Department of Computer Science National Tsing Hua University

CS 2336: Discrete Mathematics Chapter 3 Set Theory

Instructor: Cheng-Hsin Hsu

Outline

- **3.1 Sets and Subsets**
- **3.2 Set Operations and the Laws of Set Theory**
- **3.3 Counting and Venn Diagrams**
- **3.4 A First Word on Probability**

Set and Element

- Set: A well-defined collection of objects. We use upper-case letters to denote sets, such as *A*, *B*,
- Element (Member): The objects contained in sets.
 We use lower-case letter to denote elements, such as *a*, *b*, ...

• We write $a \in A$ if a is an element of A, and $a \notin A$ if a is not an element of A

Example 3.1

- One way to represent a set is to use set braces
- Let *A* be a set of the five smallest positive integer
 - We write $A = \{1, 2, 3, 4, 5\}$
 - 1 is in A: $1 \in A$
 - 8 is not in A: $8 \notin A$
- Another way to represent A
 - $A = \{x | 1 \le x \le 5, x \in \mathbb{Z}\}$
 - It reads: the set of all *x* such that ...
 - When the universe is clear (to be integers), we may write $A = \{x | 1 \le x \le 5\}$

Sets can be finite or infinite set

$$- \{ x | x > 0, x \in \mathbb{Z} \}$$

- $\{x|1>x>0, x\in\mathbb{R}\}$

For a finite set A, we use |A| to denote the number of elements in it. It is called cardinality or size

Definition 3.1

- For two sets C and D from the same universe, C is a subset of D if and only if every element of C is an element of D
 - We write $C \subseteq D$ or $D \supseteq C$

- In addition, if D contains at least one element that is not in C, we call C is a proper subset of D
 - We write $C \subset D$ or $D \supset C$

Some Properties

- $C \subseteq D$ iff $\forall x [x \in C \Rightarrow x \in D]$
- For all *C* and *D*, $C \subset D \Rightarrow C \subseteq D$ and $D \supset C \Rightarrow D \supseteq C$
- For all *C* and *D*, $C \subseteq D \Rightarrow |C| \leq |D|$ and $C \subset D \Rightarrow |C| < |D|$

Definition 3.2

- For any sets *A* and *B* from the same universe, *A* and *B* are equal iff $A \subseteq B$ and $A \subseteq B$, we write A = B
 - Example: $\{1, 2, 3\} = \{3, 2, 1\} = \{2, 2, 1, 3\} = \{1, 2, 3, 1, 1\}$

Theorem 3.1

Let A, B, and C be from the same universe

- If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$
- If $A \subset B$ and $B \subset C$, then $A \subset C$
- If $A \subseteq B$ and $B \subset C$, then $A \subset C$
- If $A \subset B$ and $B \subseteq C$, then $A \subset C$

Definition 3.3

- The null set, or empty set, is the (unique) set containing no elements.
- We denote it as {} or Ø

- $|\emptyset| = 0$
- $\bullet \ \emptyset \neq \{0\}$
- $\emptyset \neq \{\emptyset\}$

Theorem 3.2

- For any universe \mathbb{U} , for $A \subseteq \mathbb{U}$, we have $\emptyset \subseteq A$
- Proof: Assume Ø ∉ A , then there is an element x with x ∈ Ø and x ∉ A. However, x ∈ Ø is impossible. Hence the assumption is rejected.

• Moreover, if $A \neq \emptyset$ then $\emptyset \subset A$

Example 3.7

- How many subsets does the set C={1,2,3,4,5} have?
- Approach #1: For each element, it can appear or not in a subset. Hence, C has 2⁵ = 32 subsets
- Approach #2: We may have $0, 1, 2, \dots, 5$ elements in a subset. $\binom{5}{0} + \binom{5}{1} + \binom{5}{2} + \binom{5}{3} + \binom{5}{4} + \binom{5}{5} = 32$
- Definition 3.4: The power set of A, P(A), is the collection of all subsets of A

Definition 3.5 & 3.6

• For *A*, *B* from the same universe, we define

- Union: $A \cup B = \{x | x \in A \lor x \in B\}$
- Intersection: $A \cap B = \{x | x \in A \land x \in B\}$
- Symmetric Difference: $A \triangle B = \{x | x \in A \cup B \land x \notin A \cap B\}$
- Let *S*, *T* from the same universe. *S* and *T* are disjoint or mutually disjoint iff $S \cap T = \emptyset$

