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Graph 
§  For a set of towns, which are connected by a set of 

roads, how can be find our way from our current 
location to the destination? 

§ We need a systematic way to describe the relation: 
town A can be reached from town B via road R 

-  M1: Relations! But tedious.  
-  M2: Map, which can be abstracted by a Graph 
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Definition 
§  Let V be the set of vertices, or nodes, and E is its 

(directed) edges, or arcs, where               . G=(V,E) 
is called a directed graph, or digraph.  

§ When edge direction is not important, we call G a 
undirected graph, and E now contains unordered 
pairs of vertices. 

§  V is called the vertex set and E is called the edge 
set. 
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E Ñ V ˆ V



Example on Directed Graph 
§ What are the vertex and edge sets in this graph? 

§  For (b,c), we say c is adjacent from b, and b is 
adjacent to c.  

§  For (b,c), b is the origin or source, and c is the 
terminus or terminating vertex 

§ An edge (a,a) is a loop and a vertex that has no 
incident edge is an isolated vertex 
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Example on Undirected Graph 
§  {a,b} stands for {(a,b),(b,a)} 

§  If a graph is not specified as directed or undirected, 
we assume it’s undirected 

§ Graphs with no loops are called loop-free 
6 



Walk 
§  Let x, y (not necessarily distinct) be vertices in a 

graph G=(V,E). An x-y walk in G is a (loop-free) 
finite alternating sequence: x=x0,e1,x1,e2,x2,e3,
…,en-1,xn-1,en,xn=y of vertices and edges.  

§  The length of this walk is n 
-  If x=y, and the length is zero, the walk is called trivial. 
-  If x=y, and length is nonzero, the walk is a closed one. 
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Example of Walks 
§  Ex 11.1: Three open walks 

-  {a,b},{b,d},{d,c},{c,e}{e,d}{d,b} 
-  bàcàdàeàcàf 
-  {f,c},{c,e},{e,d},{d,a} 

§  Since the graph is undirected, an a-b walk is also a 
b-a walk! 

§  bàcàb is a b-b closed 

   walk. Can we get a c-c 

   closed walk? 
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Trails and Paths 
§  For any x-y walk in G 

-  If no edge in the x-y walk is repeated, we call it x-y trail 
-  A closed trail is called a circuit 
-  If no vertex of the x-y walk occurs more than once, we 

call it x-y path 
-  A closed path is called a cycle 

§  Convention: Circuits have at least one edge. Cycles 
contain at least three edges.  
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Example of Trails and Paths 
§  Ex 11.2: Are the following two walks trails or 

paths?  
-  bàcàdàeàcàf 
-  {f,c},{c,e},{e,d},{d,a} 

§  Check if aàbàdàcàeàdàa is a circuit or 
cycle?  

§  aàbàcàdàa is an 

   a-a cycle.  
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Summary 
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Theorem 
§  Let G=(V,E) be an undirected graph. For two 

distinct vertices a and b, if there is a trial from a to 
b, then there is a path from a to b.  

§  Proof Sketch: 
-  We select the shortest trail from a to b: aàx1àx2à…
àxnàb 

-  If it’s a path, then we are done. Otherwise, we know the 
trail can be written as aàx1à…àxk-1àxkàxk+1à…
àkl-1àklàkl+1à…àxnàb, where xk=xl 

-  Then we found a shorter trail from a to b, aàx1à…
àxk-1àxkàkl+1à…àxnàb, contradiction!  
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Connected 
§  Let G=(V,E) be an undirected graph. G is connected 

if there is a path between any two distinct vertices. 

§  For a directed graph G, it’s associated undirected 
graph is the graph obtained from G by ignoring the 
directions of edges. G is connected if its associated 
undirected graph is connected.  

§ A graph that is not connected is called 
disconnected. 
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Connected Components 
§  Ex 11.3: Find the two connected components in the 

graph 
-  A graph is connected if it has only one component 

§  The number of components of G is denoted by 
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Multigraph 
§  (V,E) describes a multigraph G with vertex set V 

and edge set E if for some            , there are two or 
more edges in E. 

§ Multigraphs can be directed or undirected.  

