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Recap

" For sets A, B, any subset of A x B 1s called a
(binary) relation from 4 to B. Any subset of 4 x A
is called a (binary) relation on A

- Ex: Let ¥ be an alphabet, with language A < ¥*. Forx, y
in A, we define xZyif x is a prefix of y.

- Ex: Consider a state machine M = (S5, .7, 0, v,w)
« First level of reachability: 1 Zso if v(s1,x) = s9
» Second level: s1.%sq if V(s1,2122) = S2, 122 € S

- Ex: Define a relation on integers, %Yy if a <=b

- Ex: Define a relation on integer with modulo »



Reflexive

= A relation Z on a set 4 1s called reflexive 1f for all
reA (r,x) eX

= Ex 7.4: Consider A={1,2,3,4}, arelation # < A x A
1s reflexive iff %z o {(1,1),(2,2),(3,3), (4, 4)}

- Are the following relations reflexive?
K1 = {(17 1)7 (27 2)7 (27 3)}
9?2 — {<xay)|xay € A,CIZ = y}



Symmetric

= A relation Z on a set 4 1s called symmetric 1f for all

ZIZ,yEA ,We kIlOVV(:an)E*@:> (y,$)€<@

= Ex 7.6: Consider A={1,2,3}, are the following
relations symmetric or reflexive?

e {(172)7 (27 1)7 (173)7 (37 1)}
Ko = {(17 1)7 (272)7 (273)7 (373)}
K3 = {(17 1)7 (272)7 (273)7 (373)7 (372)}



Transitive

= A relation Zon a set A4 1s called transitive 1f for all

z,y,z€ A, We KNOw 2%y and yZz = 2%z

= Ex 7.10: Consider A=1{1,2,3,4}, are the following
relations transitive?

K = {(17 1)7 (273)7 (374)7 (274)}
Ky = {(173)7(374)}



Antisymmetric

= A relation Z on a set A4 1s called antisymmetric 1f for
alla,be A, 1f a%b and b%a — a = b

= Ex 7.11: For any universe%, relation 2 defined on2? (%)
by(A,B) e # if A< B . Is this relation antisymmetric?
How about reflexive, symmetric, and transtive?



Partial Order

= A relation Z on a set A4 1s called partial order 1f 1t 1s
reflexive, antisymmetric, and transitive

= Ex 7.14: Are the following relations partial order?
- Define a relation on 7z by (a,b) € Z if a < b

- Letn e Z*, forx, y € Z, the modulo 7 relation #is defined
byzZy, 1f x —y 1s a multiple of n



Equivalence Relation

= A relation Z on a set A4 1s called equivalence relation
if 1t is reflexive, symmetric, and transitive

= Ex 7.16: Are the following relations equivalence
relations?
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Composite Relation

" [f # < Ax Band %, < B x C then the composite
relation %, o %, 1s a relation from A4 to C defined by

H10PRy ={(x,z)lre A,z C,Ay € B s.t. (v,y) € %1, (y,2) € Ho}

u EX 717 LetA = {1727374}73 = {w,x,y,z},C’ — {57677}
If %1 — {(1756)7 (2756)7 (37y)7 (372)} and%2 — {(w75>7 ((L’,G)}
Write %, o #,. If %5 = {(w,5), (w,6)}, what 1S %1 0 %37
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Association and Powers

= Jet# € Ax B,%, < BxC,%; < C x B, we have
%1 O(%g 0%3) = (%1 0%2)0%3

- There 1s no ambiguity if we write %, o %o o %3

= Powers of # on A4 are recursively defined by: (1)#z! = %
and (11) B = R o B, where neZ™"

= Ex 7.19: 1t A= {1,2,3,4},7 = {(1,2),(1,3),(2,4), (3,2)},
what are %2, 3 %* ?
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Z.ero-One Matrix

* An m by n zero-one matrix E = (&;j)mxn, 1S a
rectangular array with m rows and n columns,
where each ¢i; denotes the entry 1n the ith row and
jth column, which can be either 0 or /

= Ex 7.20: £ 1s a 3 by 4 zero-one matrix

0 1
0 1
0 0

E —

—_ O =
o = O
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Relation Matrices

= Ex 7.21: Write the following relations into relation
matrices 4 = {1,2,3,4}, B = {w, z,y,2},C = {5,6,7}
% =1{(1,x),(2,2),(3,9),(3,2)}
%> = {(w,5), (z,6)}

