Department of Computer Science National Tsing Hua University

CS 2336: Discrete Mathematics

Chapter 3

Set Theory

Instructor: Cheng-Hsin Hsu

Outline

3.1 Sets and Subsets

3.2 Set Operations and the Laws of Set Theory
3.3 Counting and Venn Diagrams
3.4 A First Word on Probability

Set and Element

- Set: A well-defined collection of objects. We use upper-case letters to denote sets, such as $A, B, \ldots \ldots$
- Element (Member): The objects contained in sets. We use lower-case letter to denote elements, such as a, b, \ldots
- We write $a \in A$ if a is an element of A, and $a \notin A$ if a is not an element of A

Example 3.1

- One way to represent a set is to use set braces
- Let A be a set of the five smallest positive integer
- We write $A=\{1,2,3,4,5\}$
-1 is in A: $1 \in A$
- 8 is not in A: $8 \notin A$
- Another way to represent A
- $A=\{x \mid 1 \leq x \leq 5, x \in \mathbb{Z}\}$
- It reads: the set of all x such that \ldots
- When the universe is clear (to be integers), we may write $A=\{x \mid 1 \leq x \leq 5\}$

Cardinality

- Sets can be finite or infinite set
$-\{x \mid x>0, x \in \mathbb{Z}\}$
$-\{x \mid 1>x>0, x \in \mathbb{R}\}$
- For a finite set A, we use $|A|$ to denote the number of elements in it. It is called cardinality or size

Definition 3.1

- For two sets C and D from the same universe, C is a subset of D if and only if every element of C is an element of D
- We write $C \subseteq D$ or $D \supseteq C$
- In addition, if D contains at least one element that is not in C, we call C is a proper subset of D
- We write $C \subset D$ or $D \supset C$

Some Properties

- $C \subseteq D$ iff $\forall x[x \in C \Rightarrow x \in D]$
- For all C and $D, C \subset D \Rightarrow C \subseteq D$ and $D \supset C \Rightarrow D \supseteq C$
- For all C and $D, C \subseteq D \Rightarrow|C| \leq|D|$ and $C \subset D \Rightarrow|C|<|D|$

Definition 3.2

- For any sets A and B from the same universe, A and B are equal iff $A \subseteq B$ and $A \subseteq B$, we write $A=B$
- Example: $\{1,2,3\}=\{3,2,1\}=\{2,2,1,3\}=\{1,2,3,1,1\}$

Theorem 3.1

- Let A, B, and C be from the same universe
- If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$
- If $A \subset B$ and $B \subset C$, then $A \subset C$
- If $A \subseteq B$ and $B \subset C$, then $A \subset C$
- If $A \subset B$ and $B \subseteq C$, then $A \subset C$

Definition 3.3

- The null set, or empty set, is the (unique) set containing no elements.
- We denote it as $\}$ or \emptyset
- $|\emptyset|=0$
- $\emptyset \neq\{0\}$
- $\emptyset \neq\{\emptyset\}$

Theorem 3.2

- For any universe \mathbb{U}, for $A \subseteq \mathbb{U}$, we have $\emptyset \subseteq A$
- Proof: Assume $\emptyset \nsubseteq A$, then there is an element x with $x \in \emptyset$ and $x \notin A$. However, $x \in \emptyset$ is impossible. Hence the assumption is rejected.
- Moreover, if $A \neq \emptyset$ then $\emptyset \subset A$

Example 3.7

- How many subsets does the set $C=\{1,2,3,4,5\}$ have?
- Approach \#1: For each element, it can appear or not in a subset. Hence, C has $2^{5}=32$ subsets
- Approach \#2: We may have $0,1,2, \ldots, 5$ elements in a subset. $\binom{5}{0}+\binom{5}{1}+\binom{5}{2}+\binom{5}{3}+\binom{5}{4}+\binom{5}{5}=32$
- Definition 3.4: The power set of $A, P(A)$, is the collection of all subsets of A

Definition 3.5 \& 3.6

- For A, B from the same universe, we define
- Union: $A \cup B=\{x \mid x \in A \vee x \in B\}$
- Intersection: $A \cap B=\{x \mid x \in A \wedge x \in B\}$
- Symmetric Difference: $A \triangle B=\{x \mid x \in A \cup B \wedge x \notin A \cap B\}$
- Let S, T from the same universe. S and T are disjoint or mutually disjoint iff $S \cap T=\emptyset$

