
1

Department of Computer Science
National Tsing Hua University

CS 2336: Discrete Mathematics

Chapter 12

Trees

Instructor: Cheng-Hsin Hsu

Outline

12.1 Definitions, Properties, and Examples

12.2 Rooted Trees

12.3 Trees and Sorting

12.4 Weighted Trees and Prefix Codes

12.5 Biconnected Components and Articulation
Points

2

Tree
§  Consider a loop-free undirected graph G=(V,E). It is a

tree if G is connected and contains no cycles

§ We often refer to a tree as T instead of (more general) G

§  Spanning tree: a spanning subgraph that is also a tree

§  Spanning forest: a unconnected spanning subgraph

3

Properties of Trees
§ Unique path: there exists a unique path between any two

distinct vertices in T=(V,E)
-  Proof Sketch: T is connected, so there must be at least one

path. Moreover, if there are two paths, connecting them gives
us a cycle.

§  If G=(V,E) is an undirected graph, G is connected iff G
has a spanning tree

-  Proof Sketch: (ß) by G is connected. (à) Build a spanning
tree by iteratively removing an edge on any cycle.

4

Relation between |V| and |E|
§  Counts |V| and |E| in these trees

§  In any tree T=(V,E), we have |V| = |E|+1
-  Proof Sketch: by mathematical induction

5

Pendant Vertices
§  Counts no. pendant vertices in these trees

§  In any tree T=(V,E), where |V| >= 2, T has at least two
pendant vertices

-  Proof Sketch: by the previous theorem and

6

2|E| =
X

v2V

deg(v)

Examples
§  Ex 12.1: Are the two trees isomorphic? Why?

7

Examples
§  Ex 12.2: If a saturated hydrocarbon (acyclic) has n

carbon atoms, show that it has 2n+2 hydrogen atoms.

§  Proof:
-  Let k denote the number of hydrogen atoms. The total degree

of all atoms is 4n+k, which equals to 2|E|
-  We also know |E|=|V|-1, so the total degree=2|V|-1
-  This leads to k = 2n+2

8

When Can We Call a Graph Tree?

§  The following statements are equivalent for a look-free
undirected graph G=(V,E)

-  G is a tree
-  G is connected, but remove any edge from G turns G into two

trees
-  G contains no cycles, and |V|=|E|+1
-  G is connected, and |V|=|E|+1
-  G contains no cycle and if {a,b} is not an edge of G, adding

{a,b} to G results in exactly one cycle

9

A Sample Proof
§  Prove if

-  G is a tree,
-  then G is connected, but remove any edge from G turns G into

two trees

§  Proof:
-  Let G’=G-{a,b}. Assume G’ is still connected, which means

there is a path between a and b. But this contradict to the fact
that tree is acyclic. Hence, G’ is not connected!

-  Then consider the two components in G’, they must contain no
cycles (otherwise G is not a tree). Then they are both trees.
This yield our proof.

§  See text and exercises for more proofs.
10

Outline

12.1 Definitions, Properties, and Examples

12.2 Rooted Trees

12.3 Trees and Sorting

12.4 Weighted Trees and Prefix Codes

12.5 Biconnected Components and Articulation
Points

11

Directed and Rooted Trees
§  If G is a directed graph, G is a directed tree if its

associated undirected graph is a tree

§ A directed tree is a rooted tree, if there is a unique vertex
r with in-degree 0, id(r)=0, while all other vertex v has
in-degree 1, id(v)=1. We call this v as the root.

12

Conventions and Terminology

§ Arrows are going downwards

§ Vertices with zero out degree are call leaves (terminal
vertices)

§ All other leaves are called branch nodes (or internal
vertices)

§  Level is defined as the distance to the root

§  Parent-child relation, Ancestors-descendants ,Siblings

§  Subtree, induced by a vertex v, includes v and all its
descendants

13

Vertex Ordering
§  Ex 12.3: Consider a book with 3-level structure. What is

the nature order of its contents?

14

Ordered Rooted Tree
§  Ex 12.4: If all edges leaving an internal vertex are

ordered from left to tight, then T is called an ordered
rooted tree.

