Department of Computer Science National Tsing Hua University

CS 2336: Discrete Mathematics **Chapter 13 Optimization and Matching** (Overview) **Instructor: Cheng-Hsin Hsu**

Operations Research

- Finding optimum solution under various constraints
- Examples related to graphs/multigraphs:
 - The shortest distance between two vertices in a loop-free undirected graph
 - The spanning tree with the minimum total weight
 - The maximum amount of material that can be transported from a source to a destination over a transport network
 - Material can be water, oil, and network packets
- We will cover a few popular algorithms

Outline

13.1 Dijkstra's Shortest-Path Algorithm

13.2 Minimal Spanning Trees: The Algorithms of Kruskal and Prim

13.3 Transport Networks: The Max-Flow Min-Cut Theorem

13.4 Matching Theory

Weighted Graph

- For a loop-free connected directed graph G=(V,E), we assign a weight wt(e) to each of the edge e=(a,b), where a and b are two vertices. G is called a weighted graph.
 - wt(e) is a real number, and can also be written as wt(a,b)
 - wt(x,y) is infinity if (x,y) is not an edge in G
- Ex 13.1: The weights can represent the driving distance, flying time, transportation cost from location x to y

Shortest Path

- For a path $(a,v_1),(v_1,v_2),\ldots,(v_n,b)$, its length is defined as wt $(a,v_1)+wt(v_1,v_2)+\ldots+wt(v_n,b)$
- We define d(a,b) as the shortest distance from a to b, which is the length of the shortest path between them
- $d(a,b) = \infty$ if no such path exists, and d(a,a)=0

Shortest path problem: Given a vertex v_0 , for all vertex v in a graph, determine: (i) $d(v_0,v)$ and (ii) a directed path from v_0 to v if $d(v_0,v) \neq \infty$

Properties of *d* **Function**

- Let $S \subset V$, $v_0 \in S$, and $\bar{S} = V S$. We define the distance from v_0 to \bar{S} by: $d(v_0, \bar{S}) = \min_{v \in \bar{S}} d(v_0, v)$
- If $d(v_0, \bar{S})$ is finite, then there exist a directed path from v_0 to a vertex $v_{m+1} \in \bar{S}$, i.e., $d(v_0, \bar{S}) = d(v_0, v_{m+1})$
- Write the path as $P: (v_0, v_1), (v_1, v_2), \dots, (v_{m-1}, v_m), (v_m, v_{m+1})$

• We have:

- $-v_0, v_1, \ldots, v_m \in S$
- $P': (v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$ is the shortest path from v_0 to v_k , for all $1 \le k \le m$

Properties of *d* **Function (cont.)**

- In summary, given: $d(v_0, \overline{S}) = \min\{d(v_0, u) + wt(u, w)\}$
- Let u^{*} ∈ S and w^{*} ∈ S̄lead to d(v₀, S̄). We know the shortest distance from v₀ to w^{*} is d(v₀, w^{*}) = d(v₀, u^{*}) + d(u^{*}, w^{*})

This is the core idea of Dijkstra's shortest path algorithm

Dijkstra's Algorithm

- Let G=(V,E) be the weight graph with |V|=n. Find the shortest distance from v₀ to all other vertices
- Step 1: Let S₀={v₀}, i=0. Label v₀ with (0,-) and all other vertices with (∞, −), where the 1st element is the shortest distance known so far, and the 2nd element is the previous vertex of the shortest path
- Step 2: For each $v \in \overline{S}_i$, update the label of v by (L(v), y), where y is the vertex in S_i producing the minimum L(v) and $L(v) = \min_{u \in S_i} \{L(v), L(u) + wt(u, v)\}$

Dijkstra's Algorithm (cont.)

- Step 3: If all vertices in *S
 _i* have label (∞, −) then stop.
 Otherwise
 - find a vertex v_{i+1} , where $L(v_{i+1})$ is minimum among vertices in \bar{S}_i
 - Let $S_{i+1} = S_i \cup \{v_{i+1}\}$
 - Let i = i + 1, stop if i=n-1, otherwise, go to step 2
- Once the algorithm is completed, the shortest path to any vertex v can be found by going reservedly toward v₀, following the labels

Ex 13.2: Find the shortest path from c to all other vertices using Dijkstra's algorithm

11

Complexity Analysis

- Standard Dijkstra's algorithm has a time complexity of O(n³), where n is the number of vertices
 - Each time we add one vertex into S \leftarrow first n
 - For every vertex, we check if we need to update the label, the other two n's
- Optimized Dijkstra's algorithms have complexities of O(n²) and O(m log n), where m is the number of edges

Important: Dijkstra's is a greedy algorithm. Each step only depends on local information. However, the resulting solution achieves global optimum.

