Department of Computer Science
National Tsing Hua University

CS 2336: Discrete Mathematics
Chapter 13
Optimization and Matching

(Overview)

Instructor: Cheng-Hsin Hsu

Operations Research

* Finding optimum solution under various constraints

= Examples related to graphs/multigraphs:

- The shortest distance between two vertices 1n a loop-free
undirected graph

- The spanning tree with the minimum total weight

- The maximum amount of material that can be transported from
a source to a destination over a transport network

« Material can be water, oil, and network packets

= We will cover a few popular algorithms

Outline

13.1 Dijkstra’s Shortest-Path Algorithm

13.2 Minimal Spanning Trees: The Algorithms of
Kruskal and Prim

13.3 Transport Networks: The Max-Flow Min-Cut
Theorem

Weighted Graph

" For a loop-free connected directed graph G=(V,E), we
assign a weight wt(e) to each of the edge e=(a,b), where
a and b are two vertices. G 1s called a weighted graph.

- wt(e) 1s a real number, and can also be written as wt(a,b)

- wt(x,y) 1s infinity if (x,y) 1s not an edge in G

= Ex 13.1: The weights can
represent the driving distance,

flying time, transportation cost

from location x to y

Figure 13.1

Shortest Path

= For a path (a,v,),(v{,v5),...,(V,,b), its length 1s defined as
wt(a,v,)Twt(v,,v,)+...+twt(v_,b)

= We define d(a,b) as the shortest distance from a to b,
which is the length of the shortest path between them

" d(a,b) = co1f no such path exists, and d(a,a)=0

= Shortest path problem: Given a vertex v, for all vertex v
in a graph, determine: (1) d(v,,v) and (11) a directed path
from v, to v 1f’ d(vg, v) # oo

Properties of d Function

= JetScV,vweS,andS =V — S. We define the distance
from vy to § by: d(vo, S) = mind(v, v)

VE

" [fd(vy, S)1s finite, then there exist a directed path from vo
to a vertex vm+1 € S, 1.€., d(vg, S) = d(vo, Vi)

= Write the path as P : (v, v1), (v1,v2), - .., (Vm—1,0m), (Vm; Vms1)

= We have:

-V, V1y...,Um €8

- P": (v, v1), (v1,v2), ..., (vg—1,vg) is the shortest path fromwvg
tovg, forall1 <k <m

Properties of d Function (cont.)

* [n summary, given: d(vy, S) = min{d(vo, u) + wt(u, w)}

= Letu* € S andw* € Slead tod(vo, S). We know the shortest
distance from vy to w* is d(vo,w*) = d(vo, u*) + d(u*, w*)

= This 1s the core 1dea of Dijkstra’s shortest path algorithm

Dijkstra’s Algorithm

= Let G=(V,E) be the weight graph with |V|=n. Find the
shortest distance from v,, to all other vertices

= Step 1: Let S;={v,}, 1=0. Label v, with (0,-) and all other
vertices with (oo, —), where the 15 element 1s the shortest
distance known so far, and the 2™ element is the
previous vertex of the shortest path

= Step 2: For each v € S;, update the label of v by (L(v), y),
where y 1s the vertex in S; producing the minimum L(v)
and L(v) = rréié;{L(v), L(u) + wt(u,v)}

Dijkstra’s Algorithm (cont.)

= Step 3: If all vertices in S; have label (o0, —) then stop.
Otherwise

- find a vertex v.,,, where L(v.,,) is minimum among vertices in S,
- Let Siy1 = S; U{vig1}
- Let; =i+ 1, stop if 1=n-1, otherwise, go to step 2

* Once the algorithm 1s completed, the shortest path to any

vertex v can be found by going reservedly toward v,
following the labels

Simple Example, Iteration 0

= Ex 13.2: Find the shortest path from c to all other
vertices using Dijkstra’s algorithm

\,}l“-

Figure 13.1 b

10

Simple Example, Iteration 1

/l\v/{? ,',> (DQ/;;)
" d
. ¢) @/(/3/—/)
o3 ,
b f

11

Simple Example, Iteration 2

Ssp €+
[’\\ e,
C}O = 2). 7C ’ Pt
e == R ¥, 1
() /l’ 8)

12

Simple Example, Iterations 3&4

13

Simple Example, Iteration 5

-S—tefF)
S3af o : ;; :13

"_&-snzz:g('/ '{‘/7{/ Lj {[)

=
((&~K)

Complexity Analysis

= Standard Diyjkstra’s algorithm has a time complexity of
O(n?), where n is the number of vertices

- Each time we add one vertex into S € first n

- For every vertex, we check if we need to update the label, the
other two n’s

= Optimized Dijkstra’s algorithms have complexities of
O(n?) and O(m log n), where m is the number of edges

" Important: Dijkstra’s 1s a greedy algorithm. Each step
only depends on local information. However, the
resulting solution achieves global optimum.

