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Tree 
§  Consider a loop-free undirected graph G=(V,E). It is a 

tree if G is connected and contains no cycles 

§ We often refer to a tree as T instead of (more general) G 

§  Spanning tree: a spanning subgraph that is also a tree 

§  Spanning forest: a unconnected spanning subgraph 
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Properties of Trees 
§ Unique path: there exists a unique path between any two 

distinct vertices in T=(V,E)  
-  Proof Sketch: T is connected, so there must be at least one 

path. Moreover, if there are two paths, connecting them gives 
us a cycle.  

§  If G=(V,E) is an undirected graph, G is connected iff G 
has a spanning tree 

-  Proof Sketch: (ß) by G is connected. (à) Build a spanning 
tree by iteratively removing an edge on any cycle.  
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Relation between |V| and |E| 
§  Counts |V| and |E| in these trees 

§  In any tree T=(V,E), we have |V| = |E|+1 
-  Proof Sketch: by mathematical induction 
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Pendant Vertices 
§  Counts no. pendant vertices in these trees 

§  In any tree T=(V,E), where |V| >= 2, T has at least two 
pendant vertices 

-  Proof Sketch: by the previous theorem and  
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Examples 
§  Ex 12.1: Are the two trees isomorphic? Why? 

7 



Examples 
§  Ex 12.2: If a saturated hydrocarbon (acyclic) has n 

carbon atoms, show that it has 2n+2 hydrogen atoms. 

§  Proof:  
-  Let k denote the number of hydrogen atoms. The total degree 

of all atoms is 4n+k, which equals to 2|E| 
-  We also know |E|=|V|-1, so the total degree=2|V|-1 
-  This leads to k = 2n+2 
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When Can We Call a Graph Tree? 

§  The following statements are equivalent for a look-free 
undirected graph G=(V,E) 

-  G is a tree 
-  G is connected, but remove any edge from G turns G into two 

trees 
-  G contains no cycles, and |V|=|E|+1 
-  G is connected, and |V|=|E|+1 
-  G contains no cycle and if {a,b} is not an edge of G, adding 

{a,b} to G results in exactly one cycle 
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A Sample Proof  
§  Prove if  

-  G is a tree, 
-  then G is connected, but remove any edge from G turns G into 

two trees 

§  Proof:  
-  Let G’=G-{a,b}. Assume G’ is still connected, which means 

there is a path between a and b. But this contradict to the fact 
that tree is acyclic. Hence, G’ is not connected! 

-  Then consider the two components in G’, they must contain no 
cycles (otherwise G is not a tree). Then they are both trees. 
This yield our proof.   

§  See text and exercises for more proofs.  
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Directed and Rooted Trees 
§  If G is a directed graph, G is a directed tree if its 

associated undirected graph is a tree 

§ A directed tree is a rooted tree, if there is a unique vertex 
r with in-degree 0, id(r)=0, while all other vertex v has 
in-degree 1, id(v)=1. We call this v as the root.  

12 



Conventions and Terminology  

§ Arrows are going downwards 

§ Vertices with zero out degree are call leaves (terminal 
vertices) 

§ All other leaves are called branch nodes (or internal 
vertices) 

§  Level is defined as the distance to the root 

§  Parent-child relation, Ancestors-descendants ,Siblings 

§  Subtree, induced by a vertex v, includes v and all its 
descendants 
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Vertex Ordering 
§  Ex 12.3: Consider a book with 3-level structure. What is 

the nature order of its contents? 
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Ordered Rooted Tree 
§  Ex 12.4: If all edges leaving an internal vertex are 

ordered from left to tight, then T is called an ordered 
rooted tree. 

§ Ordering algorithm 
-  Assign 0 to the root 
-  Assign positive integer to vertices at level 1, from left to right 
-  For an internal vertex v, suffix a positive integer to v’s label, 

from left to right 
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Ordered Rooted Tree (cont.) 
§  This leads to the order:  

-  0, 1, 1.1 
-  1.2, 1.2.1, 1.2.2 
-  1.2.3, 1.2.3.1, 1.2.3.2 
-  1.3, 1.4, 2 
-  2.1, 2.2, 2.2.1 
-  3, 3.1, 3.2 

