Name:

Student ID:

Quiz #10 (4% + 2% Bonus)

CS2336 Discrete Mathematics, Instructor: Cheng-Hsin Hsu

Department of Computing Science, National Tsing Hua University, Taiwan

5:00 - 5:20 p.m., June 3rd, 2013

This is a closed book test. Any academic dishonesty will automatically lead to zero point.

 (1%) How many path are there from b to g? Answer:

6

2) (1%) (a) How many spanning subgraphs are there for the graph G? (b) how many of them are connected subgraphs?

Answer:

- a) $2^9 = 512$
- **b**) 4

3) (1%) Let G₁ = (V₁, E₁) and G₂ = (V₂, E₂) be loop-free undirected connected graphs in the figure. (a) Determine |V₁|, |E₁|, |V₂|, and |E₂|. (b) Find the degree of each vertex in V₁ and V₂. (c) Are G₁ and G₂ isomorphic? Answer:

a)
$$|V_1| = 8, |E_1| = 14. |V_2| = 8, |E_2| = 14.$$

b) $V_1 \Rightarrow \begin{cases} deg(a) = 3 & deg(b) = 4 & deg(c) = 4 & deg(d) = 3 \\ deg(e) = 3 & deg(f) = 4 & deg(g) = 4 & deg(h) = 3 \\ V_2 \Rightarrow \begin{cases} deg(s) = 3 & deg(t) = 4 & deg(u) = 4 & deg(v) = 3 \\ deg(w) = 4 & deg(x) = 3 & deg(y) = 4 & deg(z) = 4 \end{cases}$
c) No.

4) (1%) (a) How many vertices and how many edges are there in the complete bipartite graphs K_{4,7}, K_{7,10}, and K_{m,n}, where m, n are positive integers. (b) if K_{m,6} has 72 edges, what is m?

Answer:			
		V	E
a)	$K_{4,7}$	11	28
	$K_{7,10}$	17	70
	$K_{m,n}$	m+n	$m \cdot n$
b)	$m \cdot 6 \stackrel{!}{=} 72 \Rightarrow m = 12.$		

5) (1%) A pet-shop owner receives a shipment of tropical fish. Among the different species are certain pairs where one species eat the other. These pairs must be kept in different tanks. Model this problem as a graph-coloring problem, and tell how to determine the smallest number of tanks need to preserve the fish.

Answer:

Draw a vertex for each species of fish.

If two species x, y must be kept in separate aquaria, draw the edge $\{x, y\}$.

The smallest number of aquaria needed is the chromatic number of the resulting graph.

6) (1%) Show the Petersen graph has a Hamilton path.

Answer:

We demonstrate one case to show that the graph does not have Hamilton cycle, but it has a Hamilton path.

Start at vertex a and consider the partial path $a \to f \to i \to d$. These choices require the removal of edge $\{f, h\}$ and $\{g, i\}$ from further consideration since each vertex of the graph will be incident with exactly two edges in the Hamilton cycle. At vertex d we can go to either vertex c or vertex e.

- (i) If we go to vertex c we eliminate edge {e, d} from consideration, but we must now include edges {e, j} and {e, a}, and this forces the elimination of edge {a, b}. Now we must consider vertex b, for by eliminating edge {a, b} we are now required to include edges {b, g} and {b, c} in the cycle. This forces us to remove edge {c, h} from further consideration. But we have now remove edges {f, h} and {c, h} and there is only one other edge that is incident with h, so no Hamilton cycle can be obtained.
- (ii) Selecting vertex e after d, we remove edge {d, c} and include {c, h} and {b, c}. Having removed {g, i} we must include {g, b} and {g, j}. This forces the elimination of {a, b}, the inclusion of {a, e} (and the elimination of {e, j}). We now have a cycle containing a, f, i, d, e, hence this method has also failed.

However, this graph does have a Hamilton path: $a \to b \to c \to d \to e \to j \to h \to f \to i \to g$.