§ Ordering algorithm
-  Assign 0 to the root
-  Assign positive integer to vertices at level 1, from left to right
-  For an internal vertex v, suffix a positive integer to v’s label,

from left to right

15

Ordered Rooted Tree (cont.)
§  This leads to the order:

-  0, 1, 1.1
-  1.2, 1.2.1, 1.2.2
-  1.2.3, 1.2.3.1, 1.2.3.2
-  1.3, 1.4, 2
-  2.1, 2.2, 2.2.1
-  3, 3.1, 3.2

§  Lexicographic

 order

16

Binary Rooted Tree
§  Ex 12.5: Binary rooted tree: od(v)=0,1,2. Complete

binary tree: od(v)=0,2

§  They can represent binary operations

17

Binary Rooted Tree (cont.)
§ A tree for ((7-a)/5)*((a+b)^3)

18

Binary Rooted Tree (cont.)
§ How to represent: (i) (a-(3/b))+5 and (ii) a-(3/(b+5))

§  Both of them can be stored as the same sequence

§  Parenthesis are mandatory!

19

Polish Notation
§  Consider t+(uv)/(w+x-y^z), it can be expressed by

§  The computer needs to know the calculation order ß
But the computer needs to know the parenthesis

§  Prefix notation: +t/*uv+w-x^yz

§  Independent to parenthesis! Just calculate from right to
left ß shows the importance of ordering

20

Polish Notation (cont.)
§  Example:

-  + 4/*23+1-9^23
-  +4/*23+1-98
-  +4/*23+11
-  +4/*232
-  +4/62
-  +43
-  7

21

Post-/Pre-order Traversals
§  Recursively defined

§  Let T=(V,E) be a rooted tree with root r
-  If |V|=1, then r is both postorder and preorder traversal
-  Otherwise, preorder traversal first visits r and then traverse

subtrees T1, T2, …., Tk. Postorder traversal first visits subtrees ,
then r

-  Conventionally, subtrees are visited from left to right

22

Example
§  Ex 12.6: What are the pre-/post-order traversals of this

graph?

23

In-order Traversal
§  For binary rooted tree, we also have in-order traversal

§  Let T=(V,E) be a binary rooted tree with root r
-  If |V|=1, then r is the inorder traversal
-  Otherwise, let TL and TR be the left and right subtrees. The

inorder traversal first traverses TL, then visits r, and then
traverses TR.

24

Different Ordering
§  Ex 12.7:

-  The following two ordered trees are different
-  What are their inorder traversals?
-  What are their preorder and postorder traversals?

25

Another Inorder Example
§ What is the in order traversal?

26

Spanning Trees
§ Generally two algorithms to generate a spanning trees in

a graphs

§ Depth-First Search (DFS): based on a stack

§  Breadth-First Search (BFS): based on a (FIFO) queue

27 Figures are from Wikipedia

DFS Algorithm
§  Let v=v1 as the root of tree T

§  If G has only one vertex, terminates and return T

§  Select the smallest subscript i, so that {v,vi} is an edge
of G and vi hasn’t been visited

§  If an i exists: (i) add {v,vi} to T, (ii) visit subtree induced
by vi, (iii) let v=vi, go back to the step 3

§  If there is no vi, then backtrack from v to its parent u. Let
v = u, and go back to step3

§ Once all vertices are visited, return T

28

Example of DFS
§  Ex 12.10: Plot the DFS trees of graph G

-  Assuming the vertex order is: a,b,c,d,e,f,g,h,i,j
-  Assuming the order is: j,i,h,g,f,e,d,c,b,a

29

BFS Algorithm
§  Enqueue v1, and let T be the tree with v1, visit v1

§  Let v=dequeue(). Sequentially check all vertices next to
v that haven’t been visited

§  For each unvisited vertex vi: (i) enqueue vi, (ii) add {v,
vi} to T, and (iii) visit vi

§  If queue is not empty go to step 2

§ Now queue is empty, return T

30

Example of BFS
§  Ex 12.11: Plot the BFS trees of graph G

-  Assuming the vertex order is: a,b,c,d,e,f,g,h,i,j
-  Assuming the order is: j,i,h,g,f,e,d,c,b,a

31

Adjacent Matrix to BFS/DFS Trees

§  Ex 12.12 Determine the BFS and DFS tress from the
adjacent matrix without plotting the graph

32

M-ary Tree
§  Let T=(V,E) be a rooted tree, and m is a positive integer.

T is called an m-ary tree if od(v)<=m for all v

§ When m=2, it is called a binary tree

§  If od(v)=0 or m, for all v, then T is called a complete m-
ary tree.

-  Each internal vertex has m children

§ When m=2, it is called a complete binary tree.