§  Lexicographic 

   order 
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Binary Rooted Tree 
§  Ex 12.5: Binary rooted tree: od(v)=0,1,2. Complete 

binary tree: od(v)=0,2 

§  They can represent binary operations 
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Binary Rooted Tree (cont.) 
§ A tree for ((7-a)/5)*((a+b)^3) 
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Binary Rooted Tree (cont.) 
§ How to represent: (i) (a-(3/b))+5 and (ii) a-(3/(b+5)) 

§  Both of them can be stored as the same sequence 

§  Parenthesis are mandatory! 
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Polish Notation 
§  Consider t+(uv)/(w+x-y^z), it can be expressed by  

§  The computer needs to know the calculation order ß 
But the computer needs to know the parenthesis 

§  Prefix notation: +t/*uv+w-x^yz 

§  Independent to parenthesis! Just calculate from right to 
left ß shows the importance of ordering 
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Polish Notation (cont.) 
§  Example: 

-  + 4/*23+1-9^23 
-  +4/*23+1-98 
-  +4/*23+11 
-  +4/*232 
-  +4/62 
-  +43 
-  7 
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Post-/Pre-order Traversals 
§  Recursively defined 

§  Let T=(V,E) be a rooted tree with root r 
-  If |V|=1, then r is both postorder and preorder traversal 
-  Otherwise, preorder traversal first visits r and then traverse 

subtrees T1, T2, …., Tk. Postorder traversal first visits subtrees , 
then r  

-  Conventionally, subtrees are visited from left to right 
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Example 
§  Ex 12.6: What are the pre-/post-order traversals of this 

graph? 
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In-order Traversal 
§  For binary rooted tree, we also have in-order traversal 

§  Let T=(V,E) be a binary rooted tree with root r 
-  If |V|=1, then r is the inorder traversal 
-  Otherwise, let TL and TR be the left and right subtrees. The 

inorder traversal first traverses TL, then visits r, and then 
traverses TR. 
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Different Ordering 
§  Ex 12.7:  

-  The following two ordered trees are different 
-  What are their inorder traversals? 
-  What are their preorder and postorder traversals?  

25 



Another Inorder Example 
§ What is the in order traversal? 
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Spanning Trees 
§ Generally two algorithms to generate a spanning trees in 

a graphs 

§ Depth-First Search (DFS): based on a stack  

§  Breadth-First Search (BFS): based on a (FIFO) queue 
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DFS Algorithm 
§  Let v=v1 as the root of tree T 

§  If G has only one vertex, terminates and return T 

§  Select the smallest subscript i, so that {v,vi} is an edge 
of G and vi hasn’t been visited 

§  If an i exists: (i) add {v,vi} to T, (ii) visit subtree induced 
by vi, (iii) let v=vi, go back to the step 3 

§  If there is no vi, then backtrack from v to its parent u. Let 
v = u, and go back to step3 

§ Once all vertices are visited, return T 
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Example of DFS 
§  Ex 12.10: Plot the DFS trees of graph G 

-  Assuming the vertex order is: a,b,c,d,e,f,g,h,i,j 
-  Assuming the order is: j,i,h,g,f,e,d,c,b,a 
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BFS Algorithm 
§  Enqueue v1, and let T be the tree with v1, visit v1 

§  Let v=dequeue(). Sequentially check all vertices next to 
v that haven’t been visited 

§  For each unvisited vertex vi: (i) enqueue vi, (ii) add {v, 
vi} to T, and (iii) visit vi 

§  If queue is not empty go to step 2 

§ Now queue is empty, return T 
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Example of BFS 
§  Ex 12.11: Plot the BFS trees of graph G 

-  Assuming the vertex order is: a,b,c,d,e,f,g,h,i,j 
-  Assuming the order is: j,i,h,g,f,e,d,c,b,a 
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Adjacent Matrix to BFS/DFS Trees 

§  Ex 12.12 Determine the BFS and DFS tress from the 
adjacent matrix without plotting the graph 
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M-ary Tree 
§  Let T=(V,E) be a rooted tree, and m is a positive integer. 

T is called an m-ary tree if od(v)<=m for all v 

§ When m=2, it is called a binary tree 

§  If od(v)=0 or m, for all v, then T is called a complete m-
ary tree. 