15 
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Subgraph 
§  If G=(V,E) is a graph (directed or undirected), then 

G1=(V1,E1) is a subgraph of G if                             , 
where each edge in E1 is incident with vertices in 
V1. 
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H ‰ V1 Ñ V,E1 Ñ E



Spanning Subgraph 
§  For a graph G=(V,E), let G1=(V1,E1) is a subgraph 

of G. If V1=V, then G1is a spanning subgraph of G. 
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Induced Subgraph 
§  For a graph G=(V,E), if                , the subgraph of 

G induced by U is the subgraph with all edges from 
G with the form: (a) (x,y) where            or (b) {x,y} 
where           . We denote this subgraph as <U>. 

§ A subgraph G’ is called an induced subgraph if 
there exists a correspondent U such that G’=<U>. 
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H ‰ U Ñ V

x, y P U

x, y P U



Examples of Induced Subgraph 
§  Ex 11.5: In the figure, which subgraphs are induced 

subgraph? 
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Removing a Vertex/Edge 
§  For a graph G=(V,E), the subgraph G-v has the 

vertex set V1=V-{v} and edge set E1 containing all 
the edges in E that are not incident with v.  

-  G-v is the subgraph of G induced by V1 

§  Subgraph G-e=(V1,E1), where E1=E-{e} and V1=V. 
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Examples of Removing Vertexs/Edges 

§  Ex 11.6: What is G-c=<V-{c}>, G-e, and (G-b)-f 
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Complete Graph 
§  Let V be a set of n vertices. The complete graph on 

V, denoted Kn, is a loop-free undirected graph, 
where for any two distinct vertices a and b, there is 
an edge {a,b}. 
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Complement 
§  For a graph G=(V,E) with n vertices. The 

complement of G, denoted    , is the subgraph of Kn 
consisting of the n vertices of G and all edges that 
are not in G.  

-  What is      ?        Is called a null graph. 
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A Puzzle Problem 
§  Ex 11.7: Instant Insanity is played with four cubes. 

The objective of this game is to place the four cubes 
in a column, such that all four colors appear on each 
of the four sides. 

§ How can we keep 

    track of the colors? 
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A Puzzle Problem (cont.) 
§ What we are looking for are two subgraphs with 

four vertices, so that each color appears only once, 
and each cube appears only once.  
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A Puzzle Problem (cont.) 
§ Generally, we construct a labeled multigraph, and 

try to find two subgraphs 
-  Each subgraph contains all four vertices, and four labels 
-  Each vertex is incident with two edges 
-  No edge appears in both subgraphs 
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Isomorphism 
§  Let G1=(V1,E1) and G2=(V2,E2) be two undirected 

graph. A function                  is a graph isomorphism 
if 

-  f is one-to-one and onto 
-  For 

§ When such f exists, G1 and G2 are isomorphic 
graphs 
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f : V1 Ñ V2

@a, b P V1, ta, bu P E1 i↵ tfpaq, fpbqu P E2



Examples of Isomorphism 
§ What are the graph isomorphism function: (i) from 

(a) to (b), and (ii) from (c) to (d) 
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A Real Example 
§  Ex 11.8: Are the isomorphic? 

§ Observe: aàfàiàdàeàa, a cycle with length 5. 
Can we find a similar substructure in Fig. (b)? 

§ Verify the mapping:  
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A Real Example 
§  Ex 11.9: Are the isomorphic? 

-  Circuit? 
-  Number of degree-4 vertices 
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Degree 
§  Let G be an undirected graph or multigraph. For 

each vertex v of G, the degree of v, deg(v), is the 
number of edges into v. A loop is counted twice.  

§  Ex 11.10: What are the degrees of each vertex? We 
call a vertex with degree 1 as pendant vertex 
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Number of Edges 
§  If G=(V,E) is an undirected graph or multigraph, we 

have 

§  For any undirected graph or multigraph, the number 
of vertices of odd degree must be even 
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Regular Graphs 
§ An undirected graph, where each vertex has the 

same degree is called a regular graph. If deg(v)=k 
for all vertices v, the graph is called k-regular.  

§  Ex 11.11: Is it possible to have 4-regular graph with 
10 edges?  

