝑎𝑐𝑚 𝑎, 𝑏 ⋅ gcd 𝑎, 𝑏

𝑎
=

242,500 105
630

Ex 4.4(19) 



a)  22 ⋅ 33 ⋅ 53 ⋅ 11 
b)  24 ⋅ 3 ⋅ 52 ⋅ 72 ⋅ 112 
c)  32 ⋅ 53 ⋅ 72 ⋅ 11 ⋅ 13 

Ex 4.5(1) 



gcd (148500,7114800) = 223152111 = 3300 
𝑎𝑐𝑚 148500,7114800 = 24335372112 = 320166000 
gcd (148500,7882875) = 3253111 = 12375 
𝑎𝑐𝑚 148500,7882875 = 22335372111131

= 94594500 
gcd 7114800,7882875 = 315272111 = 40425 
𝑎𝑐𝑚 7114800,7882875 = 24325372112131

= 1387386000 

Ex 4.5(2) 



a) There are (15)(10)(9)(11)(4)(6)(11)=3920400 positive 
divisors of 𝑛 = 21439587101131353710. 

b) (i) (14-3+1)(9-4+1)(8-7+1)(10-0+1)(3-2+1)(5-0+1)(10-
2+1)=(12)(6)(2)(11)(2)(6)(9)=171072 
(ii) Since 1166400000=293655, the number of divisors 
here is (14-9+1)(9-6+1)(8-5+1)(10-0+1)(3-0+1)(5-
0+1)(10-0+1)=(6)(4)(4)(11)(4)(6)(11)=278784 
(iii)(8)(5)(5)(6)(2)(3)(6)=43200 
(iv) (7)(3)(4)(6)(1)(3)(6)=9072 
(v) (5)(4)(3)(4)(2)(2)(4)=3840 
(vi) (1)(1)(2)(2)(1)(1)(3)=12 
(vii)(3)(2)(2)(2)(1)(1)(2)=48 
 
 

Ex 4.5(8) 



a)  ∏ (𝑖2 + 𝑖)5
𝑖=1  

b)  ∏ (1 + 𝑥𝑖)5
𝑖=1  

c)  ∏ (1 + 𝑥2𝑖−1)6
𝑖=1  

Ex 4.5(24) 



Proof: (By mathematical Induction) 

For n = 2 we find that ∏ (1 − 1
𝑖2

)2
𝑖=2 = 1 − 1

22 = 1 − 1
4

= 3
4

= 2+1
2∙2

, so the 
result is true in this first case and this establishes the basis step for our 
inductive proof. 
Next we assume the result true for some (particular) k ∈ Z+ where k ≥ 2. 

This gives us ∏ (1 − 1
𝑖2

)𝑘
𝑖=2 = 𝑘+1

𝑖𝑘
. When we consider the case for n = k + 1, 

using the inductive step, we find that 
∏ 1 − 1

𝑖2
𝑘+1
𝑖=2 = ∏ 1 − 1

𝑖2
𝑘
𝑖=2 1 − 1

𝑘+1 2 = k+2
2(k+1)

= 𝑘+1 +1
2(𝑘+1)

. 

The result now follows for all positive integers n ≥ 2 by the Principle of 
Mathematical Induction. 

Ex 4.5(25) 
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