
1 

Department of Computer Science 
National Tsing Hua University 

 

CS 2336: Discrete Mathematics 

Chapter 13 

Optimization and Matching 
(Overview) 

Instructor: Cheng-Hsin Hsu 
 
 

 
 



Operations Research 
§  Finding optimum solution under various constraints 

§  Examples related to graphs/multigraphs: 
-  The shortest distance between two vertices in a loop-free 

undirected graph 
-  The spanning tree with the minimum total weight 
-  The maximum amount of material that can be transported from 

a source to a destination over a transport network 
•  Material can be water, oil, and network packets 

§ We will cover a few popular algorithms 
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Weighted Graph 
§  For a loop-free connected directed graph G=(V,E), we 

assign a weight wt(e) to each of the edge e=(a,b), where 
a and b are two vertices. G is called a weighted graph. 

-  wt(e) is a real number, and can also be written as wt(a,b) 
-  wt(x,y) is infinity if (x,y) is not an edge in G 

§  Ex 13.1: The weights can  
   represent the driving distance,  
   flying time, transportation cost  
   from location x to y 
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Shortest Path 
§  For a path (a,v1),(v1,v2),…,(vn,b), its length is defined as 

wt(a,v1)+wt(v1,v2)+…+wt(vn,b) 

§ We define d(a,b) as the shortest distance from a to b, 
which is the length of the shortest path between them 

§                  if no such path exists, and d(a,a)=0 

§  Shortest path problem: Given a vertex v0, for all vertex v 
in a graph, determine: (i) d(v0,v) and (ii) a directed path 
from v0 to v if        
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d(a, b) = 1

d(v0, v) 6= 1



Properties of d Function 
§  Let         ,          , and                . We define the distance 

from     to    by: 

§  If           is finite, then there exist a directed path from     
to a vertex               , i.e.,  

§ Write the path as 

§ We have: 
-    
-                                                         is the shortest path from    

to    , for all     
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S ⇢ V v0 2 S S̄ = V � S

v0 S̄ d(v0, S̄) = min
v2S̄

d(v0, v)

d(v0, S̄) v0

vm+1 2 S̄ d(v0, S̄) = d(v0, vm+1)

P : (v0, v1), (v1, v2), . . . , (vm�1, vm), (vm, vm+1)

v0, v1, . . . , vm 2 S

P 0 : (v0, v1), (v1, v2), . . . , (vk�1, vk) v0
vk 1  k  m



Properties of d Function (cont.) 
§  In summary, given:  

§  Let           and          lead to           . We know the shortest 
distance from     to      is 

§  This is the core idea of Dijkstra’s shortest path algorithm   
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d(v0, S̄) = min{d(v0, u) + wt(u,w)}

u⇤ 2 S d(v0, S̄)w⇤ 2 S̄

w⇤v0 d(v0, w
⇤) = d(v0, u

⇤) + d(u⇤, w⇤)



Dijkstra’s Algorithm 
§  Let G=(V,E) be the weight graph with |V|=n. Find the 

shortest distance from v0 to all other vertices 

§  Step 1: Let S0={v0}, i=0. Label v0 with (0,-) and all other 
vertices with           , where the 1st element is the shortest 
distance known so far, and the 2nd element is the 
previous vertex of the shortest path 

§  Step 2: For each          , update the label of v by (L(v), y), 
where y is the vertex in     producing the minimum L(v) 
and  
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(1,�)

Si

v 2 S̄i

L(v) = min
u2Si

{L(v), L(u) + wt(u, v)}



Dijkstra’s Algorithm (cont.) 
§  Step 3: If all vertices in     have label           then stop. 

Otherwise 
-  find a vertex vi+1, where L(vi+1) is minimum among vertices in     
-  Let  
-  Let               , stop if i=n-1, otherwise, go to step 2 

§ Once the algorithm is completed, the shortest path to any 
vertex v can be found by going reservedly toward v0, 
following the labels 

9 

(1,�)S̄i

S̄i

Si+1 = Si [ {vi+1}

i = i+ 1



Simple Example, Iteration 0 
§  Ex 13.2: Find the shortest path from c to all other 

vertices using Dijkstra’s algorithm 
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Simple Example, Iteration 1 
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Simple Example, Iteration 2 
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Simple Example, Iterations 3&4 
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Simple Example, Iteration 5 

14 



Complexity Analysis 
§  Standard Dijkstra’s algorithm has a time complexity of 

O(n3), where n is the number of vertices 
-  Each time we add one vertex into S ß first n 
-  For every vertex, we check if we need to update the label, the 

other two n’s 

§ Optimized Dijkstra’s algorithms have complexities of 
O(n2) and O(m log n), where m is the number of edges 

§  Important: Dijkstra’s is a greedy algorithm. Each step 
only depends on local information. However, the 
resulting solution achieves global optimum. 