-  2|E|=20=4|V| 

§ How about 4-regular graph with 15 edges? 
-  2|E|=30=4|V|? 
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Hupercube 
§  Ex 11.12: To maximize the performance of a 

parallel computer, we need to build a network 
among all the processors 

§  Ideally in fully-mesh, fast but expensive 

§ Grid (or mesh) graph is cheaper, but may not scale 
well.  
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Hupercube (cont.) 
§ N-cube is denoted as Qn, and has 2n vertices. Each 

vertex is labeled by a n-bit sequence, ranges from 0 
to 2n-1.  

§  Two vertices are connected if they differ in 1 bit. 

§  Leads to shorter distance!  
37 



Hupercube (cont.) 
§ How about Q5? 
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Seven Bridges of Konigsberg 
§  Ex 11.13: The city is divided into four sections. The 

residents spent Sundays trying to find a way to walk 
around the city so that they cross each bridge 
exactly once and return to the starting point. 
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Euler Circuit 
§  Let G(V,E) is a graph with no isolated vertices. G 

has an Euler circuit if there is a circuit in G that 
traverses every edge of the graph exactly once.  

-  For a trail going through each edge once, it is called 
Euler trail 

§ A graph (without isolated vertices) has an Euler 
circuit iff G is connected and every vertex in G has 
even degree. 
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Euler Circuit (cont.) 
§ A graph (without isolated vertices) contains an 

Euler trail iff G is connected and has exactly two 
vertices with odd degree.  

§ Do we have Euler circuit or trail? 
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Incoming and Outgoing Degrees 
§  Let G(V,E) be a directed graph or multigraph. For 

each v 
-  Incoming (or in) degree, id(v) is the number of edges 

incident into v 
-  Outgoing (or out) degree, od(v) is the number of edges 

incident from v 

§  Each loop counts as one incoming and one outgoing 
degrees. 
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Directed Euler Circuit 
§  Let G(V,E) be a directed graph with no isolated 

vertices. The graph G has a directed Euler circuit iff 
G is connected and id(v)=od(v) for all vertex v. 
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Example of Directed Euler Circuit 
§  Consider a rotating drum 

§  Can we represent all 3-digital numbers by turning 
the drum? 
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Example of Directed Euler Circuit (cont.) 

§  Construct a directed graph with V={00,01,10,11} 
and (b1b2,b2b3) in E if b1b2 and b2b3 are in V. 

§  Since each v has id(v)=od(v), there is a directed 
Euler circuit 10à00à00à01à10à01à11à11 
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Planar Graphs 
§ A graph (or multigraph) G is planar if G can be 

drawn in the plane, where all its edges only 
intersect at its vertices. 

-  We call such a drawing of G as an embedding of G in the 
plane  

§  Ex 11.15: Are the following graphs planar or 
nonplanar? 
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Complete Graphs and Planar 
§  K1, K2, K3, and K4 are all planar.  

§  Ex 11.16: Is K5 Planar? 
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Bipartite Graph 
§ G=(V,E) is bipartite if V can be divided into a 

partition of V1 and V2, and each edge is in the form 
of {a,b} where a is in V1 and b is in V2.  

§  If every vertex in V1 is connected to every vertex in 
V2, then we have a complete bipartite graph. This 
graph is denoted as Km,n, where |V1|=m and |V2|=n. 
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Hypercubes are Bipartite 
§  Ex 11.17: If we divide the vertices based on the 

even/odd numbers of one’s in the binary strings 
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Utility Graph 
§  The left bipartite graph can be expanded to complete 

bipartite graph K2,3, which is planar. How? 

§  The right bipartite graph can also be expanded to 
K3,3 . But can it be planar? 

§  Preview: K5 and K3,3 are the source of nonplanar. 
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Elementary Subdivision 
§ G=(V,E) is a loop-free undirected group with 

nonempty E. An elementary subdivision of G leads 
to removing an edge e={u,w} and adding the 
edges{u,v} and {v,w} where v was not in V.  