01 0 0 1 00
01 0 0 1o 1 0
M@#)=1g o 1 1| M#=14 o ¢
0 0 0 0] 0 0 0

M (%)M (%#2) =7

= Note that, a convention used herei1s 1 +1 =1,
which 1s called boolean addition
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Some Properties

= [et 4 be the set with n elements. « 1s a relation on
A. It M(2)1s the relation matrix for # then

- M(Z)=0if Z =
- M(Z)=1ifftZ=Ax A
- M(Z™) = M(%)™, for me Z*

15



Precedes, Identity Matrix, Transpose

" Let £ and F be two m by n (0,1) matrices. We say £
precedes, or 1s less than F, and we write E < F 1f

eméfw,V1<z<m,1<]<n

* [dentify Matrix:
In = (5ij)nxna where 52'3' =1if? = j, 5@' = 0, O0.W.
= Transpose:

tr . %k
A .ajz_a/zj
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Relations in Matrices

= (Given a relation 2 on A, where |A| = n. Let M be the
relation matrix of %

- % 1sreflexive ift I,, < M
- 9 1s symmetric iff M = Mt
- # 1is transitive iff M2 < M

- % 1is antisymmetic iff M ~ M* < I,
*where 1n1=1,1n0=0n1=0,0n0=0
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Directed Graph

= Let V' be a finite set. A directed graph (or digraph)
G on V 1s made up the elements of V, called the
vertices or nodes of G, and a subset E, of V x V|
that contains the directed edges, or arcs, of G. The
set V' 1s called the vertex set of G, and the set £ 1s
called the edge set. G = (V,E) denotes the graph.

" If (a,b) € F, then there 1s an edge from a to b. Vertex
a 1s called the origin, and b 1s called terminus. We
say b 1s adjacent from a and a 1s adjacent to b.

= [fa#bthen(a,b) # (b,a). An edge from a to a if
called a loop.

18



Examples of Digraphs

= Are there 1solated vertices?

» Undirected edges {a,b}=1{b,a}

2 b
1
3
4 ® a a
b
Figure 7.1 (a) (b)

Figure 7.2



Precedence Graph

* Dependency among statements (computer
programs)

5g 54

(s9) b :=3
(52) ci=Db+2
(s3) a =1
(50 d:=axb+5 38
(s5) e :=d-—1
<56) f =17 +
(s e:=c+d

€
% 8= 8% 53 51 56

(a) (b)

Figure 7.3
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A Few More Terms

= What are: (1) associated undirected graph, (11) path
(cannot contain duplicated vertices), (111) connected
graph, (1v) length, (v) loop, and (v1) cycle?

(a) (b) (0 (d)

Figure 7.4
21



Strongly Connected

= A directed graph G on V' 1s called strongly
connected 1f there 1s a path from any vertex x to any
vertex y 5

= The graph on the right is connected but
not strongly connected

= The graph on the right 1s strongly

connected and loop-free



Components

* Two components in each graph

(R1)

N
—_

(R,)

Figure 7.6
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Complete Graphs

1

(K3)

Figure 7.7
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Matrices and Graphs

= A graph G describes a relation #
- If (x,y) 1s an edge in G, then = Zy

= Both 0-1 matrix and digraph can describe relations
- The matrix is called the adjacency matrix for G

- Or a relation matrix for
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Reflexive and Antisymmetric

Figure 7.8
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Symmetric

Figure 7.9



Transitive and Antisymmetric

Figure 7.10
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Partially Ordered Set

= # is arelation on 4. (4,%) is called partially
ordered set 1f relation Z on 4 1s a partial order
relation

- Reflexive, antisymmetric, transitive

- Also called poset

= Ex 7.34: Define the relation =%y if x, y are the same
course or 1f x 1s a prerequisite of y

30



Not Partial Order

2 3

ﬂ 2

1

(a) (b)

Figure 7.16



Hasse Diagram

Drop loops

Drop transitive edge

Directions go from bottom up

(@) (b)

Figure 7.17



Totally Ordered

= If (A4,%)1s a poset, A 1s totally ordered (or linearly
ordered) if for any x and y, either =22y or yZz= .

- # 1s called a total order (or a linear order)

(a)
Figure 7.19




Partial vs. Total Orders

= Consider a car manufacturer which needs to
assemble 7 components into a car. The partial order

1s % given below
- Can the company find a total order.7 so that #Z < 7 ?