15 



Outline 

13.1 Dijkstra’s Shortest-Path Algorithm 

13.2 Minimal Spanning Trees: The Algorithms of 
Kruskal and Prim 

13.3 Transport Networks: The Max-Flow Min-Cut 
Theorem 

13.4 Matching Theory 

16 



Optimum Spanning Tree 
§  If we need to connect 7 computers, while connecting any 

two computers, x and y, imposes a cost wt(x,y). Find the 
spanning tree with the minimum total construction cost. 

§ We introduce two algorithms: Kruskal’s and Prim’s 
algorithms   
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Kruskal’s Algorithm 
§  Step 1: Let i=1, and select an edge e1 in G with the 

smallest weight wt(e1) 

§  Step 2: Let e1,e2,…,ei be all the selected edges. Select 
edge ei+1 so that: (i) wt(ei+1) has the smallest weight and 
(ii) the subgraph e1,e2,…,ei,ei+1 contains no cycles 

§  Step3: Let i=i+1. If i<n-1, go to step 2. If i=n-1, 
subgraph given by e1,e2,…,en-1 is an optimal spanning 
tree 
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Simple Example 
§  Ex 13.3: Find the optimum spanning tree of the graph 

using Kruskal’s algorithm 
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Simple Example (cont.) 

20 



Prim’s Algorithm 
§  Step 1: Let i=1, P={v1}, where v1 is an arbitrary vertex. 

Define N=V-{v1} and T is empty set 

§  Step 2: when 0<i<n, where |V|=n. Let P={v1,v2,…,vi}, 
T={e1,e2,…,ei-1},and N=V-P. Add to T an edge with 
minimal weight (ei) that connects a vertex x in P with a 
vertex vi+1 in N. Move vi+1 from N to P.  

§  Step 3: Let i=i+1. If i<n goto step 2. If i=n, T gives the 
optimal spanning tree 
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Simple Example 
§  Ex 13.4: Find the optimum spanning tree of the graph 

using Prim’s algorithm 
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Simple Example (cont.) 
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Concluding Remark 
§  Both Kruskal’s and Prim’s algorithms always grow to 

optimal spanning trees 

§ Kruskal’s algorithm may lead to forests during an 
iteration, while Prim always gives trees 

§  Prim allows us to start from any vertex 

§  Both algorithms are greedy, yet achieve global optimum 
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Transport Networks 
§ N=(V,E) is a loop-free connected directed graph. N is 

called a (transport) network, if the following conditions 
are met 

-  There is a unique vertex a, with id(a)=0. a is called the source 
-  There is a unique vertex z, with od(a)=0. z is called the sink 
-  N is weighted. There is a capacity function maps each edge 

e=(v,w) to a nonnegative integer, denoted by c(e)=c(v,w) 
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Flow 
§ N=(V,E) is a transport network. A function f from E to 

the nonnegative integers is called a flow for N if 
-  F(e)<=c(e) for each edge e 
-  For v other than the source and sink,  
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w2V

f(w, v) =
X

u2V

f(v, u)



Value of a Flow 
§  Let f be a flow of network N=(V,E) 

-  An edge e is saturated if f(e)=c(e), o.w. it is called unsaturated 
-  If a is the source of N,                                  is called the value 

of the flow 

§  If z is the sink, not hard to see that 

§  Between source and sink?  
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val(f) =
X

v2V

f(a, v)

val(f) =
X

v2V

f(v, z)



Cut 
§  For network N=(V,E), C is a cut-set for the undirected 

graph associated with N, then C is called a cut if 
removing the edges in C from N separates a and z. 

§  The sum of all the edges’ capacity is called the capacity 
of a cut.  
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Cut Bounds Flow Value 
§ Val(f) cannot exceed the capacity of any cut in N.  
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Max-Flow Min-Cut Theorem 

§  For a transport network N=(V,E), the maximum flow 
value that can be attained in N is equal to the minimum 
capacity over all cuts in the network 

§  Several algorithms have been proposed to solve max-
flow min-cut problem. See the textbook for details. 
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