§  Two loop-free undirected graphs G1 and G2 are 
homeomorphic if they are isomorphic or if they can 
both be obtained from the same graph H by a 
sequence of elementary subdivisions.  
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Some Examples 
§ G=(V,E) is a loop-free undirected group with |E| 

>=1. Any G’ derived from G by an elementary 
subdivision has |V|+1 vertices and |E|+1 edges 

§  Ex 11.18: G1 is derived from G2 by an elementary 
subdivision. G1, G2, and G3 are mutually 
homeomorphic. Can we get G2 from G1? 
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Homeomorphic 
§  Can be thought as isomorphic except vertices of 

degree 2 

§  If two graphs are homeomorphic, they are either 
both planar or both nonplanar 
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Kuratowski’s Theorem 
§ A graph is nonplanar iff it contains a subgraph that 

is homeomorphic to either K5 or K3,3 

§  Ex 11.19 (a): Petersen graph contains a subgraph 
that is homeomorphic to K3,3, and thus is nonplanar 
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More Examples 
§  Ex 11.19 (b): 

-  Q3 is planar 
-  The complement of Q3 looks like nonplanar 
-  H is a subgraph of the complement of Q3, which shows 

the complement of Q3 is nonplanar 
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Regions 
§  Each planar embedding of a graph defines regions 

-  Infinite regions 

§ Nonplanar graphs’ regions are not defined 
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Euler's Theorem 
§ G=(V,E) is a connected planar graph or multigraph, 

where |V|=v and |E|=e. Let r be the number of 
regions. Then v-e+r=2 

§  Proved by induction: see text for details.  
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Degree of a Region 
§ Degree of a region R, deg(R), is the number of 

edges traversed in a shortest closed walk about the 
edges in the boundary of R.  

§  Ex:  
-  deg(R1)=5, deg(R2)=3, deg(R3)=3, deg(R4)=7 
-  deg(R5)=4, deg(R6)=3, deg(R7)=5, deg(R8)=6 
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Corollary 
§ G=(V,E) is a loop-free connected planar graph with 

|V|=v, |E|=e>2, and r regions. Then, 3r<=2e and 
e<=3v-6 

-  One way 

§  Ex 11.20: K5 has 5 vertices and 10 edges. Show it is 
nonplanar 

§  Ex 11.21: K3,3 has 6 vertices and 9 edges. Can we 
say it is planar by 9<=12? NO! 

-  Bipartile graphs don’t have triangle subgraph. So each 
region has degree >= 4. This leads to a contradiction to 
Euler's theorem 
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Platonic Solids 
§  Ex 11.22: Platonic Solids: Solids with all faces are 

congruent and all angles are equal.  

§  Tetrahedron: four faces, each face is a equilateral 
triangle.  

§  Cube: the planar graph has six regions, where three 
regions meets at each vertex  
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Platonic Solids (cont.) 
§ General case: v=|V|, e=|E|, r=number of planar 

regions determined by (V,E), m=number of edges at 
the boundary of each region, n=number of regions 
meet at each vertex 

-  2e=mr ß each edge is next to two regions 
-  2e=nv ß counting the endpoints 

§ Applying Euler’s theorem, we have (m-2)(n-2)<4 

§  There are only five cases! 
-  m=n=3 (thtrahedron), m=4,n=3 (cube) 
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Platonic Solids (cont.) 
§ Octahedron: m=3, n=4 

§ Dodecahedron: m=5, n=3 

§  Icosahedron: m=3, n=5 
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Dual Graph 
§  To construct a dual graph Gd with G 

-  Place a vertex inside each region of G, including the 
infinite one 

-  Draw an edge in Gd connecting the two regions sharing 
an edge in G 

-  For an edge of G that is traversed twice in the closed 
walk around a region, draw a loop at the vertex in Gd 
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Cut-Set 
§  For an undirected graph or multigraph G=(V,E), a 

subset E’ of E is called a cut-set of G is by 
removing the edges (but not the vertices) in E’ from 
G, we have k(G) < k(G’), where G’=(V,E-E’). 
Moreover, if we remove any other proper subset E’’ 
of E’, we have k(G)=k(G’’), where G’’=(V,E-E’’) 

§  For a cut-set with only one edge, we call it a bridge 
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Example of Cut-Sets 
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Some Observations 
§  6,7, and 8 forms a cycle in G. What if we remove 

6*, 7*, and 8* in Gd? à Gd becomes disconnected! 
-  A cut-set in Gd 

§  Check 2,4,and 10 in G? 

§ More observations can be found on page 551 
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Map Coloring Problem 
§  Ex 11.24: A dual graph without the infinite region.  