33

Property of a Complete m-ary Tree

§  Let T=(V,E) be a complete m-ary tree with |V|=n. If T
has l leaves and i internal vertices then

-  n=mi+1 ß each internal node leads to m children, plus root
-  l=(m-1)i+1 ß based on equation 1 and n=l+i
-  i=(l-1)/(m-1)=(n-1)/m ß base don equations 1 and 2

34

Number of Matches
§  Ex 12.13: In a single-elimination tournament. If there are

27 players, how many matches must be played to
determine the champion?

-  27 players, so 27 leaves (l=27), also m=2. Therefore, we have
i=(l-1)/(m-1)=(27-1)/(2-1)=26

35

Height and Balanced Trees
§  Let T=(V,E) be a rooted tree, and h be the largest level

number by a leaf of T. We say T has a height of h.

§ A rooted tree T of height h is balanced if the level
number of every leaf is either h or h-1.

36

Height of m-ary Tree
§  Let T=(V,E) be a complete m-ary tree with height h and
l leaves. We have and

-  Proved by induction

§  Let T be a balanced complete m-ary tree with l leaves.
The height of T is

37

l § mh h • rlogm ls

rlogm ls

Decision Tree
§  There are 8 coins and a pan balance. One of the coin is

counterfeit and heavier than others. Find that coin.

§  Binary decision tree

§  Ternary decision tree

38

h • rlog3 8s

h • rlog2 8s

Outline

12.1 Definitions, Properties, and Examples

12.2 Rooted Trees

12.3 Trees and Sorting

12.4 Weighted Trees and Prefix Codes

12.5 Biconnected Components and Articulation
Points

39

Bubble Sort
§  Simplest sorting algorithm

§ High complexity: O(n2)

40

Bubble Sort (cont.)
§  Example:

41

Idea of Merge Sort
§  Ex 12.16: Sort 6,2,7,3,4,9,5,1,8 by dividing them into

equal size sublists, and merge them backwards

42

Each Merge Operation
§  Before we quantify the complexity, first calculate the

complexity of each merge

§  Let L1 and L2 be the two sorted number, where L1 has n1
elements and L2 has n2. Merging L1 and L2 into another
list consumes at most n1+n2-1 comparisons ß O(n)

§  L=Merge(L1, L2)
-  1: Let L be empty set
-  2: Compare the first elements of L1 and L2, remove the smaller

one and put it at the end of L
-  3: If one of L1 and L2 is empty, append the other one to L.

Otherwise go back to 2
43

Merge Sort
§  1: Divide the input array into two sublists L1 and L2,

each has elements

§  2: Call MergeSort with L1 and L2

§  3. Merge(L1, L2)

§ At most logn levels, so the total complexity is O(n logn)

44

tn
2

u

Outline

12.1 Definitions, Properties, and Examples

12.2 Rooted Trees

12.3 Trees and Sorting

12.4 Weighted Trees and Prefix Codes

12.5 Biconnected Components and Articulation
Points

45

Codes
§  Fixed-length versus variable-length codes

§ Why do we need variable-length codes?
-  (English) letters appears in different frequencies à Assigning

shorter code to more frequent letter results in shorter coded
words

§  For example, consider a set S={a,e,n,r,t} and code a:01,
e:0, n:101, r:10, r:1, what is the coded word of “ata”?

-  Problem, this coded words also means “eta”, “atet”, and “an”
-  Why?

46

Unambiguous Codes
§  Consider a different code a:01, e:0, n:101, r:10, r:1, what

is the coded word of “ata”?
-  No ambiguity

47

Prefix Code
§ A set P of binary sequences is called a prefix code if no

sequence in P is the prefix of any other sequence in P

§ How to determine whether P is a prefix code?

§  T is a full binary tree of height h if all the leaves are at
level h

48

Efficient Code
§  Lemma: If T is an optimal tree for w1<=w2<=…<=wn,

there exists an optimal tree T’, in which w1 and w2 are
siblings at the maximal level of T’

-  Pushing w1 and w2 to the bottom couldn’t be worse

§  Theorem: Let T be an optimal tree with weight w1+w2,
w3, …, wn, where w1<=w2<=…<=wn. Dividing the leaf
w1+w2 into two leavesw1, w2 results in a new optimal
tree T’

-  Proved by the fact that there are only finite number of
complete binary trees

49

Huffman Code
§ A systematic way to create an efficient code

-  Create n active vertices each with a weight
-  Repeatedly find the two smallest active vertices with weights

wi and wj, make them inactive, create a new active internal
vertex to be their parent, and assign weight wi+wj.

