
1

Department of Computer Science
National Tsing Hua University

CS 2336: Discrete Mathematics

Chapter 13

Optimization and Matching
(Overview)

Instructor: Cheng-Hsin Hsu

Operations Research
§  Finding optimum solution under various constraints

§  Examples related to graphs/multigraphs:
-  The shortest distance between two vertices in a loop-free

undirected graph
-  The spanning tree with the minimum total weight
-  The maximum amount of material that can be transported from

a source to a destination over a transport network
•  Material can be water, oil, and network packets

§ We will cover a few popular algorithms

2

Outline

13.1 Dijkstra’s Shortest-Path Algorithm

13.2 Minimal Spanning Trees: The Algorithms of
Kruskal and Prim

13.3 Transport Networks: The Max-Flow Min-Cut
Theorem

13.4 Matching Theory

3

Weighted Graph
§  For a loop-free connected directed graph G=(V,E), we

assign a weight wt(e) to each of the edge e=(a,b), where
a and b are two vertices. G is called a weighted graph.

-  wt(e) is a real number, and can also be written as wt(a,b)
-  wt(x,y) is infinity if (x,y) is not an edge in G

§  Ex 13.1: The weights can
 represent the driving distance,
 flying time, transportation cost
 from location x to y

4

Shortest Path
§  For a path (a,v1),(v1,v2),…,(vn,b), its length is defined as

wt(a,v1)+wt(v1,v2)+…+wt(vn,b)

§ We define d(a,b) as the shortest distance from a to b,
which is the length of the shortest path between them

§  if no such path exists, and d(a,a)=0

§  Shortest path problem: Given a vertex v0, for all vertex v
in a graph, determine: (i) d(v0,v) and (ii) a directed path
from v0 to v if

5

d(a, b) = 1

d(v0, v) 6= 1

Properties of d Function
§  Let , , and . We define the distance

from to by:

§  If is finite, then there exist a directed path from
to a vertex , i.e.,

§ Write the path as

§ We have:
- 
-  is the shortest path from

to , for all

6

S ⇢ V v0 2 S S̄ = V � S

v0 S̄ d(v0, S̄) = min
v2S̄

d(v0, v)

d(v0, S̄) v0

vm+1 2 S̄ d(v0, S̄) = d(v0, vm+1)

P : (v0, v1), (v1, v2), . . . , (vm�1, vm), (vm, vm+1)

v0, v1, . . . , vm 2 S

P 0 : (v0, v1), (v1, v2), . . . , (vk�1, vk) v0
vk 1 k m

Properties of d Function (cont.)
§  In summary, given:

§  Let and lead to . We know the shortest
distance from to is

§  This is the core idea of Dijkstra’s shortest path algorithm

7

d(v0, S̄) = min{d(v0, u) + wt(u,w)}

u⇤ 2 S d(v0, S̄)w⇤ 2 S̄

w⇤v0 d(v0, w
⇤) = d(v0, u

⇤) + d(u⇤, w⇤)

Dijkstra’s Algorithm
§  Let G=(V,E) be the weight graph with |V|=n. Find the

shortest distance from v0 to all other vertices

§  Step 1: Let S0={v0}, i=0. Label v0 with (0,-) and all other
vertices with , where the 1st element is the shortest
distance known so far, and the 2nd element is the
previous vertex of the shortest path

§  Step 2: For each , update the label of v by (L(v), y),
where y is the vertex in producing the minimum L(v)
and

8

(1,�)

Si

v 2 S̄i

L(v) = min
u2Si

{L(v), L(u) + wt(u, v)}

Dijkstra’s Algorithm (cont.)
§  Step 3: If all vertices in have label then stop.

Otherwise
-  find a vertex vi+1, where L(vi+1) is minimum among vertices in
-  Let
-  Let , stop if i=n-1, otherwise, go to step 2

§ Once the algorithm is completed, the shortest path to any
vertex v can be found by going reservedly toward v0,
following the labels

9

(1,�)S̄i

S̄i

Si+1 = Si [{vi+1}

i = i+ 1

Simple Example, Iteration 0
§  Ex 13.2: Find the shortest path from c to all other

vertices using Dijkstra’s algorithm

10

Simple Example, Iteration 1

11

Simple Example, Iteration 2

12

Simple Example, Iterations 3&4

13

Simple Example, Iteration 5

14

Complexity Analysis
§  Standard Dijkstra’s algorithm has a time complexity of

O(n3), where n is the number of vertices
-  Each time we add one vertex into S ß first n
-  For every vertex, we check if we need to update the label, the

other two n’s

§ Optimized Dijkstra’s algorithms have complexities of
O(n2) and O(m log n), where m is the number of edges

§  Important: Dijkstra’s is a greedy algorithm. Each step
only depends on local information. However, the
resulting solution achieves global optimum.