-  Each internal vertex has m children 

§ When m=2, it is called a complete binary tree. 
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Property of a Complete m-ary Tree 

§  Let T=(V,E) be a complete m-ary tree with |V|=n. If T 
has l leaves and i internal vertices then  

-  n=mi+1 ß each internal node leads to m children, plus root 
-  l=(m-1)i+1 ß based on equation 1 and n=l+i 
-  i=(l-1)/(m-1)=(n-1)/m ß base don equations 1 and 2  
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Number of Matches 
§  Ex 12.13: In a single-elimination tournament. If there are 

27 players, how many matches must be played to 
determine the champion?  

-  27 players, so 27 leaves (l=27), also m=2. Therefore, we have 
i=(l-1)/(m-1)=(27-1)/(2-1)=26 
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Height and Balanced Trees 
§  Let T=(V,E) be a rooted tree, and h be the largest level 

number by a leaf of T. We say T has a height of h.  

§ A rooted tree T of height h is balanced if the level 
number of every leaf is either h or h-1. 
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Height of m-ary Tree 
§  Let T=(V,E) be a complete m-ary tree with height h and 
l leaves. We have              and  

-  Proved by induction 

§  Let T be a balanced complete m-ary tree with l leaves. 
The height of T is  
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Decision Tree 
§  There are 8 coins and a pan balance. One of the coin is 

counterfeit and heavier than others. Find that coin.  

§  Binary decision tree 

§  Ternary decision tree   

38 

h • rlog3 8s

h • rlog2 8s



Outline 

12.1 Definitions, Properties, and Examples 

12.2 Rooted Trees 

12.3 Trees and Sorting 

12.4 Weighted Trees and Prefix Codes 

12.5 Biconnected Components and Articulation 
Points 

39 



Bubble Sort 
§  Simplest sorting algorithm 

§ High complexity: O(n2) 
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Bubble Sort (cont.) 
§  Example:   
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Idea of Merge Sort 
§  Ex 12.16: Sort 6,2,7,3,4,9,5,1,8 by dividing them into 

equal size sublists, and merge them backwards 
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Each Merge Operation 
§  Before we quantify the complexity, first calculate the 

complexity of each merge 

§  Let L1 and L2 be the two sorted number, where L1 has n1 
elements and L2 has n2. Merging L1 and L2 into another 
list consumes at most n1+n2-1 comparisons ß O(n)  

§  L=Merge(L1, L2) 
-  1: Let L be empty set 
-  2: Compare the first elements of L1 and L2, remove the smaller 

one and put it at the end of L 
-  3: If one of L1 and L2 is empty, append the other one to L. 

Otherwise go back to 2 
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Merge Sort 
§  1: Divide the input array into two sublists L1 and L2,  

each has        elements 

§  2: Call MergeSort with L1 and L2    

§  3. Merge(L1, L2) 

§ At most logn levels, so the total complexity is O(n logn) 
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Codes 
§  Fixed-length versus variable-length codes 

§ Why do we need variable-length codes? 
-  (English) letters appears in different frequencies à Assigning 

shorter code to more frequent letter results in shorter coded 
words 

§  For example, consider a set S={a,e,n,r,t} and code a:01, 
e:0, n:101, r:10, r:1, what is the coded word of “ata”? 

-  Problem, this coded words also means “eta”, “atet”, and “an” 
-  Why? 
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Unambiguous Codes 
§  Consider a different code a:01, e:0, n:101, r:10, r:1, what 

is the coded word of “ata”? 
-  No ambiguity  
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Prefix Code 
§ A set P of binary sequences is called a prefix code if no 

sequence in P is the prefix of any other sequence in P 

§ How to determine whether P is a prefix code? 

§  T is a full binary tree of height h if all the leaves are at 
level h 
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Efficient Code 
§  Lemma: If T is an optimal tree for w1<=w2<=…<=wn, 

there exists an optimal tree T’, in which w1 and w2 are 
siblings at the maximal level of T’ 

-  Pushing w1 and w2 to the bottom couldn’t be worse 

§  Theorem: Let T be an optimal tree with weight w1+w2, 
w3, …, wn, where w1<=w2<=…<=wn. Dividing the leaf 
w1+w2 into two leavesw1, w2 results in a new optimal 
tree T’ 

-  Proved by the fact that there are only finite number of 
complete binary trees   
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Huffman Code 
§ A systematic way to create an efficient code 

-  Create n active vertices each with a weight 
-  Repeatedly find the two smallest active vertices with weights 

wi and wj, make them inactive, create a new active internal 
vertex to be their parent, and assign weight wi+wj.   