§ Mapmaker’s problem: How can we color the 
regions so that no two adjacent regions share the 
same color? 
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A Real Application 
§  Ex 11.25: A network with 9 switches 

 

§  Switches maybe by default open or closed 
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A Real Application (cont.) 
§ One-terminal-pair graph: two terminal vertices 

§  Planar-one-terminal-pair graph: if adding an edge 
connecting the terminals still leads to a planar graph  
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A Real Application (cont.) 
§  The dual graph! 
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A Real Application (cont.) 
§ What happens if we close a,b,c,j in G? How do they 

affect Gd? 

§ How about closing c,d,e,g,j in G? 

§  Cycles versus disconnections!  
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Hamilton Cycle 
§ G=(V,E) is a graph or multigraph with |V|>=3. We 

say G has a Hamilton cycle if there is a cycle in G 
containing every vertex of V.  

§ A Hamilton path is a path in G that contains every 
vertex. 
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Hamilton Cycle (cont.) 
§  Sounds like Euler circuits (trails): edges for Euler 

circuits (trails) 

§ Unlike Euler circuits (trails), we don’t know any 
necessary and sufficient conditions for the existence 
of Hamilton cycle. 

-  Theorems are for necessary or sufficient conditions 

§  Ex 11.26: Find Hamilton cycles in Q2 and Q3. 
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Another Example 
§  Ex 11.27: Find a Hamilton cycle in the figure. 

§  Is there a Hamilton cycle in this graph? 
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Finding Hamilton Cycle 
§  If G has a Hamilton cycle, then deg(v)>=2 for all 

vertices 

§  If a is a vertex and deg(a)=2, then the two edges 
incident with a must appear in every Hamilton cycle 

§  If a is a vertex and deg(a)>2, then once we pass 
through a, all other edges incident with a are 
removed (as they cannot be part of the cycle) 

§ We cannot find a Hamilton cycle for a subgraph of 
G unless it contains all vertices 
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An Example 
§  Ex 11.28: We re-label Subfig (a) into (b) by 

alternating x and y.  

§  Should contain alternating x’s (5 of them) and y’s 
(5 of them). But we don’t have enough x, so Subfig 
(a) doesn’t contain a Hamilton cycle 

§  Subfig (c): Bipartile cannot have odd-length cycles 
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In a Complete Graph 
§  Ex 11.29: In a science camp, 17 students have lunch 

together daily at a circular table. Students sit next to 
two different colleagues every day. For how many 
days can they do this? Any systematic way to 
arrange the seats? 

§  Each arrangement is in fact a Hamilton cycle of all 
students.  

§  There are n vertices and n(n-1)/2 edges. It is a Kn.  

§  Since every cycle has n edges, we have at most 
(n-1)/2 cycles ß these many days 
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In a Complete Graph (cont.) 
§  Systematic approach: rotate the Hamilton cycle by  

§  For (n-1)/2 times 

80 
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Due to L. Redei 
§  Let       be a complete directed graph. That is it has 

n vertices and for distinct vertices x,y, exactly one 
of (x,y) or (x,y) exists in       .It is called a 
tournament. Such a graph always contains a 
directed Hamilton path. 

§  Proof Sketch: By incrementally adding edges to a 
path until it convers all vertices. See text for details.  

§  Ex 11.30: In a round-robin tournament each player 
plays every other player once. A Hamilton path 
over the directed graph lists the players so that each 
has beaten the next one on the list. 
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Sufficient Condition for Hamilton Path 

§ G=(V,E) is a loop-free graph with |V|=n>=2. If 
deg(x)+deg(y)>=n-1 for all distinct vertices x, y, 
then G has a Hamilton path. 

§  Proof: Given in the text. 

§  Corollary: If deg(v)>=(n-1)/2 for all vertex v, the 
graph has a Hamilton path. 
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Sufficient Condition for Hamilton Cycle 

§ G=(V,E) is a loop-free graph with |V|=n>=3. If 
deg(x)+deg(y)>=n for all nonadjacent vertices x,y, 
then G contains a Hamilton cycle.  

§  Proof: Given in the text. 

§  Corollary 11.5: If deg(v)>=n/2 for all ertex v, then 
G has a Hamilton cycle. 

§  Corollary 11.6: If                            , then G has a 
Hamilton cycle  
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Traveling Salesman Problem 
§ A traveling salesperson leaves his/her home, and 

must visit a set of locations before returning. The 
goal is to find the order to visit the locations, to 
maximize his/her efficiency.  