- Topological sorting! G F D

Figure 7.20
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Topological Sorting

= [dea: Repeatedly remove the vertex that 1s not a

source (nor an implicit source) of any edge, until we
have no vertex left in the Hasse diagram

(k=1 Hy| k=2 Hy|(k=3) Hy|(k=4) Hy|(k=5) Hs|k=6) Hg|k=7) H,
G F D G F G
C 3 C C
A A A A A
A ] ® ]
B E B E B E B E B E| B E E
D F<D G<F<D C<@G A<C<G B<A<C |E<B<A<C
<F<D <F<D <G<F<D |<G<F<D
Figure 7.21
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Topological Sorting Algorithm

* Input: A partial order # on a set 4, where |4| = n
= Step 1: Let k= 1, Let H, be the Hasse diagram

= Step 2: Select v, from H,, so that no (implicitly
directed) edge in H, starts at v,

= Step 3: If k <n, remove v, and edges terminating at
v, from H,. Call the new Hasse H,_,, and goto step 1

= Step 4: The total order that contains # 1s

T Uy < Up < -+ < Vg < U1

36



Maximal, Minimal Elements

" [f(A4,%)1s a poset, an element z € A 1s a maximal

element of A if for alla€ A, a # 2 = —(a%a). An

elementy € A 1s a minimal element of 4 1if for all
be A, b#y=— —(bZy)

= Ex 7.42: Define # be “less than or equal to”
relation on Z , we find that(Z, #Z) 1s a poset with no
maximal nor minimal element. How about (N, %) ?

= A poset may have multiple maximal (minimal)
clements! Recall the topological sorting algorithm.

" [f(A,Z) 1s a poset and A 1s finite, A has both a

maximal and a minimum element .



Least, Greatest Elements

" [f(A,2)1s a poset, an element z € A 1s a least element

of A if 2%avae A. An element y € Ais a greatest
element of 4 if 0%y Vbe A

- If a poset has a greatest (least) element, the element 1s unique

= Ex 7.45: Define% = {1,2,3}, 2 be subset relation

- Poset (2 (% ),<) has ¢j as a least element and %/ as a
greatest element

- Let 4 be all the nonempty subsets of 7. (A, <) has %
as the greatest element. It has no least element, but three
minimal elements.
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Lower and Upper Bounds

" [f(A,Z)1s aposet and B < A. An elementz € A 1s
called a lower bound of B if z#b Vb e B. An elementy € A

1s called an upper bound of B 1f vZy Vb € B

-2’ € A is a greatest lower bound (glb) of B if it is a lower
bound of B and 2" %z’ for any other lower bound z” of B

- 2’ € Ais a least upper bound (lub) of B if it is an upper
bound of B and »'%x" for any other upper bound z” of B

= Ex 7.47: LetA = 22({1,2,3,4}) and # be the subset
relation on A. If B = {{1}, {2}, {1,2}} then what are the
upper bounds? What 1s the least upper bound? What
1s the greatest lower bound?

- Lub and glb are unique 39



Lattice

= A poset(A,#)1s called a lattice 1f for allz,y € A the
elements lub{z,y} and glb{z, y} both exist in A4

/123\

Ko7
27 AR

@
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Equivalence Relations

= A relation # on A 1s an equivalence relation 1f 1t’s
reflexive, symmetric, and transitive.

= Ex 1: For A # &, the equality relation 1s an
equivalence relation, in which two elements are
related 1f they are 1dentical.

= Ex 2: Consider a relation on 7 , where z%y 1f « —vy
1s a multiple of 2.

- How does this relation split 7 into two subsets?
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Partition

= Let 4 be a set and / be an index set, where 4; 1s not
empty and A; € A, for all i € I . {Ai}ier is a partition
of 4 if

_A=J4
el

- Ai[Aj = forall i #j;ij€el
Each subset 4, 1s a cell, or block of the partition

" Ex 7.52: ForA={1,2,3,...,10}, the following are
partitions of A4

- {{1,2,3,4,5}, {6,7,8,9,10} }
- A=, i+5), 1<i<5h
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Equivalence Class

= Let # be an equivalence relation on 4 . The
equivalence class of x € 4, denoted as|[z], is defined

by [z] = {yly € A, yZx}

= Ex 7.52: # 1s a equivalence relation on 7 , where x 2y
if 4/(z — y). The four equivalence classes are

- [0] = {4k|k € Z}
1] = {4k + 1|k € Z}
- [2] = {4k + 2|k € Z}
3] = {4k + 3|k e Z}
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Properties of Equivalence Class

= Let # 1s an equivalence relation on 4, and z,y € A.
- x € |z]
- x Xy it [z] = [y]
- [z] =[y] or [z] nly] =&

= This theorem tells us the distinct equivalence
classes given by# gives us a partition of A

45



Examples of Partitions

= Ex 7.56 (a) : LetA = {1,2,3,4,5} and

Z =1(1,1),(2,2),(2,3),(3,2),(3,3),(4,4), (4,5), (5,4), (5,5)}
what’s the corresponding partition?