Definition 3.7 \& 3.8

- For a set A from universe U, the complement of A, denoted by $U-A$ or \bar{A}, which is given by $\{x \mid x \in U \wedge x \notin A\}$
- For set A and B from U, the (relative) complement of A in B, written as $B-A$, is given by $\{x \mid x \in B \wedge x \notin A\}$
- Let U be real numbers, $A=[1,2]$ and $B=[1,3)$. What are: (i) $A \cup B$, (ii) $A \cap B$, (iii) \bar{A}, and (iv) $B-A$

The Laws of Set Theory

For any sets A, B, and C taken from a universe U

1) $\overline{\bar{A}}=A$
2) $\overline{A \cup B}=\bar{A} \cap \bar{B}$
$\overline{A \cap B}=\bar{A} \cup \bar{B}$
3) $A \cup B=B \cup A$
$A \cap B=B \cap A$
4) $A \cup(B \cup C)=(A \cup B) \cup C \quad$ Associative Laws $A \cap(B \cap C)=(A \cap B) \cap C$
5) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \quad$ Distributive Laws $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
6) $A \cup A=A$
$A \cap A=A$
7) $A \cup \emptyset=A$
$A \cap \ddots=A$
8) $A \cup \bar{A}=\because$
$A \cap \bar{A}=\emptyset$
9) $A \cup \cup=\vartheta$
$A \cap \emptyset=\emptyset$
10) $A \cup(A \cap B)=A$
$A \cap(A \cup B)=A$
Idempotent Laws
Identity Laws

Inverse Laws

Domination Laws

Absorption Laws

Definition 3.9 and Theorem 3.5

- Let s be an equality statement of two set expression with only union and interactions operands. The dual of s, written as s^{d} can be derived from s by replacing: (i) each \emptyset and U by U and \emptyset; (ii) each \cup and \cap by \cap and \cup
- The principle of duality: let s be a theorem with the quality of two set expressions, then s^{d} is also a theorem

Definition 3.10

- Let I be a nonempty set and U be a universe. For each i in I, let $A_{i} \subseteq U$. Then I is called an index set, and each $i \in I$ is an index. Define
- $\cup_{i \in I} A_{i}=\left\{x \mid x \in A_{i}\right.$ for at least an $\left.i \in I\right\}$
- $\cap_{i \in I} A_{i}=\left\{x \mid x \in A_{i}\right.$ for all $\left.i \in I\right\}$
- Example: Let $U=\mathbb{R}$ and $I=\mathbb{R}^{+}, A_{r}=[-r, r]$, what are: (i) $\cup_{r \in I} A_{r}$ and (ii) $\cap_{r \in I} A_{r}$

Venn Diagrams

Figure 3.9

Figure 3.10

Counting

- For two finite sets: $|A \cup B|=|A|+|B|-|A \cap B|$
- If A and B are disjoint: $|A \cup B|=|A|+|B|$

$$
\begin{aligned}
& |A \cup B \cup C|= \\
& |A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|
\end{aligned}
$$

Figure 3.13

A First Word on Probability

- Example Experiments: toss a fair coin, roll a fair die, or randomly select 2 students from a class of 20
- Outcome: The item that got picked
- Sample Spaces (\mathscr{S}) : the sets of all possible outcomes: $\{\mathrm{H}, \mathrm{T}\},\{1,2,3,4,5,6\}$, and $\{(\mathrm{i}, \mathrm{j}) \mid 1<=$ i, j $<=20\}$

Probability

- Assume equal likelihood, let \mathscr{S} be the sample space for an experiment \mathscr{E}. Each subset A of \mathscr{S} is called an event. Each element of \mathscr{S} determines an outcome. Let $|\mathscr{S}|=n, A \subseteq \mathscr{S}, a \in \mathscr{S}$
$-\operatorname{Pr}(\{a\})=$ The probability that $\{\mathrm{a}\}$ occurs $=\frac{|\{a\}|}{|\mathscr{S}|}=\frac{1}{n}$
$-\operatorname{Pr}(\mathrm{A})=$ The probability that A occurs $=\frac{|A|}{|\mathscr{S}|}=\frac{|A|}{n}$

Cartesian Product

- For sets A, B, their Cartesian product, or cross product, is written as $A \times B=\{(a, b) \mid a \in A, b \in B\}$
- Consider an experiment: A single die is rolled and a coin is flipped. Both outcomes are noted.
- Independent assumption

Figure 3.14

Take-home Exercises

- Exercise 3.1: 2, 5, 10, 15, 29
- Exercise 3.2: 2, 4, 7, 17, 19
- Exercise 3.3: 4, 5, 6, 10
- Exercise 3.4: 4, 8, 9, 11, 15