-  Stop until there is only one active vertex 

§ Get the Huffman code by traversing from root to each 
leaf 

§  Ex 12.18: Construct a Huffman code for the symbols 
a,o,q,u,y,z with frequencies 20,28,4,17,12,7. Find a 
Humffman code for them. 
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Articulation Point 
§ A vertex v in a loop-free undirected graph G=(V,E) is 

called an articulation point if                         ; i.e., G-v 
has more components than G 

§ A graph with no articulation points is called biconnected 

§ A maximal biconnected subgraph is called a biconnected 
component 

-  A subgraph that is not contained in a larger subgraph 
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Example 
§ Articulation points: c,f, and four biconnected components 

§ How to systematically find the articulation points? 
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First Lemma 
§ A vertex z in G=(V,E) is an articulation point iff for any 

two vertices x,y where x, y, and z are not mutually equal, 
every path between x and y must go through z 
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Second Lemma 
§  Let G=(V,E) be a loop-free connected undirected graph, 

with a depth-first spanning tree T=(V,E’). If {a,b} is in E 
but is not in E’, then a is either an ancestor or a descendant 
of b in tree T 

§  Proof Sketch: this is true otherwise {a,b} would be picked 
by the DFS algorithm (and thus is in E’) 

§  Edges like {a,b} is called 

   back-edge. So any edge 

   in G is either: (i) an edge in 

   T or (ii) an back-edge in it 
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Third Lemma 
§  Let G=(V,E) be a loop-free connected undirected graph, 

with a depth-first spanning tree T=(V,E’). If r is the root of 
T, then r is an articulation point of G iff r has at least two 
children in T. 

§  Proof Sketch: If r has two children x1 and x2, and {x1,x2} is 
not in E, then {x1,x2} will be picked by the DFS algorithm  
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Fourth Lemma 
§  Let G=(V,E) be a loop-free connected undirected graph, 

with a depth-first spanning tree T=(V,E’). If v is a non-root 
vertex in T. v is an articulation point of G iff there exists a 
child c of v with no back-edge from a vertex z in the 
subtree rooted at c to a, which is an ancestor of v 
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Some Notations 
§ We let dfi(x) be the depth-first index of x in preorder 

-  If y is a descendant of x, then dfi(x)<dfi(y) 

§ We define low(x)=min{dfi(y)|y is adjacent to either x or a 
descendant of x in G} ß how to do this efficiently? 

§  If z is the parent of x (in T), compare low(x) and dfi(z) 
-  low(x)=dfi(z): there is no vertex adjacent to an ancestor of z (via 

back-edge), so z is an articulation point 
-  low(x)<dfi(z): there is a (some) descendant of z that is joined to an 

ancestor of z via a back-edge, so z is not an articulation point 
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Algorithm 
§  1: Let x1, x2, …, xn be the vertices ordered by tree T 

§  2: For j=xn, xn-1,….,x1, compute low(xj) as follows 
-  Let low’(xj)=min{dfi(z)|z is adjacent to x in G} 
-  Let c1,c2,…,cm are the children of xj, low(xj)=min(low’(xj),low(c1),

…,low(cm)} 

§  3: For wj, the parent of xj, if low(xj)=dfi(wj), then wj is an 
articulation point of G unless wj is the root and wj has only 
one child (which is xj).  

-  The subtree rooted at xj with {wj,xj} is a biconnected component 
of G 
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A Complete Example 
§  Ex 12.20: Find the articulation points of G 

§  Step 1: First create a DFS tree, numbers in parentheses 
represent the dfi 
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A Complete Example (cont.) 
§  Step 2: Compute (low’(x), low(x)), from bottom to up 
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A Complete Example (cont.) 
§  Step 3: Compare (dfi(x), low(x)) 
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A Complete Example (cont.) 
§  Last, we get the articulation points: g, f, d and four 

biconnected components 

63 



Take-home Exercises 
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§  Exercise 12.1: 1, 2, 6, 13, 18 

§  Exercise 12.2: 1, 3, 5, 9, 12, 17 

§  Exercise 12.3: 1, 2, 3 

§  Exercise 12.4: 1, 3, 5, 7 

§  Exercise 12.5: 1, 2, 10 