15

Outline

13.1 Dijkstra’s Shortest-Path Algorithm

13.2 Minimal Spanning Trees: The Algorithms of
Kruskal and Prim

13.3 Transport Networks: The Max-Flow Min-Cut
Theorem

13.4 Matching Theory

16

Optimum Spanning Tree
§  If we need to connect 7 computers, while connecting any

two computers, x and y, imposes a cost wt(x,y). Find the
spanning tree with the minimum total construction cost.

§ We introduce two algorithms: Kruskal’s and Prim’s
algorithms

17

Kruskal’s Algorithm
§  Step 1: Let i=1, and select an edge e1 in G with the

smallest weight wt(e1)

§  Step 2: Let e1,e2,…,ei be all the selected edges. Select
edge ei+1 so that: (i) wt(ei+1) has the smallest weight and
(ii) the subgraph e1,e2,…,ei,ei+1 contains no cycles

§  Step3: Let i=i+1. If i<n-1, go to step 2. If i=n-1,
subgraph given by e1,e2,…,en-1 is an optimal spanning
tree

18

Simple Example
§  Ex 13.3: Find the optimum spanning tree of the graph

using Kruskal’s algorithm

19

Simple Example (cont.)

20

Prim’s Algorithm
§  Step 1: Let i=1, P={v1}, where v1 is an arbitrary vertex.

Define N=V-{v1} and T is empty set

§  Step 2: when 0<i<n, where |V|=n. Let P={v1,v2,…,vi},
T={e1,e2,…,ei-1},and N=V-P. Add to T an edge with
minimal weight (ei) that connects a vertex x in P with a
vertex vi+1 in N. Move vi+1 from N to P.

§  Step 3: Let i=i+1. If i<n goto step 2. If i=n, T gives the
optimal spanning tree

21

Simple Example
§  Ex 13.4: Find the optimum spanning tree of the graph

using Prim’s algorithm

22

Simple Example (cont.)

23

Concluding Remark
§  Both Kruskal’s and Prim’s algorithms always grow to

optimal spanning trees

§ Kruskal’s algorithm may lead to forests during an
iteration, while Prim always gives trees

§  Prim allows us to start from any vertex

§  Both algorithms are greedy, yet achieve global optimum

24

Outline

13.1 Dijkstra’s Shortest-Path Algorithm

13.2 Minimal Spanning Trees: The Algorithms of
Kruskal and Prim

13.3 Transport Networks: The Max-Flow Min-Cut
Theorem

13.4 Matching Theory

25

Transport Networks
§ N=(V,E) is a loop-free connected directed graph. N is

called a (transport) network, if the following conditions
are met

-  There is a unique vertex a, with id(a)=0. a is called the source
-  There is a unique vertex z, with od(a)=0. z is called the sink
-  N is weighted. There is a capacity function maps each edge

e=(v,w) to a nonnegative integer, denoted by c(e)=c(v,w)

26

Flow
§ N=(V,E) is a transport network. A function f from E to

the nonnegative integers is called a flow for N if
-  F(e)<=c(e) for each edge e
-  For v other than the source and sink,

27

X

w2V

f(w, v) =
X

u2V

f(v, u)

Value of a Flow
§  Let f be a flow of network N=(V,E)

-  An edge e is saturated if f(e)=c(e), o.w. it is called unsaturated
-  If a is the source of N, is called the value

of the flow

§  If z is the sink, not hard to see that

§  Between source and sink?

28

val(f) =
X

v2V

f(a, v)

val(f) =
X

v2V

f(v, z)

Cut
§  For network N=(V,E), C is a cut-set for the undirected

graph associated with N, then C is called a cut if
removing the edges in C from N separates a and z.

§  The sum of all the edges’ capacity is called the capacity
of a cut.

29

Cut Bounds Flow Value
§ Val(f) cannot exceed the capacity of any cut in N.

30

Max-Flow Min-Cut Theorem

§  For a transport network N=(V,E), the maximum flow
value that can be attained in N is equal to the minimum
capacity over all cuts in the network

§  Several algorithms have been proposed to solve max-
flow min-cut problem. See the textbook for details.

31