= Ex 7.56 (b): Function f : A —» B, where4 = {1,2,3,4,5,6, 7}
and B = {z,y,2} , f1s defined as

{(1,2),(2,2),(3,2),(4,),(5,2),(6,),(7,2)}

We define a relation 2 by a%bif f(a) = f(b). What 1s
the partition determined by# ?
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Examples of Partitions (cont.)

= [f an equivalence relation Zon A = {1,2,3,4,5,6, 7}
results in the partition A = {1,2} u {3} U {4,5,7} U {6},
what 1s Z? What’s the size of 1t?

Z = ({1,2} x {1,2}) v ({3} x {3}) v ({4,5,7} x {4,5,7}) U ({6} x {6})

47



Equivalence Class and Partition

= For a set 4
- Any equivalence relation # on A4 leads to a partition of 4

- Any partition of 4 gives an equivalence relation 2 on A

= For any set A, there 1s a one-to-one correspondence
between the set of equivalence relations on 4 and
the set of partitions of A.

- So counting the number of partitions 1s the same as
counting 1-1 functions.
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Redundant States

= Redundant state: A state that can be eliminated
because other states will perform its function

= Consider a finite state machine M = (S,.,0,v,w),
Let a relationsi E1s2 1f w(s1,z) = w(ss,z) for allxz € &
- Ey 1s called /-equivalent.
" 510152 1f w(si, z) = w(sz, z) for all e .#*
- E is called k-equivalent
" 5150 1f s1Ekso1s true for all £ > 1

- E 1s called equivalent

50



Minimization Algorithm

= To get rid of redundant states

= Step 1: Let k=1, find states that are /-equivalent by
examining the output rows in the state table. This
gives partition P, and relation £,

= Step 2: When P, 1s found, we obtain P, ; by
knowing that if s,E,s,, then s,E,, ;s, when
v(s1,x)Exv(ss,x) Ve € I

- This is true if ¥(s1,2) and v(s2,x) are in the same cell of
Py

= Step 3: If P, =P,, we are done, 0.w. goto step 2
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A Simple Example

= Ex 7.60: If # = 0 = {0,1} , the state table 1s given
bGIOW. What iS P]? P1 . {Sl}, {82, S5, 86}, {83, 84}

- ShOW V(Sg, ZE)E1V(84, ZI?), and thus‘7

Table 7.1
= Show —[v(ss, x)E1v(se, x)] , and thus? 5

u P2 . {81}7{82785}7{86}7{83784} 0 1 0
. 0 1
= Since P, # P,, we need to get P j; j: jz { o
- Because Ps = P, we stop here s3 |52 s4 {0 0
S4 S5 §3 0 0
- S5, S4are redundant states wls |1 O
1 O

S6 | S1 S6




Refinement

= P, 1s called a refinement of P,, P, < Py, if every cell
of P, 1s contained 1n a cell of P;. When P, < P
and P, = P,, we write P, = P .

* In the minimization process, if &>=1 and P,=P,_,,
then P, =P, for all r >=k+1
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Distinguishing String

= A sample string with length A+1that leads to

different outputs for states s, and s,

= Ex 7.61: Find the minimal distinguish string for s,

and s, 1n the finite state machine of Ex 7.60
Table 7.1

Py i {s1},{s2,55}, {56}, {53, 54}

Pl . {31 7{32785756}7{83784}

l

|

0

1

S1
52
§3
54
S5
S6

S4
S5
82
S5
$2
51

S3
52
S4
§3
S5
S6

_——0 O = O S

QOO OO = —




Take-home Exercises

Exercise 7.1: 1,5,6,9, 17
Exercise 7.2: 4, 14, 17, 18, 26
Exercise 7.3: 1,7, 18, 23, 25
Exercise 7.4:2,6,7,12, 14
Exercise 7.5: 1,3
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