-  Stop until there is only one active vertex

§ Get the Huffman code by traversing from root to each
leaf

§  Ex 12.18: Construct a Huffman code for the symbols
a,o,q,u,y,z with frequencies 20,28,4,17,12,7. Find a
Humffman code for them.

50

Outline

12.1 Definitions, Properties, and Examples

12.2 Rooted Trees

12.3 Trees and Sorting

12.4 Weighted Trees and Prefix Codes

12.5 Biconnected Components and Articulation
Points

51

Articulation Point
§ A vertex v in a loop-free undirected graph G=(V,E) is

called an articulation point if ; i.e., G-v
has more components than G

§ A graph with no articulation points is called biconnected

§ A maximal biconnected subgraph is called a biconnected
component

-  A subgraph that is not contained in a larger subgraph

52

pG ´ vq ° pGq

Example
§ Articulation points: c,f, and four biconnected components

§ How to systematically find the articulation points?
53

First Lemma
§ A vertex z in G=(V,E) is an articulation point iff for any

two vertices x,y where x, y, and z are not mutually equal,
every path between x and y must go through z

54

Second Lemma
§  Let G=(V,E) be a loop-free connected undirected graph,

with a depth-first spanning tree T=(V,E’). If {a,b} is in E
but is not in E’, then a is either an ancestor or a descendant
of b in tree T

§  Proof Sketch: this is true otherwise {a,b} would be picked
by the DFS algorithm (and thus is in E’)

§  Edges like {a,b} is called

 back-edge. So any edge

 in G is either: (i) an edge in

 T or (ii) an back-edge in it
55

Third Lemma
§  Let G=(V,E) be a loop-free connected undirected graph,

with a depth-first spanning tree T=(V,E’). If r is the root of
T, then r is an articulation point of G iff r has at least two
children in T.

§  Proof Sketch: If r has two children x1 and x2, and {x1,x2} is
not in E, then {x1,x2} will be picked by the DFS algorithm

56

Fourth Lemma
§  Let G=(V,E) be a loop-free connected undirected graph,

with a depth-first spanning tree T=(V,E’). If v is a non-root
vertex in T. v is an articulation point of G iff there exists a
child c of v with no back-edge from a vertex z in the
subtree rooted at c to a, which is an ancestor of v

57

Some Notations
§ We let dfi(x) be the depth-first index of x in preorder

-  If y is a descendant of x, then dfi(x)<dfi(y)

§ We define low(x)=min{dfi(y)|y is adjacent to either x or a
descendant of x in G} ß how to do this efficiently?

§  If z is the parent of x (in T), compare low(x) and dfi(z)
-  low(x)=dfi(z): there is no vertex adjacent to an ancestor of z (via

back-edge), so z is an articulation point
-  low(x)<dfi(z): there is a (some) descendant of z that is joined to an

ancestor of z via a back-edge, so z is not an articulation point

58

Algorithm
§  1: Let x1, x2, …, xn be the vertices ordered by tree T

§  2: For j=xn, xn-1,….,x1, compute low(xj) as follows
-  Let low’(xj)=min{dfi(z)|z is adjacent to x in G}
-  Let c1,c2,…,cm are the children of xj, low(xj)=min(low’(xj),low(c1),

…,low(cm)}

§  3: For wj, the parent of xj, if low(xj)=dfi(wj), then wj is an
articulation point of G unless wj is the root and wj has only
one child (which is xj).

-  The subtree rooted at xj with {wj,xj} is a biconnected component
of G

59

A Complete Example
§  Ex 12.20: Find the articulation points of G

§  Step 1: First create a DFS tree, numbers in parentheses
represent the dfi

60

A Complete Example (cont.)
§  Step 2: Compute (low’(x), low(x)), from bottom to up

61

A Complete Example (cont.)
§  Step 3: Compare (dfi(x), low(x))

62

A Complete Example (cont.)
§  Last, we get the articulation points: g, f, d and four

biconnected components

63

Take-home Exercises

64

§  Exercise 12.1: 1, 2, 6, 13, 18

§  Exercise 12.2: 1, 3, 5, 9, 12, 17

§  Exercise 12.3: 1, 2, 3

§  Exercise 12.4: 1, 3, 5, 7

§  Exercise 12.5: 1, 2, 10