Definition 3.7 & 3.8

For a set A from universe U, the complement of A, denoted by U-A or Ā, which is given by {x | x ∈ U ∧ x ∉ A}

- For set A and B from U, the (relative) complement of A in B, written as B-A, is given by {x | x ∈ B ∧ x ∉ A}
- Let U be real numbers, A = [1,2] and B = [1,3). What are: (i) $A \cup B$, (ii) $A \cap B$, (iii) \overline{A} , and (iv) B A

The Laws of Set Theory

For any sets A, B, and C taken from a universe \mathcal{U} 1) $\overline{\overline{A}} = A$ Law of Double Complement 2) $\overline{A \cup B} = \overline{A} \cap \overline{B}$ DeMorgan's Laws $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 3) $A \cup B = B \cup A$ Commutative Laws $A \cap B = B \cap A$ 4) $A \cup (B \cup C) = (A \cup B) \cup C$ Associative Laws $A \cap (B \cap C) = (A \cap B) \cap C$ 5) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Distributive Laws $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 6) $A \cup A = A$ Idempotent Laws $A \cap A = A$ 7) $A \cup \emptyset = A$ Identity Laws $A \cap \mathcal{U} = A$ 8) $A \cup \overline{A} = \mathfrak{A}$ Inverse Laws $A \cap \overline{A} = \emptyset$ 9) $A \cup \mathcal{U} = \mathcal{U}$ Domination Laws $A \cap \emptyset = \emptyset$ 10) $A \cup (A \cap B) = A$ Absorption Laws $A \cap (A \cup B) = A$

Definition 3.9 and Theorem 3.5

Let s be an equality statement of two set expression with only union and interactions operands. The dual of s, written as s^d can be derived from s by replacing: (i) each Ø and U by U and Ø; (ii) each ∪ and ∩ by ∩ and ∪

• The principle of duality: let *s* be a theorem with the quality of two set expressions, then *s*^{*d*} is also a theorem

Definition 3.10

- Let *I* be a nonempty set and *U* be a universe. For each *i* in *I*, let $A_i \subseteq U$. Then *I* is called an index set, and each $i \in I$ is an index. Define
 - $\cup_{i \in I} A_i = \{x | x \in A_i \text{ for at least an } i \in I\}$
 - $\cap_{i \in I} A_i = \{x | x \in A_i \text{ for all } i \in I\}$

• Example: Let $U = \mathbb{R}$ and $I = \mathbb{R}^+$, $A_r = [-r, r]$, what are: (i) $\cup_{r \in I} A_r$ and (ii) $\cap_{r \in I} A_r$

Venn Diagrams

Figure 3.10

Counting

- For two finite sets: $|A \cup B| = |A| + |B| |A \cap B|$
- If *A* and *B* are disjoint: $|A \cup B| = |A| + |B|$

$$\begin{split} |A\cup B\cup C| = \\ |A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C| \end{split}$$

Figure 3.13

A First Word on Probability

- Example Experiments: toss a fair coin, roll a fair die, or randomly select 2 students from a class of 20
- Outcome: The item that got picked
- Sample Spaces (\$\nabla\$): the sets of all possible outcomes: {H, T}, {1, 2, 3, 4, 5, 6}, and {(i, j)| 1 <= i, j <=20}</p>

Probability

• Assume equal likelihood, let \mathscr{S} be the sample space for an experiment \mathscr{E} . Each subset A of \mathscr{S} is called an event. Each element of \mathscr{S} determines an outcome. Let $|\mathscr{S}| = n, A \subseteq \mathscr{S}, a \in \mathscr{S}$

-
$$\Pr(\{a\}) =$$
 The probability that $\{a\}$ occurs $= \frac{|\{a\}|}{|\mathscr{S}|} = \frac{1}{n}$
- $\Pr(A) =$ The probability that A occurs $= \frac{|A|}{|\mathscr{S}|} = \frac{|A|}{n}$

Cartesian Product

- For sets A, B, their Cartesian product, or cross product, is written as $A \times B = \{(a, b) | a \in A, b \in B\}$
- Consider an experiment: A single die is rolled and a coin is flipped. Both outcomes are noted.
 - Independent assumption

Take-home Exercises

- Exercise 3.1: 2, 5, 10, 15, 29
- Exercise 3.2: 2, 4, 7, 17, 19
- Exercise 3.3: 4, 5, 6, 10
- Exercise 3.4: 4, 8, 9, 11, 15