15

Outline

13.1 Dijkstra’s Shortest-Path Algorithm

13.2 Minimal Spanning Trees: The Algorithms of
Kruskal and Prim

13.3 Transport Networks: The Max-Flow Min-Cut
Theorem

16

Optimum Spanning Tree

= If we need to connect 7 computers, while connecting any
two computers, X and y, imposes a cost wt(x,y). Find the
spanning tree with the minimum total construction cost.

* We introduce two algorithms: Kruskal’s and Prim’s
algorithms

Figure 13.5

17

Kruskal’s Algorithm

= Step 1: Let 1=1, and select an edge e, in G with the
smallest weight wt(e,)

= Step 2: Lete,,e,,...,c. be all the selected edges. Select
edge e, so that: (1) wt(e,) has the smallest weight and
(1) the subgraph e,,e,,...,e,,e.,, contains no cycles

= Step3: Let 1=1+1. If 1i<n-1, go to step 2. If 1=n-1,
subgraph given by ¢€,,e,,...,€, ; 1S an optimal spanning
tree

18

Simple Example

= Ex 13.3: Find the optimum spanning tree of the graph
using Kruskal’s algorithm

Figure 13.5

19

Simple Example (cont.)

Figure 13.5

Prim’s Algorithm

= Step 1: Let 1i=1, P={v,}, where v, 1s an arbitrary vertex.
Define N=V-{v,} and T 1s empty set

= Step 2: when 0<i<n, where |V|=n. Let P={v,,v,,...,v.},
T={e,.e,,...,6._;},and N=V-P. Add to T an edge with
minimal weight (e,) that connects a vertex x in P with a
vertex v.,, in N. Move v,,, from N to P.

= Step 3: Let 1=1+1. If 1<n goto step 2. If 1=n, T gives the
optimal spanning tree

21

Simple Example

* Ex 13.4: Find the optimum spanning tree of the graph
using Prim’s algorithm

Figure 13.5

22

Simple Example (cont.)

"'7'_
£ q? 5 2
7~ (T‘)
T 3 (¢ {“’/‘b e f
~ | T ? YK b . g
Figure 13.5 > abey (¢cd.T,§ % phub g BRCET |
T, ¥ & - =
:‘} . 1 » D € 4 3 f- ,d) ‘j { Y A L) 2 e [¢ { € :}
\ ¢
- G B g D) ¢ g <)
(X, b, ¢,] QL iR befTe «! [o {
\ v / g ~
= " A) ?
- J (- ~ - ¢ { c f o
-~ '\‘ CA /) 2 | \ \ ‘ 54,k) Sk o 0 G b 2 |
~ 2
- \ i b € l & d 5 G s
- \ \ v \ } \ o ¢ i
i) 4,59 ¢ I)‘,(L (e Jf g [
) A 1
) / N

Concluding Remark

* Both Kruskal’s and Prim’s algorithms always grow to
optimal spanning trees

= Kruskal’s algorithm may lead to forests during an
iteration, while Prim always gives trees

* Prim allows us to start from any vertex

= Both algorithms are greedy, yet achieve global optimum

24

Outline

13.1 Dijkstra’s Shortest-Path Algorithm

13.2 Minimal Spanning Trees: The Algorithms of
Kruskal and Prim

13.3 Transport Networks: The Max-Flow Min-Cut
Theorem

25

Transport Networks

= N=(V,E) 1s a loop-free connected directed graph. N 1s
called a (transport) network, 1f the following conditions
are met

- There 1s a unique vertex a, with 1d(a)=0. a 1s called the source
- There is a unique vertex z, with od(a)=0. z is called the sink

- N 1s weighted. There 1s a capacity function maps each edge
e=(v,w) to a nonnegative integer, denoted by c(e)=c(v,w)

26

Figure 13.9

Flow

* N=(V.E) 1s a transport network. A function f from E to
the nonnegative integers 1s called a flow for N 1f
- F(e)<=c(e) for each edge ¢
- For v other than the source and sink, Z fw,v) = Z f(v, u)

weV ueV

Figure 13.10
27

Value of a Flow

= Let f be a flow of network N=(V,E)

- An edge e 1s saturated if f(e)=c(e), o.w. 1t 1s called unsaturated

- If a is the source of N, val(f) = Z f(a,v) is called the value
of the flow veV

= If 7 is the sink, not hard to see that val(f) = > _ f(v,2)

veV
= Between source and sink?

(b)

28

Cut

= For network N=(V,E), C 1s a cut-set for the undirected
graph associated with N, then C is called a cut if
removing the edges in C from N separates a and z.

* The sum of all the edges’ capacity 1s called the capacity
of a cut.

Figure 13.11

29

Cut Bounds Flow Value

* Val(f) cannot exceed the capacity of any cut in N.

Figure 13.11

30

Max-Flow Min-Cut Theorem

= For a transport network N=(V,E), t
value that can be attained in N 1s eg

ne maximum flow
ual to the minimum

capacity over all cuts in the networ!

K

= Several algorithms have been proposed to solve max-
flow min-cut problem. See the textbook for details.
b 14 | d

Figure 13.11