-  Objectives can be cost or distance.  

§  TSP can be modeled as a labeled graph, where the 
most efficient Hamilton cycle is wanted. 
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Proper Coloring 
§  For an undirected graph G=(V,E), if a coloring 

scheme of G is called a proper coloring if any 
adjacent vertices have different colors.  

§  The minimum number of colors needed to properly 
color G is called the chromatic number of G,  

§  Example: An aquarium has 10 kinds of fish. Certain 
types of fish cannot be put into the same fish tanks. 
What is the minimum number of tanks we need to 
hold all of them? 
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Four Color Theorem 
§  Four colors are enough to color any planar maps 

-  The first computer-assisted proof in 1976 
-  1936 subgraphs 

§  For nonplanar graphs, more than 4 colors might be 
needed! 
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Very Simple Example 
§  Ex 11.31: What is        ? 

-  Show                  by showing K3 is a subgraph of G 
-  Show                  by labeling the vertices (showing a 

sample coloring scheme. 
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More Examples 
§  Ex 11.32, 11.33:  

-     
-   Show   
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�pKnq “ n

�pGq “ 4



Chromatic Polynomial 
§  Let    be the number of available number. The 

chromatic polynomial            tells us how many 
different ways we can properly color G 

§ A proper coloring scheme is a function from 
domain V to codomain 

§ Different ways mean different functions  
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Simple Examples 
§  Ex 11.34:  

-  For graph G with n vertices and zero edge, 
-  For       ,                                                                   ,  

•    
•   We write 

-  What is the chromatic polynomials of the graphs? 
Generalize the results.  

-  If G consists of  
   components, its P fcn 
   is the product of all 
   components’ P fcns. 
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P pG,�q “ �n

Kn P pG,�q “ �p� ´ 1qp� ´ 2q ¨ ¨ ¨ p� ´ n ` 1q � • n

P pG,�q “ 0, o.w.

P pG,�q “ �pnq



Two Special Subgraphs 
§ What happen if G is a connected (and a rather large) 

graph? 

§  For e={a,b} is an edge of G 
-  let subgraph Ge=G-e 
-  coalescing {a,b} into a subgraph G’

e 

§  Ex 11.35:  
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Example 
§  Ex 11.36: How to get                                             ? 

§ How to determine         ?  
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P pG,�q “ �4 ´ 4�3 ` 6�2 ´ 3�

P pG,�q P pGe,�q P pG1
e,�q

“ ´

�pGq



Properties of Chromatic Poly. 
§  For any graph G, the constant term of             is 0 

-  Otherwise P(G,0)>0, means we can color the graph using 
zero color! 

§  For graph G with |E| >0. The sum of the coefficient 
of            is 0 

-  At least an edge, need at least two colors, so P(G,1)=0 
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P pG,�q

P pG,�q



Another Approach 
§  For a connected graph, we can also add more edges 

until we get a complete graph, in order to compute 
its chromatic polynomial 

§  For two vertices a,b where {a,b} is not an edge in 
G. Let Ge

+ be the graph G with an addition edge 
{a,b}, coalescing a,b in G gives a subgraph Ge

++. 
We have   
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P pG`
e ,�q “ P pG,�q ` P pG``

e ,�q



Complete Graphs 
§ G contains two subgraphs G1, G2. If                    and         

§  Then,  

§  Proof Sketch: There are      ways to color     . There 
are             ways to color the rest vertices of G1 and                     

  ways to color the rest vertices of G2.  

§  Then,  
 

§  Ex 11.39: Left as exercise 
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G “ G1 Y G2

G “ G1 X G2 “ Kn

P pG,�q “ P pG1,�qP pG2,�q
�pnq

�pnq Kn
P pG1,�q

�pnq
P pG2,�q

�pnq

P pG,�q “ P pKn,�qP pG1,�q
�pnq

P pG2,�q
�pnq



Take-home Exercises 
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§  Exercise 11.1: 2, 3, 5, 8, 13  

§  Exercise 11.2: 1, 2, 3, 9, 15 

§  Exercise 11.3: 3, 4, 5, 20, 23 

§  Exercise 11.4: 2, 3, 13, 14, 26 

§  Exercise 11.5: 1, 3, 4, 6, 19 

§  Exercise 11.6: 1, 2, 5, 6, 13 