Outline

13.1 Dijkstra's Shortest-Path Algorithm

13.2 Minimal Spanning Trees: The Algorithms of Kruskal and Prim

13.3 Transport Networks: The Max-Flow Min-Cut Theorem

13.4 Matching Theory

Optimum Spanning Tree

- If we need to connect 7 computers, while connecting any two computers, x and y, imposes a cost wt(x,y). Find the spanning tree with the minimum total construction cost.
- We introduce two algorithms: Kruskal's and Prim's algorithms

Kruskal's Algorithm

- Step 1: Let i=1, and select an edge e₁ in G with the smallest weight wt(e₁)
- Step 2: Let e₁,e₂,...,e_i be all the selected edges. Select edge e_{i+1} so that: (i) wt(e_{i+1}) has the smallest weight and (ii) the subgraph e₁,e₂,...,e_i,e_{i+1} contains no cycles
- Step3: Let i=i+1. If i<n-1, go to step 2. If i=n-1, subgraph given by e₁,e₂,...,e_{n-1} is an optimal spanning tree

Simple Example

Ex 13.3: Find the optimum spanning tree of the graph using Kruskal's algorithm

Figure 13.5

Simple Example (cont.)

Prim's Algorithm

- Step 1: Let i=1, P={v₁}, where v₁ is an arbitrary vertex. Define N=V-{v₁} and T is empty set
- Step 2: when $0 \le i \le n$, where |V|=n. Let $P=\{v_1, v_2, ..., v_i\}$, $T=\{e_1, e_2, ..., e_{i-1}\}$, and N=V-P. Add to T an edge with minimal weight (e_i) that connects a vertex x in P with a vertex v_{i+1} in N. Move v_{i+1} from N to P.
- Step 3: Let i=i+1. If i<n goto step 2. If i=n, T gives the optimal spanning tree</p>

Simple Example

Ex 13.4: Find the optimum spanning tree of the graph using Prim's algorithm

Figure 13.5

Simple Example (cont.)

Figure 13.5

53 Fb, c, a, e, f. g? Far 1 {a,b} {c,d,e,f,g} {s{a,b}} 2 Ja, b, e? Sc. d, f, g? { Sa, b? Sb, e? ? 3. Sa, b, e, g? Fc, d, f ? F Sa, b?, 56, e?, 5e, g?? 4. Sa, b, e, g, f? Sc, d? Ssa, b), Sb, e1, Se, g?, Sg, fi? 5 Ea, b, e, g, f, di Ec i FEa, bi, Eb, ei, Ee, gi, E8, fs, ff, ail 6. Fa, b, e, g, f, d, ci [F Fa, bi, {b, ei, {e, g}, Fg, fi, {f, di, Fc, ei]

5+4+1+2+3+2=17

Concluding Remark

- Both Kruskal's and Prim's algorithms always grow to optimal spanning trees
- Kruskal's algorithm may lead to forests during an iteration, while Prim always gives trees
- Prim allows us to start from any vertex

Both algorithms are greedy, yet achieve global optimum

Outline

13.1 Dijkstra's Shortest-Path Algorithm

13.2 Minimal Spanning Trees: The Algorithms of Kruskal and Prim

13.3 Transport Networks: The Max-Flow Min-Cut Theorem

13.4 Matching Theory

Transport Networks

- N=(V,E) is a loop-free connected directed graph. N is called a (transport) network, if the following conditions are met
 - There is a unique vertex a, with id(a)=0. a is called the source
 - There is a unique vertex z, with od(a)=0. z is called the sink
 - N is weighted. There is a capacity function maps each edge e=(v,w) to a nonnegative integer, denoted by c(e)=c(v,w)

Figure 13.9

Flow

- N=(V,E) is a transport network. A function f from E to the nonnegative integers is called a flow for N if
 - $F(e) \le c(e)$ for each edge e
 - For v other than the source and sink,

$$\sum_{w \in V} f(w, v) = \sum_{u \in V} f(v, u)$$

Figure 13.10

Value of a Flow

- Let f be a flow of network N=(V,E)
 - An edge e is saturated if f(e)=c(e), o.w. it is called unsaturated
 - If a is the source of N, $val(f) = \sum_{v \in V} f(a, v)$ is called the value of the flow
- If z is the sink, not hard to see that $val(f) = \sum_{v \in V} f(v, z)$

Between source and sink?

Cut

- For network N=(V,E), C is a cut-set for the undirected graph associated with N, then C is called a cut if removing the edges in C from N separates a and z.
- The sum of all the edges' capacity is called the capacity of a cut.

Figure 13.11

Cut Bounds Flow Value

Val(f) cannot exceed the capacity of any cut in N.

Figure 13.11

Max-Flow Min-Cut Theorem

For a transport network N=(V,E), the maximum flow value that can be attained in N is equal to the minimum capacity over all cuts in the network

 Several algorithms have been proposed to solve maxflow min-cut problem. See the textbook for details.

Figure 13.11